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Abstract: This paper deals with the delay-dependent asymptotic stability analysis problem for stochastic neural networks of neutral-
type with mixed delays. The mixed delays comprise both multiple discrete and unbounded distributed delays. To the best of the authors’
knowledge, till now, the asymptotic stability problem for this class of neural networks has not yet been solved since neutral-type delays
are considered in this paper. The main objective of this paper is to fill this gap. By using Lyapunov-Krasovskii functional method and
the linear matrix inequality (LMI) technique, a novel sufficient condition is derived to guarantee the global asymptotic stability of the
equilibrium point in the mean square. In particular, the proposed stability condition is presented in terms of LMI, which can be easily
solved by some standard numerical packages. In addition, an example is given to show the effectiveness of the obtained result.
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1 Introduction

As is well-known, artificial neural networks are
computational modeling tools that have found extensive
acceptance in many disciplines for modeling complex
real-world problems [1]. In addition, owing to the fact
that in biological and artificial neural networks, there
inevitably exist integration and communication delays
which may lead to bifurcation, oscillation, divergence,
instability, or other poor performances [2,3,4]. Therefore,
the study of neural networks with time delays has become
a subject of intensive research activity, and the
corresponding research can be seen in [3,4,5,6,7,8,9,10,
11,12,13,14,15,16]. However, in these publications,
most research on delayed neural networks has been
restricted to simple cases of discrete delays. Since a
neural network usually has a spatial nature due to the
presence of an amount of parallel pathways of a variety of
axon sizes and lengths, it is desired to model them by
introducing distributed delays. Therefore, both discrete
and distributed delays should be taken into account when

modeling a realistic neural network [10,11,12]. In
particular, the stability problems of neural networks with
multiple discrete delays have received much attention in
the last few years, see [13,14,15] and their references.

In a real neural networks system, stochastic
disturbances are nearly inevitable owing to various
reasons such as random fluctuations in the release of
neurotransmitters or thermal noise in electronic devices
[16,17]. Therefore, it is significant to consider stochastic
effects to the stability property of delayed neural
networks. In recent years, considerable efforts have been
devoted to the asymptotic stability analysis of stochastic
neural networks with time delays [18,19,20]. For
example, in [20], the authors investigated the global
asymptotic stability of stochastic recurrent neural
networks with multiple discrete and unbounded
distributed delays, and a new sufficient condition was
presented by employing a Lyapunov-Krasovskii
functional combined with the LMI approach. It is noticed
that neutral-type delays are not considered in their study.
However, neutral-type delays occurring in the interaction
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between neurons will affect the stability of networks by
creating oscillation or unstable phenomena. So, the
stability of with neutral-type delays should be a focused
topic of theoretical as well as practical importance. Up to
now, the asymptotic stability analysis for stochastic
neural networks of neutral-type with multiple discrete and
unbounded distributed delays has not been investigated,
which motives our research.

This paper is concerned with the problem of global
asymptotic stability stability for stochastic neural
networks of neutral-type with multiple discrete and
unbounded distributed delays. Based on the Lyapunov
stability theory and the LMI technique, a new
delay-dependent stability condition is obtained in terms
of LMI. The proposed model of neural networks is quite
general since many factors such as stochastic
perturbations, multiple discrete and unbounded
distributed delays are considered in this paper. Finally, an
example is provided to demonstrate the effectiveness of
the proposed stability criteria.

2 Problem Statements

In this section, we consider the following stochastic
neural networks of neutral-type with multiple discrete and
distributed time-varying delays.

d[y(t)−Dy(t −h(t))] =
[
−Cy(t)+B(g(y(t))

+
r
∑

k=1
W (k)g(y(t − τk(t)))

+A
∫ t
−∞ k(t − s)g(y(s))ds

]
dt

+σ(t,g(y(t)),g(y(t − τ1(t))),
,g(y(t − τ2(t))), ...,g(y(t − τr(t))))dω(t),

(1)

where y(t) = [y1(t),y2(t), ...,yn(t)]T ∈ ℜn is the neuron
state vector, C = diag{c1,c2, ...,cn}is a positive diagonal
matrix. B ∈ ℜn×n, W k = (wk

i j) ∈ ℜn×n, D ∈ ℜn×n,
A ∈ ℜn×n(k = 1,2, ...,r) are the connection weight
matrices. g(y(t)) = [g1(y1(t),g2(y2(t), ...,gn(yn(t)] ∈ ℜn

denotes the neuron activation function with f (0) = 0. In
this paper, we assume that activation function gi(·)
satisfies the following sector condition:

0 ≤ g1(ϑ1)−g2(ϑ2)
ϑ1−ϑ2

≤ li,∀ϑ1,ϑ2 ∈ ℜn

ϑ1 ̸= ϑ2, i = 1,2, ...,n
(2)

where li(i = 1,2, ...n) are positive scalars.
Time delays τk(t) and h(t) are time-varying differential

function and satisfy:

0 ≤ τk(t)≤ τk, τ̇k(t)≤ δk < 1,
0 ≤ h(t)≤ h, ḣ(t)≤ hd < 1, (3)

where τd ,δk,h and hd are constants.
The delay kernel k j is a real valued continuous

function defined on [0,+∞] and satisfies, for each j,∫ +∞
0 k j(s)ds = 1. ω(s) is m -dimensional wiener process

(Brownian motion) on (Ω ,z,zt≥0).
σ(t,g(y(t)),g(y(t − τ1(t))),g(y(t − τ2(t))),
...,g(y(t − τr(t))))dω(t), is assumed to satisfy the
following assumptions:
(A1) σ(t,0,0, ...,0) = 0 and σ(t,g(y(t)),g(y(t − τ1(t))),
g(y(t − τ2(t))), ...,g(y(t − τr(t))))dω(t) is locally
Lipschitz continuous and satisfies the linear growth
condition.
(A2) There exist constant real matrices Γ0 and Γi(i = 1,
2, ...,r) such that

trace[σT (t,g(y(t)),g(y(t − τ1(t))),g(y(t − τ2(t)))
, ...,g(y(t − τr(t))))Pσ(t,g(y(t)),g(y(t − τ1(t)))
g(y(t − τ2(t))), ...,g(y(t − τr(t))))
≤ gT (y(t))Γ0g(y(t))

+
r
∑

k=1
gT (y(t − tk(t)))Γkg(y− τk(t))).

(4)

3 Stability Analysis

Lemma 1. For any real vectors a,b and any matrix
M > 0 with appropriate dimensions, it follows that

2aT b ≤ aT Ma+bT M−1b. (5)

Theorem 3.1. Assume time-varying delays τk(t) and h(t)
satisfy(3), the system in(1)is globally asymptotically
stable, if there exist positive definite matrices P > 0,
Qk > 0, T > 0, Zi > 0, i = 1,2, positive diagonal matrix
Ei > 0, i = 1,2 such that the following LMI holds:

Ω =

 Ξ1 Ξ2 Ξ3
Ξ T

2 −Ξ4 0
Ξ T

3 0 −Ξ5

< 0, (6)

where

Ξ1 = −PC−CP+ 1
1−hd

(Z1 +Z2)

+ LΓ0L+LT L+2
r
∑

k=1
LQkL

+
r
∑

k=1
L Γk

1−δk
L+LE1L+LE2L,

Ξ2 = [PA PB PW (1) PW (2)

... PW (r)],

Ξ3 = [DPC LDPB DPW (1) DPW (2)

... DPW (r) DPA],
Ξ4 = diag{E1 T Λ1 Λ2 ... Λr},
Ξ5 = diag{Z1 Z2 X1 X2 ... Xr (1−hd)E2}.

(7)

with
Λk = (1−δk)Qkk = 1,2, ...,r,
Xk = (1−hd)Λk,k = 1,2, ...,r.
Proof. Consider the following lyapunov-krasoskill
functional

V (t) =V1 +V2 +V3 +V4, (8)
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where

V1 = [y(t)−Dy(t −h(t))]T P[y(t)−Dy(t −h(t))],

V2 = 2
r
∑

k=1

∫ t
t−τk(t)

gT (y(s))Qkg(y(s))ds

+
r
∑

k=1

1
1−δk

∫ t
t−τk(t)

gT (y(s))Qkg(y(s))ds,

V3 = 1
1−hd

∫ t
t−h(t) yT (s)(Z1 +Z2 +DPAE−1

2 AT PDT )

× y(s)ds+
r
∑

k=1

1
1−hd

∫ t
t−h(t) yT (s)DPW (k)

× (1−δk)
−1Q−1

k (W (k))T PDT y(s)ds,

V4 =
r
∑
j=1

e1
j
∫ ∞

0 k j(δ )
∫ t

t−δ g2
j(y j(δ ))dsdδ

+
r
∑
j=1

e2
j
∫ ∞

0 k j(δ )
∫ t

t−δ g2
j(y j(δ ))dsdδ .

Using It ô′s differential formula, the stochastic derivative
of LV (t) along the trajectory of system (1) is given by

LV (t) = LV1 +LV2 +LV3 +LV4. (9)

where

LV1 = [y(t)−Dy(t −h(t))]T P
[
−Cy(t)

+ Bg(y(t))+
r
∑

k=1
W (k)g(y(t − τk(t)))

+ A
∫ t
−∞ k(t − s)g(y(s))ds

]
+ trace[σT σ ],
≤ −2yT (t)PCy(t)+2yT (t)PBg(y(t))

+ 2yT (t)P
r
∑

k=1
W (k)

1 g(y(t − τk(t)))

+ 2yT (t)PA
∫ t
−∞ k(t − s)g(y(s))ds

+ 2DyT (t −h(t))PCy(t)
− 2DyT (t −h(t))PBg(y(t))

− 2DyT (t −h(t))P
r
∑

k=1
W (k)g(y(t − τk(t)))

− 2DyT (t −h(t))PA
∫ t
−∞ k(t − s)g(y(s))ds

+ gT (y(t))Γ0g(y(t))

+
r
∑

k=1
gT (y(t − tk(t)))Γkg(y− τk(t))),

(10)

LV2 ≤ 2
r
∑

k=1
gT (y(t))Qkg(y(t))

− 2
r
∑

k=1
(1−δk)gT (y(t − τk(t)))

× Qkg(y(t − τk(t)))

+
r
∑

k=1

1
1−δk

gT (y(t))Γkg(y(t))

−
r
∑

k=1
gT (y(t − τk(t)))Γkg(y(t − τk(t)))

(11)

LV3 ≤ 1
1−hd

yT (t)(Z1 +Z2 +DPAE−1
2 AT PDT )

× y(t)− yT (t −h(t))
× (Z1 +Z2 +DPAE−1

2 AT PDT )

× y(t −h(t))+
r
∑

k=1

1
1−hd

yT (t)DPW (k)

× (1−δk)
−1Q−1

k W (k)T PDT y(t)

−
r
∑

k=1
yT (t −h(t))DPW (k)(1−δk)

−1

× Q−1
k W (k)T PDT y(t −h(t)),

(12)

LV4 ≤ gT (y(t))E1g(y(t))
− (

∫ ∞
0 K(t − s)g(y(s))ds)T

× E1(
∫ ∞

0 K(t − s)g(y(s))ds)
+ gT (y(t))E2g(y(t))
− (

∫ ∞
0 K(t − s)g(y(s))ds)T E2

× (
∫ ∞

0 K(t − s)g(y(s))ds).

(13)

By applying Lemma 1, it follows that

2yT (t)PBg(y(t))
≤ yT (t)PBT−1BT Py(t)+gT (y(t))T g(y(t)),
2yT (t)PW (k)g(y(t − τk(t)))
≤ yT (t)PW (k)(1−δk)

−1Q−1
k W (k)T Py(t)

+gT (y(t − τk(t)))(1−δk)Qkg(y(t − τk(t))),
2yT (t)PA

∫ t
−∞ k(t − s)g(y(s))ds

≤ yT (t)PAE−1
1 AT Py(t)

+

[∫ t
−∞ k(t − s)g(y(s))ds

]T

×E1

[∫ t
−∞ k(t − s)g(y(s))ds

]
,

2yT (t −h(t))DPCy(t)
≤ yT (t −h(t))Z1y(t −h(t))
+yT (t)DPCZ−1

1 CT PDT y(t),
2yT (t −h(t))DPBg(y(t))
≤ gT (y(t))DPBZ−1

2 BT PDT g(y(t))
+yT (t −h(t))Z2y(t −h(t)),
2yT (t −h(t))DPW (k)g(y(t − τk(t)))
≤ gT (y(t − τk(t)))
×(1−δk)Qkg(y(t − τk(t)))+ yT (t −h(t))D
×PW (k)(1−δk)

−1Q−1
k W (k)T PDT y(t −h(t)),

2yT (t −h(t))DPA
∫ t
−∞ k(t − s)g(y(s))ds

≤ yT (t −h(t))DPAE−1
2 AT PDT y(t −h(t))[∫ t

−∞ k(t − s)g(y(s))ds
]T

E2

×
[∫ t

−∞ k(t − s)g(y(s))ds
]
,

(14)
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Then, combining(9)-(14)yields, it is easy to verify that

LV ≤ yT (t)
[
−2PC+ 1

1−hd

(
Z1 +Z2

+ DPAE−1
2 AT PDT

+
r
∑

k=1
DPW (k)(1−δk)

−1Q−1
k W (k)T PDT

)
+ PBT−1BT P

+
r
∑

k=1
PW (k)(1−δk)

−1Q−1
k W (k)T P

+ PAE−1
1 AT P+DPCZ−1

1 CT PDT

+ LΓ0L+LDL+2
r
∑

k=1
LQkL+

r
∑

k=1
L Γk

1−δk
L

+ LE1L+LE2L+LDPBZ−1
2 BT PDT L

]
y(t)

= yT (t)Ωy(t),

(15)

where Ω is defined in (6). Thus, if Ω < 0 then the neutral
system (1) is globally asymptotically stable. This
completes the proof of Theorem 3.1.
Remark 1: The sufficient condition in Theorem 3.1 can
ensure the global asymptotical stability of system (1), and
the criterion is expressed in the form of LMI, which can
be easily checked by utilizing the LMI toolbox in Matlab.
Case 1: If we drop out the stochastic perturbations, and
system (1) can be simplified to

d[y(t)−Dy(t −h(t))] =
[
−Cy(t)+B(g(y(t))

+
r
∑

k=1
W (k)g(y(t − τk(t)))

+A
∫ t
−∞ k(t − s)g(y(s))ds

]
dt

(16)

Corollary 3.2. Assume the time-varying delays τk(t) and
h(t) satisfy (3), system (16) is asymptotically stable if
there exist positive definite matrices P > 0, Qk > 0,
T > 0, Zi > 0, i = 1,2, positive diagonal matrix
Ei > 0, i = 1,2 such that the following LMI holds:

Ω̃ =

 Ξ̃1 Ξ2 Ξ3
Ξ T

2 −Ξ4 0
Ξ T

3 0 −Ξ5

< 0, (17)

where

Ξ̃1 =−PC−CP+ 1
1−hd

(Z1 +Z2)+LT L

+2
r
∑

k=1
LQkL+LE1L+LE2L,

Ξ2 = [PA PB PW (1) PW (2) ... PW (r)],

Ξ3 = [DPC LDPB DPW (1) DPW (2) ... DPW (r) DPA],
Ξ4 = diag{E1 T Λ1 Λ2 ... Λr},
Ξ5 = diag{Z1 Z2 X1 X2 ... Xr E2},

with
Λk = (1−δk)Qk,k = 1,2, ...,r,,
Xk = (1−hd)Λk,k = 1,2, ...,r.
Proof: Define a Lyapunov functional candidate for

system(16)

V = [y(t)−Dy(t −h(t))]T P[y(t)−Dy(t −h(t))]

+ 2
r
∑

k=1

∫ t
t−τk(t)

gT (y(s))Qkg(y(s))ds

+ 1
1−hd

∫ t
t−h(t) yT (s)

× (Z1 +Z2 +DPAE−1
2 AT PDT )y(s)ds

+
r
∑

k=1

1
1−hd

∫ t
t−h(t) yT (s)DPW (k)

× (1−δk)
−1Q−1

k W (k)T PDT y(s)ds

+
r
∑
j=1

e1
j
∫ ∞

0 k j(δ )
∫ t

t−δ g2
j(y j(δ ))dsdδ

+
r
∑
j=1

e2
j
∫ ∞

0 k j(δ )
∫ t

t−δ g2
j(y j(δ ))dsdδ .

(18)

Now, following the similar line of the proof of Theorem
3.1, it is not difficult to show that system (16) is globally
asymptotically stable in the mean square. The remaining
details are omitted here. Corollary 3.2 is completed.
Case 2: If we drop out the unbounded distributed delay,
and system (1) can be simplified to

d[y(t)−Dy(t −h(t))] =
[
−Cy(t)+B(g(y(t))

+
r
∑

k=1
W (k)g(y(t − τk(t)))

+σ(t,g(y(t)),g(y(t − τ1(t))),
,g(y(t − τ2(t))), ...,g(y(t − τr(t))))dω(t),

(19)

Corollary 3.3. Assume the time-varying delays τk(t) and
h(t) satisfy (3), system (19) is asymptotically stable if
there exist positive definite matrices P > 0, Qk > 0,
T > 0, and Zi > 0, i = 1,2, such that the following LMI
holds:

Ω̂ =

 Ξ̂1 Ξ̂2 Ξ̂3
Ξ̂ T

2 −Ξ̂4 0
Ξ̂ T

3 0 −Ξ̂5

< 0, (20)

where

Ξ̂1 =−PC−CP+ 1
1−hd

(Z1 +Z2)

+LΓ0L+LT L+2
r
∑

k=1
LQkL

+
r
∑

k=1
L Γk

1−δk
L,

Ξ̂2 = [PB PW (1) PW (2) ... PW (r)],

Ξ̂3 = [DPC LDPB DPW (1) DPW (2) ... DPW (r)],
Ξ̂4 = diag{T Λ1 Λ2 ... Λr},
Ξ̂5 = diag{Z1 Z2 X1 X2 ... Xr},

with
Λk = (1−δk)Qk,k = 1,2, ...,r,
Xk = (1−hd)Λk,k = 1,2, ...,r.
Proof: Define a Lyapunov functional candidate for
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system(19)

V = [y(t)−Dy(t −h(t))]T P[y(t)−Dy(t −h(t))]

+ 2
r
∑

k=1

∫ t
t−τk(t)

gT (y(s))Qkg(y(s))ds

+ 1
1−hd

∫ t
t−h(t) yT (s)

× (Z1 +Z2 +DPAE−1
2 AT PDT )y(s)ds

+
r
∑

k=1

1
1−hd

∫ t
t−h(t) yT (s)DPW (k)

× (1−δk)
−1Q−1

k W (k)T PDT y(s)ds,

(21)

the rest of the proof is omitted here because is
straightforward from Theorem 3.1.
Case 3: If we let D = 0, and system (1) can be simplified
to

dy(t) =
[
−Cy(t)+B(g(y(t))

+
r
∑

k=1
W (k)g(y(t − τk(t)))

+A
∫ t
−∞ k(t − s)g(y(s))ds

]
dt

+σ(t,g(y(t)),g(y(t − τ1(t))),
,g(y(t − τ2(t))), ...,g(y(t − τr(t))))dω(t),

(22)

Corollary 3.4. Assume the time-varying delays τk(t) and
h(t) satisfy (3), system (22) is asymptotically stable if
there exist positive definite matrices P > 0, Qk > 0,
T > 0, Zi > 0, i = 1,2, positive diagonal matrix E1 > 0,
such that the following LMI holds:

Ω̄ =

[
Ξ̄1 Ξ2
Ξ T

2 −Ξ4

]
< 0, (23)

where

Ξ̄1 =−PC−CP+ 1
1−hd

(Z1 +Z2)+LΓ0L

+LT L+
r
∑

k=1
L Γk

1−δk
L

+
r
∑

k=1
LQkL+LE1L,

Ξ2 = [PA PB PW (1) PW (2) ... PW (r)],
Ξ4 = diag{E1 T Λ1 Λ2 ... Λr},

with
Λk = (1−δk)Qk,k = 1,2, ...,r.

4 A Numerical Example

In this section, a simple example is given to demonstrate
the proposed result. Consider a three-neuron stochastic
neural network of neutral-type in (1) with the following
parameters(r=3).

C =

7.2 0 0
0 8.2 0
0 0 8.4

,
B =

 0.4 −0.2 0.4
0.6 0.2 0.5
−0.2 0.8 0.7

,

W 1 =

−0.2 0.5 0.7
0.3 0.7 −0.2
0.6 −0.6 0.3

,
W 2 =

0.1 0.1 −0.2
0.1 0.4 0.6
0.1 −0.1 0.3

,
W 3 =

 0.2 −0.7 0.1
−0.7 −0.8 0.7
0.2 0.2 −0.5

,
A =

0.6 0.3 −0.8
0.2 −0.2 0.1
0.5 −0.2 0.4

,
D =

0.4 0 0
0 0.4 0
0 0 0.4

,
τ1(t) = 0.2+0.2sin(t),
τ2(t) = 0.2−0.2sin(t),
τ3(t) = 0.3−0.3sin(t),
h(t) = 0.1−0.1cos(t),
Γ0 = 0.1I,Γ1 = 0.2I,
Γ2 = 0.4I,Γ3 = 0.3I.
Take τ1 = 0.4,δ1 = 0.2,τ2 = 0.4,δ2 = −0.2,τ3 =
0.6,δ3 = −0.3, h = 0.2,hd = 0.1,L = I,r = 3, applying
the LMI in (6), a feasible solution is obtained as

P =

 22.6720 −1.6685 2.5446
−1.6685 22.3430 1.6981
2.5446 1.6981 22.4110

,
Q1 =

 18.6460 −3.8155 7.8362
−3.8155 19.9655 5.1556
7.8362 5.1556 25.6512

,
Q2 =

 17.1138 −4.6253 2.2265
−4.6253 20.8970 −2.6437
2.2265 −2.6437 15.3992

,
Q3 =

 7.9534 −1.2873 2.2714
−1.2873 9.8421 0.3159
2.2714 0.3159 15.3992

,
T =

 35.2093 4.6705 −6.2582
4.6705 45.5331 −7.9076
−6.2582 −7.9076 35.1978

,
Z1 =

 62.1737 −4.9378 7.0505
−4.9378 69.2122 4.9682
7.0505 4.9682 71.3985

,
Z2 =

 10.8685 −2.4421 2.9731
−2.4421 11.6959 0.0624
2.9731 0.0624 14.1976

,

E1 =
[

20.0576 20.0576 20.0576
]
,

E2 =
[

12.2534 12.2534 12.2534
]
.

Therefore, by Theorem 3.1, one can conclude that system
(1) is globally asymptotically stable in the mean square.

5 Conclusions

In this paper, the asymptotic stability of a class of neural
networks of neutral-type with multiple discrete and
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unbounded distributed delays has been studied. Based on
the Lyapunov stability theory, together with the linear
matrix inequality approach, a new delay-dependent
sufficient condition is presented for the global asymptotic
stability of the equilibrium point of the considered neural
networks. In addition, the proposed stability condition is
presented in terms of LMI and can be efficiently solved
via standard numerical software. Finally, a numerical
example has illustrated that the contributions of the main
result.
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