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Abstract: : In this study, the solution procedure of Linear Fractional Time Minimizing Transportation Problem with Impurities
(LFTMTPI) in the commodity to generate total transportation solution schedules, is going to be presented. This LFTMTPI is
related to a lexicographic linear fractional time minimizing transportation problem with impurities. The partial flows constituting
a feasible transportation schedule may be partitioned according to the actual and standard transportation time involved. An
LFTMTPI algorithm is also presented to solve such real life fractional decision priority problems. This algorithm takes into
account the special structure of the problem due to impurities in the commodity and depends heavily on the optimality conditions.
The optimality conditions reflects nothing else than dual feasibility.
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I. Introduction

Time minimizing transportation problem is required
to find a feasible transportation schedule which
minimizes the maximum of transportation time
associated between a supply point and a demand
point such that the distribution between the two
points is positive. The time transportation problem is
relevant in a variety of real life transportation
situations e.g. Military transportation during war and
emergencies, transportation of perishable goods,
transportation in emergency situations. Khanna,
Bakhshi and Arora [6] studied a time transportation
problem, wherein there was a restriction on the total
flow. Nikolic [1] demonstrated the total
transportation time problem regarding the time of the
active transportation routes. According to the author
if the multiple optimal solutions exist, it was possible
to include other criteria as second level of criteria and
find the corresponding solutions. Sonia and Puri [7]
considered a two level hierarchical balanced time
minimizing transportation problem.

Transportation problems with fractional objective
function are widely used as performance measures in
many real life situations e.g., in the analysis of

financial aspects of transportation enterprises and
undertaking and in transportation management situations,
where an individual, or a group of community is faced
with the problem of maintaining good ratios between some
very important crucial parameters concerned with the
transportation of commodities from certain sources to
various destinations. Sharma and Swarup [2] presented a
transportation technique for time minimization in
fractional functional programming problem with an
objective function. Swarup [3] studied a transportation
technique for linear fractional functional programming
problem. Kanchan, Holland and Sahney [4] investigated
transportation techniques in linear plus linear fractional
programming having special structured objective function.
In all Transportation Models it is assumed that the
commodity is identical irrespective of its source and that
the consumers have no preference relating to its supply
point. However in many real life transportation situations
in industries of coal, iron, cement etc., the commodity does
vary in some characteristics according to its source and the
final commodity mixture reaching the various destinations,
may then be required to meet known specifications.
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In this paper, to generate total transportation solution schedules, an algorithm is presented to solve linear
fractional time minimizing transportation problem with impurities where the commodity can have
different types of impurities, by relating it to a lexicographic linear fractional time minimizing
transportation problem with impurities. This algorithm takes into account the special structure of the
problem and depends heavily on the optimality conditions. The developed algorithm is also supported by
areal life example of crude-ore transportation problem of Steel Authority of India Limited.

1. Mathematical Formulation
The LETMTPI can be formulated as:

min 7 = maxqy—| x; >0 (1)
G, t;
N
subject to ZXU =a, (i=12,...... M) 2)
=
M
zxij:bj (j=12,...... ,N) 3)
i=1
M
2 Sy <4 (j=120cNik =12, P) )
i=1
XUZO (i=12,...... M j=12,...... ,N) (®)]

where a, is the quantity of the commodity available at the i" source and b ; 1s the quantity of
commodity required at the j'h destination. One unit of the commodity contains fijk units of P

impurities (k =12,...,P ) when it is sent from the i” source to the j” destination. Customer j cannot

receive more than g, units of impurity k and x; is the amount of the commodity transported from the

«th a

i" source to the j” destination, T* =t/

;1 and T° =[z;] are two (M X N) time matrices where 7 is

the actual transportation time for transporting x;; > 0 units from the i source to the j ™ destination and

h

t; is the standard transportation time for transporting X >0 units from the " source to the

j ™ destination. t; / t; is proportional contribution to the value of the fractional time objective function
for shipping one unit of commodity from the i " source to the j * destination, and is independent of the
amount of commodity for x; > 0 and ¢ is fractional transportation time.

Setting M’ ={L2....M}. N'={L2...,N}. P'={12...P}, J'={ij)| ie M’ je N}, the
LFTMTPI can be rewritten as:

Z)cl.j =a,, forallieM’

jeN’
. i Z)cij:bj, for all je N
min 7 =| max —‘ x; > 0piem’
W | 1) v ) , ,
Zﬁjkxij <4 for all je N',ke P
ieM’

x; 20, for all (i,j)eJ’
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It is assumed that a, >0, ie M " b ;> 0, je N ’ and the consistency condition for the existence of

the solution to the problem is z a;, = Zb Ix
ieM’ jeN’
2. Lexicographic Linear Fractional Time Minimizing Transportation Problem with Impurities
If the transportation system decision maker decides to minimize the fractional time objective function of
the LFTMTPI, this concept may be represented by a vector-valued fractional objective function which is
to be minimized lexicographically. The LFTMTPI can be easily formulated as a Lexicographic Linear
Fractional Time Minimizing Transportation Problem with Impurities (LLFTMTPI):

Z)cij =a, foral ieM’
jeN’
Z%xq x,=b,, forall je N’
lexmin |3 :—(i’fff lg}' v (6)
Wt iy .le“,f”k x; <qy, forall (i,j)eJ’
I x; 20, for all (i,j)e J’ |
with a; = le.]. (i, j)e &, c=(2,....8)
and B, =le.].  Gjle&. d=(g+L....h)

here a; ,,Bij e IR", IR" be the set of real numbers.
Following the usual method of solution, the first stage is to introduce slack variables x,, ; into the
impurities:

Zfijk X Ty =49 (7

Xk 20

(®)
There are a total of MN + NP variables including slacks and NP+ M + N equations. Because of the
conditions imposed on the @, and the b ;> one of the equations (2) and (3) is dependent and so a basic

feasible solution contains NP + M + N —1 basic variables.

3. Vector-valued Dual Variables and Optimality Conditions
Consider the vector-valued dual variables uil,uiz, GeM’); viv:, (jeN) and w' , w3

VARV gk gk
(je N',ke P’) defined such that:

1 1 1
a; —(ui +vj+2wjk ﬁijzO

ke P’

,Bij —[uf+vf+2wfk fiijzO

keP’

(for those i, j for which X, is in the basis)
1
and wy =0
szk =0

(for those j,k for which x,, 1&; 1s in the basis)
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Also, let

’ 1 1 1
Otijzaij—(ui+vj+2wjk fl.jk} )

keP’

B = B; —[uiz +VI+ D wh fiij (10)
keP’
1

jk,w?k can be obtained and then for non-basic

. 1 2 1 .2
These vector-valued dual variables u,,u;, v Vis o w

variables, Oti’j , ,3; can be determined by the relations (9) and (10).

Now, in order to derive the optimality conditions, the fractional objective function 3 of LLFTMTPI in
equation (6) is expressed in terms of the non-basic variables.

Let
>.a,x,
)
S — (i,))e - (11)
Z X B
(.’
then
_ 1 1
A= D @, + D u|a =D x; |+ va[bf - quj
ieM’ jeN’ ieM’ jeN’ jeN’ ieM’
1
+ 2D Wi [q/‘k N _XM+/<,/‘J
jeN’keP’ ieM’
or
A= ula + > vib + w' + o —|u +vi+> wh f X
= i4i PP w4 i (W TV w S | Xy
ieM’ jeN’ jeN’keP’ ieM’ jeN’| ke P’
_ 1
Wi Xmak,j
jeN’keP’
giving

— / 1
A= ZQ'UXU— Zij )cMJrk,j+V1

(i,/)eG (j,k)eGy

where z and z denote the summation extending over the set of non-basic variables x; and
(i,/)eG (J-k)EG

Xy4x,; Tespectively, and
— 1 1 1
Vi=| 2uia+ 2 viby+ 2 D Wi 45
ieM’ jeN’ jeN'keP’
Similarly

B:LZ X~ waz'k xM+k,j+V2}’ V2:{Z”?ai+zv§b.f+zzw.?k 4 i

i.jeG (j-kEG, ieM’ jeN’ jeN'keP’

Therefore, the objective function (11) becomes
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’ 1
zaijxif - wak Xyk; Vi

_A | ko (JK)EG
B ’ _ 2
i Xij Wi Xy TVa
(i,j G (j.k)EG,

(12)
Differentiating 3 with respect to the non-basic variable X; (i, j ranging over the set G ),

’ ’ 2 ’ ’ 1
Vot 2 Bixy = 2w Xy (=B Vit L ex = D w Xy

03 (.G (kG (i, )G (jEG,
ox, 2
7 ’ 2
Vy+ Z R ijk Xpsk,j
(i,))eG (J.k)eG
Let | — | denote the value of | —— | at the basic feasible solution, then
ox,, ox,
A y
’ ’
aS _ Vz a'ij _Vl :Bl/
- 2
axif * (VZ )

Again from (12), differentiating 3 with respect to the non-basic variables x,, wy (J ,k ranging over the

set G,),

1 ’ 2 2 ’ 1
WVa+ DB = 2oWi Xapay (= CWIVi+ D@x, = D Wi Xy

3 e (j=Gy (i.J)G (j Gy
- 2
0Xyy 4 , R
Vot D0 Bixy = 2w Xy,
(i,))eG (j.k)eG,
Suppose | — | denote the value of | ——— | at the basic feasible solution, then
xM+k,j « xM+k,j
1 2
03 __Vz ij+V1 Wik
- 2
aXM+/<,/ . (Vz )

Therefore, the optimality criteria are:

Ay=V, a; =V, Bi1 20, Ay, =V, wi, =V, w120

’ 1 1 1 ’ 2 2 2
where a'ijza'ij—(ui+vj+2wjk fu)s By =P8 — W, +vj+2wjk fi)
keP’ keP’

O DR SRS A IR DS SRS Y e

ieM’ jeN’ jeN'keP’ ieM’ jeN jeN'ke P’

4. Altering a Basic Feasible Solution
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If a basic feasible solution is to be updated by the introduction of a non-basic variable and the removal of
a basic one, then alterations can only be made to the basic variables. To determine the incoming variable,
select the minimum

Ais :mm{AU| A< 0}

or
(13)

AM+k*,j* :min{AM+k,j| AM+k,j§ 0}
By applying the selection rule (13), the variables x, ; or X, . becomes a basic variable of the new
basic feasible solution, and an unknown quantity € is to be added to this variable while 6.0, or
0.0,y s is added to all the basic variables Xy or X,,., ;. Then if the new solution satisfies the original

constraints, the 0's must satisfy the equations:

M
D 8y =0 (S=12,....,N) (14)
7N
D s =0 (R=12,....M) (15)
S=1
»
ZfRSY 5RS +5M+Y,S =0 (§=12,...,N; Y = . P) (16)

Here, O,y =0, if x, is not in the basis and J,,,, ¢ =0, if x5 + s @, is not in the basis. There are

NP + M + N —1 independent equations in the set (14), (15) and (16) and NP+ M + N unknown J's.
It is therefore possible to solve this set of equations for the (M + N + NP —1) J s associated with basic
variables in terms of &, ;,oor Ovrsn. ;- Furthermore, the values of the variables in the updated basic

feasible solution are given by X,s +0ps 03 X3,y s + 0,y s 6. By choosing a suitable value of @ from

. X X
6= min | — ﬂ;_ﬂ a7
Ors <0 5RS 5M +Y,S

Op4y,s<0

one of the variables is reduced to zero while the others remain positive and a new updated basic feasible
solution is obtained.

5. Change in Time Vectors
To show that the method of altering the solution is valid, consider the introduction of x,, using (14), (15),

(16), the change in time o, is

N M N P
zg’é‘ijaij :{Zzé‘q(’/‘ +v; +zwjkﬁij 11[“1 +V1 +zwlkfllkj+5llall:| 0

i=l j=1 k=1

:l:i”}(ié‘zjj+iv}(ié‘zjj+iZN‘,W/k[zé‘qquj"'é‘n( _”11 _Vll _iwllkfnkj:l'e
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P N P
ZZW ( M+kj)+5ll(all_ull_vll_zwllkfllkj %
k=1

k=1 j=1

P
= 511 '9{(0511 _ull _Vll _Zwllkfllk j}
k=1

Since w}k =0, for those j,k for which x,,, ; is in the basis and J,,,, ; =0, for those j,k for which

Xyr4r,; 18 nOt in the basis.

Consider now the introduction of the non-basic variable x,,,,  and then change in time ¢; is:

iie'é‘a% = {iu‘[}iﬁ ]JFZV [Z ]+fiwﬂ[2cﬁ]ﬁ]kﬂ

=l j=1 i=1 k=1 j=1 i=1
P N

_ZZW ( M+kj) 0

k=l j=1
1
=-0-w,0,

M+1,1

Since w}k =0, for those j,k for which x,,,, . is in the basis and J,,,, ; =0, for those j,k for which

Xyr4x,; 18 Dot in the basis (expect for x,, ) .

Similarly to show that the method of altering the solution is valid, consider the introduction of x,, and the

non-basic variable x,,,,, the change in time [ is:

M N P M N
>>6-6,8,=6, .QKIB“ _”f_Vf_ZWfkfukH , ZZQ 5,8, = -g- W11§M+11 respectively.
k=1

i=l j= =l j=

6. Algorithm
The steps of algorithm, to generate optimal total transportation solution schedules for LFTMTPI in a
finite number of iterations, are:

Step 1:  Determine the lower bound #;'on ¢“ to reduce the dimension of the vector o; and lower
bound #;on #* to reduce the dimension of the vector £, .

Step 2:  Determine an initial basic feasible solution X ! by using method of Saxena [5].
Step 3:  From the resulting transportation time ¢“ and ¢’ of the initial basic feasible solution X "

determine an upper bound #;; and t;,
Step 4: Partition the set ¢“=MXN and &' :=MXN into subset &' and £,
(C =1,....,8;d =g+1,. h) respectively and determine the vectors. With the help of vectors
U = [e ] and ﬁlj [e 41, obtain the fractional transportation time matrix T.
Step 5:  Designate the set of pairs of indices (i, j) of the basic variable by I and using initial basic

feasible solution compute recursively the associated vector-valued multipliers ul.l,ul.z, v} ,vf,

w! T w defined such that
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1 1 1 2 2 2
Otij—(ui+vj+2wjk fiij:O, ,Bij—(ui +vj+szjk fiij:O

keP keP
(for those i, j for which x; is in the basis) and w}k =0, wfk =0 (for those j,k for which x,,,, ; is
in the basis)
Step 6:  Let U= (i[[l,i[iz, ieM’ \7j1,\7j2, jeN’; W}k,Wfk, je N';ke P') be the solution of above
equations in Step 2. Evaluate the relative criterion vectors
A, =Vya, =V, Bi1 20, Ay, =LV, Wy =V, W, ] 2 0 forall (i, j))e J'\I
Step7: If all A; and A, ; are lexicographically greater than or equal to the zero vector for all

(i, j)€ J'\ I, the current basic feasible solution is optimal to LLFTMTPIL Go to Step 10,
otherwise go to Step 8.

Step 8: By applying the selection rule (13) determine the variable x, ; or x,,,, , which is to be enter.
The variable x, ; orx,,, ; then becomes a basic variable of the new basic feasible solution.

Step 9:  Change the current basic feasible solution to the new basic feasible solution using equations
(14)-(17)
and go to Step 5.

Step 10: If X = (55[/ s Xpr e, ;) is optimal total transportation solution schedules for LLFTMTPI denoted

by equation (6), then g = ZQ'UXU / z 'Bt/it/ and
(i.j)ed (ijed

is the index of the first positive

SHTESY!

!

S~

component of the optimal flow vector §. Also 7 = US with (i, j)e &7 / f{; is the optimal

)

?

~

fractional transportation time.

7. Crude-Ore Transportation Problem
The developed algorithm for determining the optimal total transportation solution schedules for the crude-
ore transportation problem can be illustrated by considering the following example of SAIL:
SAIL has different type of furnace in each of six work centers (j), situated in Bhilai, Durgapur,
Rourkela, Burnpur, Salem and Bhadravati in India. The work centers must receive a fixed weight of
crude ore (i) which is available in six different grades. For technical reasons the processing time of crude

ore depends on its grades and the work centers to which it is sent.

The problem is to generate total transportation solution schedules which minimizes the total fractional
transportation-processing time ¢ of transporting crude ore while satisfying the extra requirement that the
amount of phosphorus is less than a certain critical level. In Table 1, the total fractional transportation-
processing time (in hours) required for transporting-processing the crude-ore from i " source to j 4
destination are displayed.

Let x; be the tonnage sent from i to j then it is required to:
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6 6 6
subject to Z)cij:ai,(z:l,Z, ZXij:bj,(]:l,Z, Zp,x SLb;, x;20
j=l1 i=1 i=1
(i=12,...,6;j=12,...,6)
Work Centers j Tons | Phos.
aval. | Cont.
1 2 3 4 5 6 a, P;
[5:35 [5:30 [5:35] [5:107] [5:50 [5:35 6 0.4
1 | L4:25 4:20 4:25 [ 4:20] 4:50] 4:25]
[5:45 5:20] 5:35 [5:00] 5:40 5:35 11 0.8
2 | L4:25 4:25 | 4:25] 4:25 | | 4:20
Crude [5:15] 5:35 5:35 5:35 5:20] [5:40] 8 0.6
-Ore 3 14:20 4:25 20 2 4:25 | 1 4:00
[5:40] 5:00 [5:10] [5:35] 5:40] [5:35 5 0.4
i 4 14:25 4:50 4:20 i ] 4:25 | 4:25 ]
[5:3 5:40 5:35 [5: 5:30 [&} 1 0.6
5 4:40 4:25 [ 4:15] 4:20 445
5:35 6:00] 5:10 [5:35] 5:25] [ﬁ} 3 0.4
6 | L4:25 4:45) 4:35) | 4:05) 4:20] M
Tons
Reqd. bj 7 10 9 4 1 3
Max
Phos. L, 0.7 0.7 0.7 0.7 0.7 0.7

Table 1: Total Fractional Transportation-processing Time

The initial basic feasible solution X' is:

X =2, x, =7,

Xy =1,

1
Xie =~

2

Xy =

15
2

o X3 =

7

2

o Ay =

11
2

o K3 =

5
E’ x41 = 5’

Xy =1, Xy =2, x5 =1, x,, =21, x,;, =2, x,, =10, x,s =3, x,, =4
The lower and upper bounds are:

1= 5.58,

15=4.33,

t,=5.67,

Hence g=4and h=4so f “and f * has four subsets:

and

©={i.)
¢ =1 )
{(
e”; ={i.j)

)

0 =433},

)

t; = 5.58),

1) =442

MY
i

& =i

={ij)e ¢
={i.j)e
& =1i.j)e

10 =567},
J

1) =4.42f,

2

The fractional transportation-processing time matrix T of the following related lexicographic linear
fractional time minimizing crude-ore transportation problem:
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) 6
lexmin 22, Zblx,. =b;, (j
_— = ! "’

6

i=l j=1 Zpl xl} < L}
i=1
| x; 20

can be written as:
_63_ _64_ _63_ _64_ _61_
L€ ] ¢ ] [%]L¢]Lé ]
_61_ _64_ _63_ _64_ _ez_

€ €s € | [ € €;

Using initial basic feasible solution X 1, the vector-valued multipliers uil,uiz, v},v? and w}k,w?k
(i=12,...,6; j=12,...,6; k =1) are calculated as explained in Step 5 and then relative criterion
vectors Aij and AMH” are computed. The flow vector 3(X1)= (0,5/2,0,2,0,0,1,11/2,5,0,12,6,0,0,0,0)"
indicates that fractional transportation-processing time = 1.334 and bottleneck flow = 5/2. As Aij and
Ay, ; are not lexicographically greater than or equal to zero vector, therefore applying the selection rule

of equation (13), the variable x,, becomes an entering basic variable and so J,, is added to this variable

and Oy, O, .,y is added to all the basic variables X, X, . Change the current basic feasible

€

solution to the new basic feasible solution using equations (14)-(17).

The new basic feasible solution X * is:

6 0 0 0
0 15/2 7/2 0
1/2 0 11/2 0
oo |2 sz 2
0 0 0 0
0 0 0 2

20 0 2 12

Fractional Transportatio_n—processing Time: 1.334.

- o o o o O
S = O NN O O

3
Bottleneck Flow: 2.
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i :\« 17

As all the values of A ; and Ay, ; are not lexicographically greater than or equal to the zero vector, the

current basic feasible solution is not optimal. Proceeding in the manner describes above, the further

solutions are:

Fractional Transportati(;n—processing Time: 1.334.

6 0 0 0

0 15/2 7/2 0

1 0 11/2 0

0 5/2 0 5/2

0 0 0 0

0 0 0 3/2

19 0 2 12
0 0 0

0 15/2 2 0

1 0 7 0

0 5/2 0 5/2

0 0 0 0

0 0 0 3/2

19 0 5 12

Fractional Transportation-processing Time: 1.313.

9/2 0 0 3/2
0 15/2 7/4 0
5/2 0 11/2 0
0 5/2 0 5/2
0 0 0 0
0 0 774 0

16 0 9 12

Fractional Transportati(;n—processing Time: 1.289.

- o O o o O
(98]
-
[\

3 4 |
Bottleneck Flow: 3/2.
0

3/2

- o O o O O
]

1/2

3 1
Bottleneck Flow: 3/2.
0

0

0 714
0 0

0 0

0 1

1 1/4

3 0 |
Bottleneck Flow: 29/4.
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Fractional Transportation-processing Time: 1.289.

Fractional Transportation-processing Time: 1.289.

Fractional Transportation-processing Time: 1.289.

[17/4 0 0 3/2
0 15/2 7/4 0
11/4 0 21/4 0

0 5/2 0 5/2
0 0 0 0

0 0 2 0
13172 0 19/2 12
[17/4 0 0 3/2
0 15/2 7/4 0
11/4 0 17/4 0

0 5/2 0 5/2
0 0 0 0

0 0 3 0
131/2 0 23/2 12
[7/4 0 0 4

0 15/2 7/4 0
21/4 0 7/4 0

0 5/12 5/2 0

0 0 0 0

0 0 3 0
121/2 0 33/2 12
0 0 19/4 1

0 5 5/4 3

7 0 0 0

0 5 0 0

0 0 0 0

0 0 3 0

7 10 22 0

Fractional Transportation-processing Time: 1.289.

1/4]
7/4

- o O o o O
- o O

o

3 0 |
Bottleneck Flow: 7
1/4

714

o o o = o O
- O

o

1 0 |
Bottleneck Flow: 6
1/4 ]

714

—

o o o = o O
o o

1 0 |
Bottleneck Flow: 7/2
1/4

714

0
0
1
0
0
0

o = o O

1 0 |
Bottleneck Flow: 7/4
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X10:

S O O N o O
S O v O W O
W O O O W W
SO o o o W =
o o o = o O
oS 2 O O O M

7 10 15 0 1 7

The feasible solution X' is optimal to lexicographic linear fractional time minimizing crude-ore
transportation problem having optimal total transportation solution schedules with optimal fractional
transportation-processing time = 1.270 and bottleneck flow = 13.

8. Concluding Remarks
An algorithm has been developed in this paper for solving linear fractional time minimizing transportation
problems with impurities. The algorithm minimizes the vector of partial flows in a lexicographic order on
the feasible set. This lexicographic approach based algorithm will prove to be useful for transportation
system decision makers to solve fractional decision priority problems for management of transportation
system.

References

[1] L Nikolic, Total time minimizing transportation problem, Yugoslav Journal of Operations Research, 17 no. 1 (2007),
125-133.

[2] J.K. Sharma and K. Swarup, Transportation fractional programming with respect to time, Ricerca Operativa, 7 (1978),
49-58.

[3] K. Swarup, Transportation technique in linear fractional functional programming, Journal of Royal Naval Scientific Service,
21 no. 5 (1966), 256-260.

[4] P.K. Kanchan, A.S.B. Holland and B.N. Sahney, Transportation techniques in linear-plus-fractional programming, Cahiers
du centre de Recherche Operationelle, 23 (1981), 153-157.

[S] P.K. Saxena, (2002), “Determining Cost Ratio-Time Pareto Optimal Frontiers in Non Linear of Transportation Problem with
additional restrictions”, Working Paper FOEDEI-WP-2002/3, Faculty Engg., Dayalbagh Educational Institute, Dayalbagh,
Agra, India.

[6] S. Khanna, H.C. Bakhshi and S.R. Arora, Time minimizing transportation problem with restricted flow, Cahiers du Centre de
Recherche Operationelle, 25 no. 1-2 (1983), 65-74.

[7] Sonia and M.C. Puri, Two level hierarchical time minimizing transportation problem, TOP, 12 no. 2 (2004), 301-330.



