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Abstract: In order to describe the strong dependence between the existence and absence of nodes in different times, we propose the
Node-markovian graph. At every time step, nodes change their state (existence or not) according to a two-state Markov process. If
nodes do not discard the messages stored in them when they quit from the graph, we think that they have memory, or they do not have
memory, and we study the performance of two-hop routing in both situations. We give the upper and lower bound of the performance
in this paper. Surprisingly, simulation and numerical results show that difference of the performance between both cases is small when
nodes in the graph exist with bigger probability, but they have bigger difference when the probability is smaller, so we think that it is
not necessary for nodes to have memory in some cases.
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1 Introduction
In the last decade, graphs and complex networks have
been used to study many complex human and
communication networks. Typically, graph structures are
used to represent interactions between entities such as
individuals or organizations, and the central problem in
this area is the definition of mathematical models able to
capture properties observed in real networks [1]. For
example, they use the random graph to indicate the
uncertain phenomenon of these relations. But traditional
graphs often neglect the time dimension of these
interactions which is very common such as in computer
networks, social networks, and many other more [2]. A
fundamental work on graphs that considered time
dimension is in paper [3]. Though it’s simple, the
formalism introduced therein has been used as framework
for many works. Authors in another paper [4] presented
theoretical concept of temporal graphs. Tang studied the
small world phenomenon in temporal graphs [5], and
paper [6] explored the robustness of temporal graphs.
Authors in paper [7] use a unified time-varying graph
formalism to integrate many dynamic networks and
redefine many metrics. Recently, the strong dependence
between the existence and absence of a link has been
observed. For simplicity, they assume that the state of a

link only depends on the state in above step, so the
Edge-markovian graph is proposed [8]. Though there are
many works oriented to the temporal graph field, most of
them focus only on the evolving characteristics of the
links. We think that nodes also evolve with time, for
example, if we regard peoples in a school as a network,
the number of nodes in the system will be different in
different times, and nodes will exist in the working day
and be absence on the weekend.

In fact, some works have considered the phenomenon
that new nodes may born and existing nodes may die such
as paper [9,10], but they all focus on that the incoming
nodes will be connected to which nodes existing in the
graph, and this selection will induce what impact on the
graph metrics, such as degree and so on. So they failed to
capture the evolving rule of nodes themselves. On the
other hand, they assume that a node quit from the graph is
dead and can not enter into the graph again, so the
information stored in them can not be used by other nodes
in future, but in our graph nodes can join in the graph
again. Further, the state of the nodes may have strong
dependence in different time steps. For example, in
wireless sensor networks, nodes may switch off or on to
save energy, but because the temporal-correlation of data,
if a sensor is on in this time step, it may be off in next step
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with bigger probability, because data may only have little
difference and it is not necessary to detect again.

In real environment, the dependence may be very
complex and it is hard to model. Even if we can model the
phenomenon, we think that the analysis on them will be
very complex. For simplicity, we also assume that the
state of a node only depends on the state in above step
and propose the Node-markovian graph. Because nodes
may discard messages when they quit from the graph, we
divide the graph into two cases, that is, no-memory
(discard) and with-memory (not discard). Based on the
model, we study the performance of two-hop routing,
because this method is very important in information
diffusion. Very recently, there are many papers in this
field, such as [11,12]. However, most of them are oriented
to the exponential model.

Because many nodes may be absence in the network,
the connectivity of the graph cannot be sure all the time.
So the end to end path between two nodes may not exist
when they want to communicate with each other which is
similar to that in Delay Tolerant Networks (DTN) [13].
DTN is a very hot topic recently and it is proposed to
support many emerging networking applications, where
end-to-end connectivity cannot be assumed, examples
include deep-space exploration [14], military networks,
etc. Any two nodes can communicate with each other
only when they come into the transmission range of each
other in DTN. In order to overcome the network
partitions, nodes of DTN communicate through a
”store-carry-forward” mode. Due to the node mobility,
different links come up and down. If the sequence of
connectivity graphs over a time interval is overlapped,
then an end-to-end path might exist, so the message
should be forwarded over the existing link, stored and
carried at the next hop until the next link comes up, and
so on and so forth.

The basic routing method in DTN is epidemic routing
in which each node receiving the message carries it as it
moves, and then forwarding it to all new nodes it
encounters which does not have the message yet.
Obviously, this would consume large energy, in order to
use resource efficiently some economic methods such as
two-hop is proposed. Authors in paper [11] study the
optimal control problem of two-hop in DTN and [15]
study the performance with heterogeneous nodes, a more
recent paper [12] consider the impact of node’s selfish on
two-hop routing. But to the best of our knowledge, none
of the papers explore the problem under different message
size and they all assume that message can be transmitted
instantly. On the other side, DNT was molded as
exponentially model before, but this model failed to
capture the strong dependence between the existence (or
the absence) of a link. To overcome this problem, the
edge-Markovian graph is proposed [16].

Most of the works above focused on the evolving rule
of links, and they ignored the evolving rule of nodes.

To our best knowledge, we are the first to attempt to
model the strong dependence in nodes’ evolving process

and study the performance of two-hop routing method
based on this model.

2 Network Model

Consider a network with a source S, N relay nodes and a
destination D, so the total number of nodes is N + 2. All
nodes exist in the graph at the same time can
communicate with each other. We adopt a discrete time
model. Considering time slot duration ∆ , the t-th slot
corresponds to interval [t∆ ,(t +1)∆ ]. Let Si(t) denote the
state of node i in t-th slot. If Si(t) = 0, we say that node i
is absence in t-th slot, and if Si(t) = 1, node i exists in the
graph. Every node changes its state at the beginning of a
slot according to a two-state Markov process and keeps
invariance in the same slot, that is, if Si(t) = 0,
Si(t + 1) = 1 with probability α and equals to 0 with
probability 1 − α . Similarly, if Si(t) = 1, Si(t + 1) = 0
with probability β and keeps invariance with probability
1−β . The transition matrix is shown as follows,

M =

(
1−α α

β 1−β

)
(1)

This is a Bernoulli process and there exists the stationary
distribution. Let π0 and π1 indicate the probability that a
node is in state 0 and 1 when the system went into stable
state, separately, we have π0 = β/(α + β ) and
π1 = α/(α +β ).

If α + β > 1, we have α > 1− β and β > 1−α , so
the network topology changes frequently, and if
α + β < 1, the network changes less frequently. If
α +β = 1, we can say that at every slot, nodes are in state
1 with probability α , so it equals to the stationary
distribution and can be seen as a special case of the case
α +β ̸= 1. In this paper, we assume that S is in state 1 all
the time, and other nodes are in state 0 at time 0, so in
time interval [0,∆ ], they are in state 1 with probability α .
For simplicity, we only consider the case α +β < 1. The
source node S created message m at time 0 with maximal
lifetime T ∆ , so the maximal number of slots equals to T .
For abuse of language, we will use T to indicate the
maximal lifetime of m. Further, we assume that a node
that receives a copy during a time slot can forward it
starting from the following time slot. If a node received
m, it can be thought as infected. In this paper, we explore
the two-hop routing method, that is, if S meets another
relay node without message m, it forwards m to this relay
node, but relay nodes infected can only forward m to D.
We assume that S cannot transmit m to D directly.

3 Evolving Process of Two-hop Routing

According to that whether nodes discard messages stored
in them when they quit, we study the evolving process in
two situations. For simplicity, we further assumed that the
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forwarding process starts at the beginning of a slot, and
the receiving process turns up when the slot is finished. So
the number of infected nodes keeps invariance during one
slot. Let X(t) indicate the number of infected relay nodes
at the beginning of the t-th slot (we have X(0) = 0), F(t)
indicate the probability that D received m at the beginning
of the t-th slot, so our object is to get F(T ). Let F(t, t +1)
denote the conditional probability that D got message in
time interval [t∆ ,(t + 1)∆ ] known that it didn’t infected
before, suppose H(t) = 1−F(t), we have,

H(t +1) = H(t)(1−F(t, t +1)) (2)

F(t) = 1−Π t−1
i=0 (1−F(i, i+1)) (3)

In fact, F(T ) is a stochastic variable, and what we
calculate is its expectation, by abuse of language we
didn’t distinguish them in the rest part of this paper.

3.1 No-memory

First, we can have,

X(t +1) = Σi∈Ω(t)et+1(i)+Σi∈Γ (t)δt+1(i) (4)

The expression of X(t) is shown as formula 4. Ω(t)
indicates the set in which every node has been infected
before time t∆ , so the number of elements in this set is
X(t). Similarly, Γ (t) indicates the set which includes all
nodes uninfected and it has N − X(t) elements. Symbol
et+1(i) indicates the event that node i infected before time
t∆ did not discard the message in time interval
[t∆ ,(t + 1)∆ ], and δt+1(i) indicates the event that node i
uninfected before received m in time interval
[t∆ ,(t + 1)∆ ]. Because nodes are no-memory, they need
to keep in state 1, and we have p(et+1(i) = 1) = 1− β .
For abuse of language, in next section, X(t) also denotes
the set of infected relay nodes at the beginning of the t-th
slot. So nodes in N − X(t) denotes the set of nodes not
infected at time t∆ . Because S is in state 1 all the time, we
can say that nodes in set N − X(t) was in state 0 at
(t −1)-slot, so we have p(δt+1(i) = 1) = α . Now, we can
get the expectation of X(t) denoted as E(X(t)) as follows,

E(X(t +1)) = E(Σi∈Ω(t)et+1(i))+E(Σi∈Γ (t)δt+1(i))

= E(Σ X(t)
i=1 (1−β ))+E(Σ N−X(t)

i=1 α)

= (1−β )E(X(t))+α(N −E(X(t)))
= (1−α −β )E(X(t))+Nα.

(5)

Further, we can get that

E(X(t +1))−Nπ1 = (1−α −β )(E(X(t))−Nπ)

Therefore, we can get the expression of E(X(t)) now
which is shown as follows

E(X(t)) = Nπ1 −Nπ1(1−α −β )t (6)

Because nodes received a copy during a time slot can
forward it only from the next slot, only nodes in set X(t)
can forward m to D in t-th slot, so the expectation of
F(t, t +1) is,

F(t, t +1) = E(p(SD(t) = 1)µ(t))

= p(SD(t) = 1)(1−E(Π E(X(t))
i=1 p(p(Si(t) = 0))))

(7)

This formula means that D will be infected in t-th slot
only when D is in state 1 and at least one of the node in
set X(t) is also in sate 1 in this slot which is denoted as
µ(t). Because nodes are no-memory, nodes in X(t) are in
state 1 in (t −1)-slot, so it translates to state 0 in next slot
with probability β , that is p(Si(t) = 1) = β . Now our
main problem is how to get probability p(SD(t) = 1), and
it needs to keep track its value in previous steps, so it’s
hard to get the accurate value and we give the upper and
lower bound in this paper

First, we compute the lower bound and divide it into
two cases

Case 1: X(t)∩X(t −1) ̸=∅, ∅ denotes the empty set,
so some nodes infected before are in state 1 in (t − 1)-
th slot. If D is also in state 1 in (t − 1)-th slot, D will be
infected. Because we known D is not infected in this slot,
we can say that D is in state 0 in (t−1)-th slot. So we have
p(SD(t) = 1) = α .

Case 2: X(t)∩X(t − 1) = ∅, in this situation, we can
not judge the state of D directly. Suppose
p(SD(t − 1) = 1) = p1, we have p(SD(t) = 1) =
p1(1 − β ) + (1 − p1)α = p1(1 − α − β ) + α , because
α + β < 1, p(SD(t) = 1) is increasing with
p(SD(t −1) = 1) and we know that p(SD(t) = 1)≥ α .

From formula 7 we can see that if we let p(SD(t) =
1) = α , we can get the lower bound of F(t). To get the
upper bound, first we let ω(t) denote the event that D is
not infected in t-th slot. In fact, symbol F(t, t +1) denotes
the conditional probability that D is not infected before. So
we have,

(p(SD(t) = 0), p(SD(t) = 1)) =
(p(SD(t −1) = 0|ω(t −1)), p(SD(t −1) = 1|ω(t −1)))M

(8)
If A is a vector, we use symbol A[2] to denote the second
element of the vector. According to the Bayesian formula,
we have,

p(SD(t) = 1|ω(t))

=
p(ω(t)|SD(t) = 1)p(SD(t) = 1)

p(ω(t)|SD(t) = 1)p(SD(t) = 1)+ p(ω(t)|SD(t) = 0)p(SD(t) = 0)
< p(SD(t) = 1)
= {(p(SD(t −1) = 0|ω(t −1)), p(SD(t −1) = 1|ω(t −1)))M}[2]
< {(p(SD(t −1) = 0), p(SD(t −1) = 1))M}[2]
= {(p(SD(t −2) = 0|ω(t −2)), p(SD(t −2) = 1|ω(t −2)))M2}[2]
. . .

< {(p(SD(0) = 0), p(SD(0) = 1))M}(2) = {(1,0)Mt+1}[2]
(9)
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So we have next formula and we can get the upper bound
according to this formula.

p(SD(t) = 1)≤ {(1,0)Mt+1}[2] (10)

3.2 With-memory

Similar to above case, we can first get next equation,

X(t +1) = X(t)+Σi∈Γ (t)δt+1(i) (11)

The evolving rule of X(t) is shown in formula 11. Symbol
Γ (t) and δt+1(i) have the same meanings as above case,
that is, p(δt+1(i) = 1) = α . So we can get the expectation
of E(X(t)) as follows,

E(X(t)) = N −N(1−α)t (12)

Because nodes have memory, at (t − 1) slot, we can only
know nodes in set X(t)−X(t − 1) is in state 1, so we get
the expectation of F(t, t +1) as follows,

F(t, t +1) =

p(SD(t) = 1)(1−β E(X(t)−X(t−1))Π E(X(t−1))
i=1 p(Si(t) = 0))

(13)
In fact, formula 10 is right for all the nodes, so we have,

p(Si(t) = 0) = 1− p(Si(t) = 1)

≥ 1−{(1,0)Mt+1}[2], i = 1,2, . . . ,N
(14)

Because F(t, t+1) is decreasing with p(Si(t) = 0), we can
get the upper bound by combing 10 and 14.

p(Si(t) = 0)
= p(Si(t −1) = 0)(1−α)+(1− p(Si(t −1) = 0))β
= p(Si(t −1) = 0)(1−α −β )+β ≥ 1−α .

(15)
From analysis above, we know p(SD(t) = 1) ≥ α , so we
can get the lower bound by making p(Si(t) = 0) = 1−α
and p(SD(t) = 1) = α .

4 Simulation and Numerical Results

In this section, we will check the accuracy of our model,
and we run several simulations using the Opportunistic
Network Environment (ONE) simulator [17]. We set
α = 0.05, β = 0.57, N = 50. Symbol F(T ) is also called
the delivery ratio in this paper. In the simulation, the
number of nodes is 50, and the nodes evolve according to
above settings, we run the simulation 20 times. Numerical
and simulation results are shown in Figure. 1.

We can see that the simulation results are among the
theoretical upper and lower bound, so our analysis is
right. When T is smaller than 20 or bigger than 50, the
upper and lower bound are tight, but in interval [20, 50]

Fig. 1 Delivery ratio with different maximal lifetime T

they have bigger difference, so we may get more tight
result in future. From the theoretical results, it is hard to
say whether the case of with-memory is better than the
case of no-memory. Though simulation result shows that
with-memorycase may have better performance, the
difference is very small. From formula 6 and 12 we can
see that in the with-memory case the number of infected
nodes is very bigger, and it will occupy much more
storage space. So we think that nodes do not need to have
memory when they quit from the graph in this situation.

Nowwe will check the impact of the parameters α and
β , for simplicity we set α = 0.1, and increase β from 0 to
0.9, because we assume α +β < 1, we do not consider the
case of β ≥ 0.9. Result is shown in Figure. 2.

Fig. 2 Delivery ratio with different transitive probability β (α =
0.1)
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Figure. 2 shows that the delivery ratio is decreasing
with the increasing of β , and this is because when β is
bigger, nodes have much bigger probability in state 0 and
the graph is very sparse. When β ≥ 0.7, the performance
between the two cases has much bigger difference, and
the delivery ratio in the case of with-memory is higher
than the other case, obviously. So we think that when the
graph is sparse, the case of with-memory may have some
superiority.

5 Conclusion

We proposed the Node-markovian graph to describe the
evolving rule of nodes in this paper. According to that
whether nodes discard the messages when they quit from
the graph, we divided the graph into two cases:
with-memory and no-memory, and we studied the
performance of two-hop routing in both cases.
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