
Appl. Math. Inf. Sci. 7, No. 2L, 549-553 (2013) 549

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/072L26

Arithmetic Expression Evaluation by P Systems

Ping Guo1,3, Hai-Zhu Chen2

1College of Computer Science, Chongqing University, Chongqing 400030, China
2Department of Software Engineering, Chongqing College of Electronic Engineering,Chongqing 401331, China
3Chongqing Key Laboratory of Software Theory & Technology, Chongqing 400044, China

Received: 13 Oct. 2012, Revised: 24 Jan. 2013, Accepted: 27 Jan. 2013
Published online: 1 Jun. 2013

Abstract: Arithmetic operations and expression evaluations are fundamental in computing models. We firstly designs a family of
P systems for arithmetic operations (called arithmetic P systems) and gives the rules without priority. According to the arithmetic
expression,an expression P system can be constructed through the algorithm and transmission rules proposed in this paper. Arithmetic
P systems are one-membrane systems and several of them can make up an expression P system, where arithmetic operations can be
performed in parallel and the computing results can be transmitted under the control of the transmission rules. Then a computing
architecture can be built and based on it different expression P systems can be constructed by designing different parallel strategies.

Keywords: Membrane computing, cell-like P systems, arithmetic operations, arithmetic P systems, expression P systems

1 Introduction

Membrane computing (also called P systems) is an
emerging branch of nature computing since introduced by
Pǎun in 1998 as distributed parallel computing model [1].
It is aiming to abstract computing models from the
structures and the functions of living cells and from their
interactions in tissues or higher order biological
structures. After Pǎun proposed and proved that P system
based on membrane division can solve SAT problem in
polynomial time [2], many variants of P systems
including tissue-like and neural-like ones have been
successfully used to design solutions to NP-complete
problems such as SAT [3], Subset- Sum [4], HPP [5] and
2-partition [6].

The researches on arithmetic operations in P system
are relatively weak compared to the ones in solving
NP-complete problem. Atanasiu firstly constructs
arithmetic P systems with operands encoded in base two
[7]. Ciobanu builds arithmetic P systems with operands
encoded by a simple and natural encoding [8]. Literature
[9] design such P systems without priority rules and
multi-membrane P systems are constructed for signed
operands [10]. Taking neural-like P systems as computing
devices can be found in literature [11].

The research on P systems for arithmetic expression
evaluation attracts few attentions. Literature [12] studies

such P systems with priority rules. In this paper, we
construct arithmetic P system without priority rules firstly.
Then we propose an algorithm to build an expression P
system according to the arithmetic expression and design
transmission rules subsequently. Arithmetic P system is
one-membrane system. When several of such systems are
integrated into an expression P system, the arithmetic
operations defined in each membrane can be performed in
parallel and the computing results can be transmitted
under the control of the transmission rules. Then a
computing architecture can be built. Our works makes the
P system for evaluating arithmetic expression easier to be
implemented. In the rest of this paper, a family of
arithmetic P systems without priority rules are
constructed in Section 2 and expression P systems are
built in Section3 with the constructing algorithm and
transmission rules presented in detailed.

2 Arithmetic P Systems

According to the definition of cell-like P systems [1], an
arithmetic P system based on single membrane can be
defined as:

Π = (O,w,Ra) (1)

where
1) O is an finite and non-empty alphabet of objects;

∗ Corresponding author e-mail: guoping@cqu.edu.cn
c⃝ 2013 NSP

Natural Sciences Publishing Cor.

550 P. Guo, H.Z. Chen: Arithmetic Expression Evaluation by P Systems

2) w is a multiset over O, and it is a set of objects in the
membrane of Π ;
3) R+, R−, R× and R÷ are rule sets for implementing
addition, subtractions, multiplication and division
respectively and the rule set for the family of arithmetic P
system is Ra = R+ ∪ R− ∪ R× ∪ R÷. Fig.1 illustrates the
structure of arithmetic P system with an instance shown
in Fig.2.

Fig. 1 The structure of arithmetic P systems (o ∈ {+,−,×,÷})

Fig. 2 The arithmetic P system for 3+(−5)

We have some conventions as follows:
1) The cardinalities of objects a and b denote the absolute
values of the first and second operands respectively while
objects x and y represent the signs of the operands
respectively;
2) Ro is a set of rules, o ∈ {+,−,×,÷};
3) x ∈ {s, p}, x = s means that the first operand is positive
while x = p means negative. For the second operand, the
meaning of y ∈ {t,q} is similar to the one of x;
4) After the computation is finished, the cardinality of r is
the absolute value of the result with object + representing
nonnegative while object − representing negative;
5) All of the available rules must be applied in a time slice
and some rule can be applied for several times in a time
slice in a maximal parallel way.

The rules in Ra will be discussed in detailed as follows.

2.1 Addition

The rules for addition are designed as:

R+ = R+
1 ∪R+

2 ∪R+
3 ∪R+

4 ∪R+
5 (2)

where,
R+

1 = {r1 : c → de,r2 : ad → a,r3 : bd → b,
r4 : e → xy,r5 : dx →+}

R+
2 = {r6 : sta →+rt2,r7 : stb →+rs2,r8 : sty →+st}

R+
3 = {r9 : sqab → λ ,r10 : sqya →+2ry2q2,

r11 : sqyb →−2ry2s2}
R+

4 = {r12 : ptab → λ ,r13 : ptya →−2ry2t2,

r14 : ptyb →+2ry2 p2}
R+

5 = {r15 : pqa →−rq2,r16 : pqb →−rp2,
r17 : pqy →−pq,r18 : pq+→−pq}

R+
1 ∪ R+

2 is responsible for the addition of two
nonnegative operands while R+

1 ∪ R+
3 for nonnegative

operand added by the negative one, R+
1 ∪R+

4 for negative
operand added by the nonnegative one, and R+

1 ∪R+
5 for

the addition of two negative operands. The sum is
composed by the cardinality of objects r and the object +
or − in the membrane.

For example, the procedure of the addition of two
nonnegative operands is:
1) time-slice=1, {r1,r6,r7} is a set of available rules;
2) time-slice=2, {r2,r3,r4,r6,r7} is a set of available
rules;
3) time-slice=3, {r5,r6,r7,r8} is a set of available rules;
4) from time-slice=4, {r6,r7,r8} is a set of available rules
in every time-slice.

The sum of 5 and -8 can be obtained by R+
1 ∪ R+

3 .
Table1 shows the cardinalities of objects in Π+ at each
time slice during the computation. In the last row of Table
1, the cardinality of r is 3 and the one of − is 6, so we
have -3. The complexity of the operations in Π+ is O(1).

Table 1 The example of Π+ applying to 5+(−8)

Time slice a b c d e q r s x y − rules
0 5 8 1 0 0 9 0 6 0 0 0
1 0 3 0 1 1 4 0 1 0 0 0 r1,r9
2 0 3 0 0 0 4 0 1 1 1 0 r3,r4
3 0 2 0 0 0 3 1 2 1 2 2 r11
4 0 0 0 0 0 1 3 4 1 4 6 r11

2.2 Subtraction

Similarly to addition, the rules for subtraction can be
designed as:

R− = R−
1 ∪R−

2 ∪R−
3 ∪R−

4 ∪R−
5 (3)

where,
R−

1 = {r1 : c → de,r2 : ad → a,r3 : bd → b,
r4 : e → xy,r5 : dx →+}

R−
2 = {r6 : stab → λ ,r7 : stya →+2ry2t2,

r8 : styb →−2ry2s2}
R−

3 = {r9 : sqa →+rq2,r10 : sqb →+rs2,
r11 : sqy →+sq}

R−
4 = {r12 : pta →−rt2,r13 : ptb →−rp2,

r14 : pty →−pt,r15 : pt+→−pt}

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2L, 549-553 (2013) / www.naturalspublishing.com/Journals.asp 551

R−
5 = {r16 : pqab → λ ,r17 : pqya →−2ry2q2,

r18 : pqdb →+2ry2 p2}
In these rules, R−

1 ∪ R−
2 is responsible for the

subtraction of two nonnegative operands while R−
1 ∪ R−

3
for nonnegative operand subtracted by the negative one,
R−

1 ∪ R−
4 for negative operand subtracted by the

nonnegative one, and R−
1 ∪R−

5 for the subtracted of two
negative operands. So we obtain the set of rules for
subtraction. Similarly to Π+, the complexity of
subtraction in Π− is O(1).

2.3 Multiplication

We decide the sign of the product by the two operands
directly and then multiply the absolute values of them to
get the absolute value of the product. The rules for
deciding the sign of the product are:

R×
1 = {r1 : stc →+,r2 : sqc →−,r3 : ptc →−,

r4 : pqc →+}
And the rules for computing the absolute value of the

product are:
R×

2 = {r5 : ab → i jkr}
R×

3 = {r6 : a je → juv,r7 : b je → juv,r8 : i → z,
r9 : kd → w}

R×
4 = {r10 : jze → xu,r11 : jzv → y,r12 : jzk → y}

R×
5 = {r13 : uw → ed,r14 : x → b,r15 : y → ab}

So we have the rule set for multiplication:

R× = R×
1 ∪R×

2 ∪R×
3 ∪R×

4 ∪R×
5 (4)

R×
2 , R×

3 , R×
4 and R×

5 are mutually exclusive, namely,
only one of them can be applied at each time slice. What’s
more, the rules in every one of them must be applied in a
maximal parallel way.

At the end of the multiplication, the absolute value of
the product is the cardinality of r. The product is
nonnegative if the cardinality of + is more than one,
otherwise it is negative. At worst, the complexity of
multiplication in Π× is O(n2).

The product of 4 and 2 can be obtained by R× and the
result is +8 according to the last row in Table 2. li(1 ≤
i ≤ 5) denotes the i-th loop in applying rules in R× to the
example.

Table 2 The example of Π× applying to 4×2)

a b c d e p q r s t + −
l0 4 2 1 1 1 0 0 0 5 3 0 0
l1 3 2 0 1 1 0 0 2 4 2 1 0
l2 2 2 0 1 1 0 0 4 4 2 1 0
l3 1 2 0 1 1 0 0 6 4 2 1 0
l4 1 1 0 1 1 0 0 7 4 2 1 0
l5 0 1 0 1 1 0 0 8 4 2 1 0

2.4 Division

Similar to multiplication, we decide the sign of the
quotient by the two operands directly and then compute
the division of the absolute values of them to get the
absolute value of the quotient. The rules for deciding the
sign of the quotient are:

R÷
1 = {r1 : stc →+,r2 : sqc →−,r3 : ptc →−,

r4 : pqc →+}
And the rules for computing the absolute value of the

quotient are:
R÷

2 = {r5 : a → e,r6 : z → uw,r7 : gb → b}
R÷

3 = {r8 : eb → i j,r9 : gu → f ,r10 : w → v}
R÷

4 = {r11 : eiu → red,r12 : biu → bd,r13 : j → x,
r14 : v → k}

R÷
5 = {r15 : uik → rd,r16 : x → y}

R÷
6 = {r17 : dy → buw,r18 : iy → b}

So we have the rule set for division:

R÷ = R÷
1 ∪R÷

2 ∪R÷
3 ∪R÷

4 ∪R÷
5 ∪R÷

6 (5)

In R÷
1 and R÷

2 , the rules which can be applied are
applied firstly (R÷

1 is used to get the sign of the quotient
and R÷

2 is used to prepare for the applications of R÷
3 ∼ R÷

6
and then we apply the rules in R÷

3 ∼ R÷
6). R÷

3 , R÷
4 , R÷

5 and
R÷

6 are mutually exclusive, namely, only one of them can
be applied at each time slice. What’s more, the rules in
every one of them must be applied in a maximal parallel
way.

At the end of the division, the cardinality of r is the
result, namely, the whole-number part of the division n÷
m, and it is nonnegative if the cardinality of + is more than
one, otherwise it is negative. Particularly, appearance of
object f means that the result is overflown (namely, m= 0).
It is interesting to see that the complexity of division in Π÷

is O(n/m).

3 Expression P Systems

3.1 Construction of expression P systems

To use the rules proposed in Section 2 to evaluate
arithmetical expression, we present an algorithm to
construct expression P system.
Algorithm: constructing expression P systems
Input: arithmetical expression E
Output: expression P system M
step1:transform E into suffix forms and still name it E
step2: generate a stack S to store M, and initialize S to be

void
step3: process the symbols of E in turn, name the current

symbol to be processed as x
If x is operand then
Begin

construct a membrane not including any object,
and name it as M, put the transition rules (pre-

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

552 P. Guo, H.Z. Chen: Arithmetic Expression Evaluation by P Systems

sented later) into M
put object r into M (the cardinality of r is |x|)
If x ≥ 0

put an object + into M
Else

put an object − into M
put an object c in to M
push M into S

End
Else
Begin

pop off the top of S, name it as M2, and put an
object ′2′ into M2
pop off the top of S, name it as M1, and put an
object ′1′ into M1
construct a membrane not including any object,
and name it as M
find out the rules corresponding to x from Sec-
tion 2 and put them into M
put M1 and M2 into M and take them as inner
membranes of M
put symbol c into M
put the transition rules (presented in the next
subsection) into M
push M into S

End
step4: pop off the top of S, name it as M, and put an object

′1′ into M
step5: Return M

Usually, the infix form of arithmetical expression is
familiar to us, for example,

(3− (−2))×3+5× (4÷2)
According this algorithm, the expression P system for

evaluating it can be constructed as shown in Fig.3.

Fig. 3 The expression P system for evaluating (3− (−2))×3+
5× (4÷2)

In Fig.3, object c placed in every membrane is used to
trigger the transmission rules.

3.2 Transmission rules

The result in current membrane is sent into the outer
membrane by transmission rules. According to the rule
set Ro(o ∈ +,−,×,÷) in Section 2, transmission rules,
called Rc, will be designed according to the four cases:
1) The result in the current membrane is nonnegative and
it will be the first operand in the outer membrane, object s
and a will be sent into the outer membrane;
2) The result in the current membrane is negative and it
will be the first operand in the outer membrane, object p
and a will be sent into the outer membrane;
3) The result in the current membrane is nonnegative and
it will be the second operand in the outer membrane,
object t and b will be sent into the outer membrane;
4) The result in the current membrane is negative and it
will be the first operand in the outer membrane, object q
and b will be sent into the outer membrane.

Rc is composed of five parts:

Rc = Rc
1 ∪Rc

2 ∪Rc
3 ∪Rc

4 ∪Rc
5 (6)

Where,
Rc

1 = {r1 : γ → ε,r2 : ετ → ω,r3 : εω → (),out)}
Rc

2 = {r4 : 1c+→ α2µ2γ2ω(s,out),
r5 : αµωr → τ(sa,out),
r6 : αµεr → α3µ3γ3ω(sa,out)}

Rc
3 = {r7 : 1c−→ α2η2γ2ω(p,out),

r8 : αηωr → τ(pa,out),
r9 : αηεr → α3η3γ3(pa,out)}

Rc
4 = {r10 : 2c+→ β 2ζ 2γ2ω(t,out),

r11 : βζ ωr → τ(tb,out),
r12 : βζ εr → β 3ζ 3γ3(tb,out)}

Rc
5 = {r13 : 2c−→ β 2φ2γ2ω(q,out),

r14 : βφωr → τ(qb,out),
r15 : βφεr → β 3φ3γ3(qb,out)}

In Rc, Rc
1 ∪ Rc

2 are used to send the objects that
represent the nonnegative result into the outer membrane
as the first operand; Rc

1 ∪Rc
3 are used to send the objects

that represent the negative result into the outer membrane
as the first operand; Rc

1 ∪Rc
4 are used to send the objects

that represent the nonnegative result into the outer
membrane as the second operand; and Rc

1 ∪Rc
5 are used to

send the objects that represent the negative result into the
outer membrane as the second operand.

The rules in expression P systems are:

R = Ra ∪Rc = R+∪R−∪R×∪R÷∪Rc (7)

3.3 Procedure of evaluating arithmetic
expressions

We explain the procedure of the evaluation of arithmetic
expression through the example shown in Fig.3.
According to Fig.3 and the rules presented previously, the
parallel evaluation of the expression can be described as:
1) membranes 1, 2, 4, 6, 7, 8 apply the rules in Rc in

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2L, 549-553 (2013) / www.naturalspublishing.com/Journals.asp 553

parallel to pre-process the operands and send out the
results.
2) membrane 3 applies the rules in R− to compute
3− (−2) , similarly, membrane 9 processes 4÷2;
3) membrane 3 and 9 use the rules in Rc to send out the
results obtained in 2) respectively;
4) membrane 5 applies the rules in R× to compute 5×3(5
comes from 3 − (−2)) and saves the result, similarly,
membrane 10 processes 5×2(2 comes from 4÷2);
5) membrane 5 and 10 use the rules in Rc to send out the
results obtained in 4) respectively;
6) membrane 11 applies the rules in R+ to compute
15 + 10(15 and 10 come from 5 × 3 and 5 × 2
respectively);
7) membrane 11 uses the rules in Rc to sends the result
into the environment;
8) the whole computation is finished.

In the above procedure of the evaluation, the
synchronization is required besides the parallelism. For
this example, the synchronization include:
1) the computation in membrane 3 can be triggered once
a part of results sent by membranes 1 and 2 arrive;
2) the computation in membrane 9 will be triggered when
all of the results sent by membranes 7 and 8 arrive;
3) the computation in membrane 5 will be triggered when
all of the results sent by membranes 3 and 4 arrive;
4) the computation in membrane 10 will be triggered
when all of the results sent by membranes 6 and 9 arrive;
5) the computation in membrane 11 can be triggered once
a part of results sent by membranes 5 and 10 arrive.

So we can see that different rules for arithmetic
operations require different synchronization in expression
P systems.For realizing the actual computations,the
parallelism strategies, namely synchronization and mutual
exclusion among the rules in Ra and Rc, will be studied in
the further work.

4 Conclusions

In this paper, we propose arithmetic P systems without
priority rules based on cell-like P systems. We propose an
algorithm to construct expression P systems according to
arithmetical expressions and the design transmission
rules. Expression P systems are composed by several
arithmetical P systems where arithmetical operations can
be performed in parallel and the computing results can be
transmitted under the control of the transmission rules.
Based on the rules and different parallel strategies, we can
construct and realize different P systems for evaluating
arithmetic expressions. The future researches will focus
on the parallelism strategies among the rules and the P
system for the arithmetical operations of real operands.

Acknowledgement

This work is supported by Natural Science Foundation
Project of CQ CSTC (No.cstc2012jjA40022).

References

[1] Gh. Pǎun, Journal of Computer and System Science 61, 108-
143 (2000).

[2] Gh. Pǎun, Proc. International Conference on Unconventional
Models of Computation, Springer, London, 94-115 (2000).

[3] Gh. Pǎun, M.J. Pérez-Jiménez, A. Riscos-Núñez,
International Journal of Computers, Communications &
Control 3, 295-303 (2008).

[4] A. Leporati, M.A. Gutiérrez-Naranjo, Fundamenta
Informaticae 87, 61-77 (2008).

[5] L. Pan, A. Alhazov, Acta Informatica 43, 131-145(2006).
[6] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-

Núñez, Soft Computing 9, 673-678 (2005).
[7] A. Atanasiu, Romanian Journal of Information Science and

Technology 4, 5-20 (2001).
[8] G. Ciobanu, International Journal of Computers,

Communications & Control 1,13-24 (2006).
[9] P. Guo, J. Chen, Proc. International Conference on

BioMedical Engineering and Informatics, 231-234 (2008).
[10] P. Guo, M. Luo, Proc. International Conference on

Information Science and Engineering, 393-396 (2009).
[11] M.A. Gutiérrez-Naranjo, A. Leporati, International Journal

of Computers, Communications & Control 4, 244-252
(2009).

[12] P. Guo, S.J. Liu, Advanced Materials Research 225-226,
1115-119 (2011).

Ping Guo received
his PhD (2004) in Computer
software and theory
from Chongqing University.
Now he is a full professor in
College of Computer Science,
Chongqing University, China.
His current research interests
include different aspects of

Artificial Intelligence and Biological computing model.
He has (co-)authored 1 books and more than 130 papers.

Hai-zhu Chen
received her M.Sc. (2005)
and PhD (2011) in Computer
science and technology from
Chongqing University. Now
she is a lecturer at Software
Engineering Department,
Chongqing College
of Electronic Engineering,
China. Her current research

interests include membrane computing and optimization
algorithm. She has (co-)authored more than 10 papers.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

