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Abstract: A new class of entangled states, similar toN00N states is introduced. We call these statesM00N states as the excitations
shared in both subsystems do not need to be equal. The generation proposed here does not need conditional measurements, and therefore
is achieved in a deterministic manner.
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1 N00N states

In recent years, the generation of nonclassical states has
attracted a great deal of attention. Among most preferred
states because of their nonclassical behaviour are (a)
macroscopic quantum superpositions of quasiclassical
coherent states with different mean phases or amplitudes
[1,2], (b) squeezed states [3], (c) the particularly
important limit of extreme squeezing; i.e., Fock or
number states, and more recently, (d) nonclassical states
of combined photon pairs also calledN00N states [4,5].
N00N states, because of their entanglement properties,
are particularly useful in the quantum information area.

Methods to measure generated non-classical states
have already been presented. For instance, by looking at
the atomic inversion, squeezed states [6] and
superposition of coherent states [7] show specific
signatures of their statistical properties. In fact, although
trapped ions present low dissipative features, methods to
obtain knowledge even in dissipative environments have
been put forward [8].

It is well known that N00N states can be used to
obtain high-precision phase measurements, becoming
more and more advantageous as the number of photons
grows. Many applications in quantum imaging, quantum
information and quantum metrology [9] depend on the
availability of entangled photon pairs because
entanglement is a distinctive feature of quantum
mechanics that lies at the core of many new applications.
These maximally path-entangled multiphoton states may

be written in the form

|N00N〉a,b =
1√
2

(|N〉a |0〉b + |0〉a |N〉b) . (1)

It has been pointed out thatN00N states manifest unique
coherence properties by showing that they exhibit a
periodic transition between spatially bunched and
antibunched states when undergo Bloch oscillations. The
period of the bunching/antibunching oscillation isN times
faster than the period of the oscillation of the photon
density [10].
The greatestN for which N00N states have been
produced isN = 5 [4]. Most schemes to generate this
class of states are either for optical [4,5] or microwave
[11] fields.

In this contribution we will show how to generate a
new class of states, namely, MOON states, or states of the
form

|M00N〉a,b =
1√
2

(|M〉a |0〉b + |0〉a |N〉b) , (2)

with high excitation numbersM andN.

2 Ion vibrating in two dimensions

We consider an ion in a two-dimensional Paul trap [11],
and we assume that the ion is driven by a plane wave

E(−)(x̂, ŷ, t) = E0e−i(kxx̂+kyŷ+ω)t , (3)
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with k j , j = x,y the wavevectors of the driving field. The
Hamiltonian has the form

H = νxâ
†
xâx +νyâ

†
yây +

ω21

2
σ̂z

+ Ωx

{
e
−i

[
ηx

(
âx+â†

x

)
+ωt

]
σ̂+ +H.C.

}
(4)

+ Ωy

{
e
−i

[
ηy

(
ây+â†

y

)
+ωt

]
σ̂+ +H.C.

}
.

where we have defined the Lamb-Dicke parameters

ηx = 2π
√

x〈0|∆ x̂2|0〉x
λx

, ηy = 2π
√

y〈0|∆ ŷ2|0〉y
λy

, (5)

and redefined the ladder operators according to

kxx̂ = ηx(ax +a†
x), kyŷ = ηy(ay +a†

y). (6)

In the resolved sideband limit, the vibrational frequencies
νx and νy are much larger than other characteristic
frequencies and the interaction of the ion with the two
lasers can be treated separately using a nonlinear
Hamiltonian [17,18].
We consider that the ion is trapped in thex - axis; i.e.,
Ωx 6= 0 andΩy = 0; then

Hx = νxâ
†
xâx +

ω21

2
σ̂z (7)

+ Ωx

{
e
−i

[
ηx

(
âx+â†

x

)
+ωt

]
σ̂+ +H.C.

}
.

We writeω21 = ω +δ , whereδ is the detuning, to obtain

Hx = νxâ
†
xâx +

(ω +δ )
2

σ̂z (8)

+ Ωx

{
e
−i

[
ηx

(
âx+â†

x

)
+ωt

]
σ̂+ +H.C.

}
.

We transform the Hamiltonian to a frame rotating atω
frequency by means of the transformation

T = e−i ωt
2 σz, (9)

and we get

Hx = νxâ
†
xâx +

δ
2

σ̂z (10)

+ Ωx

{
e
−i

[
ηx

(
âx+â†

x

)]
σ̂+ +e

i
[
ηx

(
âx+â†

x

)]
σ̂−

}
.

Using the Baker-Hausdorff formula [19], and expanding
the exponentials in Taylor series, we cast the Hamiltonian
to

Hx = νxâ
†
xâx +

δ
2

σ̂z (11)

+ Ωx

[
e−

η2
x
2 ∑

n,m

(−iηx)
n

n!
(−iηx)

m

m!
â†n

x âm
x σ̂+ +H.C.

]
.

Transforming to the interaction picture,

HIx = Ωxe
− η2

x
2 ∑

n,m

(−iηx)
n

n!
(−iηx)

m

m!
â†n

x âm
x σ̂+eiνxt(n−m+k)

+ H.C..

(13)

We consider now the low-intensity regime; i.e.,Ωx << νx,
and we apply the rotating wave approximation, to get

HIx = Ωxe
− η2

x
2 (−iηx)

k
∞

∑
n=0

(−ηx)
2n

n! (k+n)!
â†n

x âk+n
x σ̂+

+H.C.,

(15)

by substitutingâ†n
x ân

x = n̂!
(n̂−n)! , multiplying by (n̂+k)!

(n̂+k)! , and
rearranging terms

HIx = Ωxe
− η2

x
2 (−iηx)

k n̂!
(n̂+k)!

Lk
n̂

(
η2

x

)
âk

xσ̂+ +H.C.,

where we have identified

Lk
n̂

(
η2

x

)
=

n̂
∑

n=0

(−1)n(η2
x)

n

n!
(n̂+k)!

(n+k)!(n̂−n)! , with the associated

Laguerre polynomials; so that finally

HIx = Ωx

(
f k
x (n̂) âk

xσ̂+ + â†k
x f ∗kx (n̂) σ̂−

)
, (16)

where

f k
x (n̂) = e−

η2
x
2 (−iηx)

k n̂!
(n̂+k)!

Lk
n̂

(
η2

x

)
. (17)

By using a nonunitary transformation in terms of
Susskind-Glogower phase operator [20] (written here in
matrix form) we write

HIx =
(

1 0
0 V̂†k

x

)
H1x

(
1 0
0 V̂k

x

)
(18)

where we have introduced and defined

H1x = Ωx f k
x (n̂)

√
âk

xâ
†k
x )σ̂+ +Ωx f ∗kx (n̂)

√
âk

xâ
†k
x )σ̂−.

(19)
The evolution operator for this last transformed
Hamiltonian,U1x = e−iH1xt , may be calculate easily. For
this we need

H2m
1x = Ω2m

x

∣∣∣ f k
x (n̂)

∣∣∣
2m

(√
âk

xâ
†k
x

)2m

12×2 (20)

where12×2 is the (2×2) unity matrix. For odd powers we
have

H2m+1
1x = σ̂+Ω2m+1

x

∣∣ f k
x (n̂)

∣∣2m+1
f ∗kx (n̂)

| f k
x (n̂)|

(√
âk

xâ
†k
x

)2m+1

+ σ̂−Ω2m+1
x

∣∣ f k
x (n̂)

∣∣2m+1
f ∗kx (n̂)

| f k
x (n̂)|

(√
âk

xâ
†k
x

)2m+1

(21)
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.ThenU1x (t) = ∑
m

(−it )2m

(2m)! H2m
1x + ∑

m

(−it )2m+1

(2m+1)! H2m+1
1x , (22)and

therefore

UIx (t) =
(

Cee Seg
Sge Cgg

)
(23)

with

Cee= cos

(
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

âk
xâ

†k
x

)
, (24)

Seg =−i (−i)k sin

(
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

âk
xâ

†k
x

)
V̂k

x , (25)

Sge =−iV̂†k
x (i)k sin

(
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

âk
xâ

†k
x

)
, (26)

and

Cgg = V̂†k
x cos

(
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

âk
xâ

†k
x

)
V̂k

x . (27)

Finally, as
√

âk
xâ

†
x

k =
√

(n̂+k)!
n̂! , we can write

UIx(t) =
(

U11 U12
U21 U22

)
, (28)

with

U11 = cos

[
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

(n̂+k)!
n̂!

]
, (29)

U12 = (−i)k+1sin

[
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

(n̂+k)!
n̂!

]
V̂k

x , (30)

U21 =−(i)k+1V̂†k

x sin

[
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

(n̂+k)!
n̂!

]
, (31)

and

U22 = V̂†k

x cos

[
Ωxt

∣∣∣ f k
x (n̂)

∣∣∣
√

(n̂+k)!
n̂!

]
V̂k

x . (32)

Now, we consider as initial state of the ion a number
state|n〉 for the vibrational motion and the excited state|e〉
for the internal states; i.e.,

|ψ (0)〉=
( |n〉

0

)
. (33)

The probability, after the timet, of finding the ion in its
internal excited state is then

Pe(t) =
∞

∑
m=0

〈e|〈m|ψ(t)〉〈ψ(t)|m〉|e〉

× cos2
(

Ωxt
∣∣∣ f k

x (n)
∣∣∣
√

(n̂+k)!
n̂!

)
. (34)

It is clear that after a time

t0 =
π
2

1
Ωx | f k

x (n)|

√
n!

(n+k)!
(35)

the probability to find the ion in its internal excited state
is 0, so at that time the ion is in its internal ground state
with probability 1. This situation is obviously repeated
periodically; every2 j + 1, j = 0,1,2, ... times t0, the ion
will be in its ground state. As can bee seen from
Hamiltonian (39), when the probability of finding the ion
in the excited state goes to zero, the ion is giving four
phonons to the vibrational motion. Now, if we consider
the ion initially in its ground state, the probability to find
it in the ground state at the same timet0 is also zero. In
this case the ion removes four phonons of the vibrational
motion.
If we consider now that the ion is trapped in they - axis;
i.e., Ωy 6= 0 and Ωx = 0, we get exactly the same
expressions and the same results with the variabley
instead ofx.

3 Generation ofM00N states

By starting with the ion in the excited state and the
vibrational state in the vacuum state; i.e.,|0〉x|0〉y, if we
setηy = 0, after the timeτp when the probability to find
the ion in its excited state is zero (meaning that the ion, by
passing from its excited to its ground state, gives4
phonons to the vibrational motion), we can generate the
state|4〉x|0〉y. Repeating this procedure (with the ion reset
again to the excited state, via a rotation), but now with
ηx = 0, four phonons are added to they-vibrational
motion, generating the two-dimensional state|4〉x|4〉y.
Therefore, if we consider the ion initially in a
superposition of ground and excited states, and the
|4〉x|4〉y vibrational state; i.e.,

|ψinit 〉=
1√
2
(|e〉+ |g〉)|4〉x|4〉y, (36)

for ηy = 0 andt0, the state generated is

|ψηy=0〉=
i√
2
(|e〉|0〉x + |g〉|8〉x)|4〉y. (37)

Now, we consider this state as initial state for the next
interaction withηx = 0 and still the interaction timeτp, to
produce

|ψηx=0〉=− 1√
2
(|e〉|0〉x|8〉y + |g〉|8〉x|0〉y). (38)

If in equation (16) we considerk = 2, the vibration in
they axis andηy ¿ 1 we obtain the Hamiltonian

H(2)
Iy = Ωy

(
â2

yσ̂+ + â†2
y σ̂−

)
. (39)
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It is known that this interaction is periodic and may be
used to subtract/add excitations from the system [21]. We
use this fact, and by setting the interaction time such that,
if the ion is initially in its excited state, after a timetg it
will end up in its ground state, if the initial state is given
by (38), the state produced is

|ψ〉=− 1√
2
|g〉(|8〉x|0〉y + |0〉x|10〉y), (40)

this is, the part of the entangled state in (38) associated
with the excited states ”wins” to excitations, while the one
associated to the ground state remains invariant, leaving,
without conditional measurement, a state we have named
M00N state.

4 Conclusions

We have shown howM00N states for the two dimensional
vibrational motion of an ion in a Paul trap may be
generated without the need of conditional measurements.
By means of a set of laser interactions, the ion is
manipulated in such a way that excitations may be added
or subtracted in a controlled form in order to produce the
target state.
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