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Abstract: Manipulating a database system on a quantum system is an essential aim to benefit from the promising speed-up of quantum
computers over classical computers in areas that take a vast amount of storage and processing time such as in databases. In this paper,
the basic operations for manipulating the data in a quantum database will be defined, e.g. INSERT, UPDATE, DELETE, SELECT,
backing up and restoring a database file. This gives the ability to perform the data processing, that usually takes a long processing time
on a classical database system, in a simultaneous way on a quantum system. Defining a quantum version of more advanced concepts
used in database systems, e.g. the referential integrity and the relational algebra, is a normal extension to this work.
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1 Introduction

Quantum computers promise to do computation more
powerfully [18] than classical computers due to the
ability of a quantum systems to be in some states that
have no equivalence in a classical computer such as a
superposition of values and/or an entanglement between
some particles of a quantum system [9]. A superposition
is the ability of the system to be in more than one state
simultaneously over the same physical space while an
entanglement is the existence of a hidden correlation
between the particles of a quantum system [2] so that
applying an operation on an entangled particle will apply
that operation on all the particles entangled with that
particle [4]. A quantum system exploits a superposition to
perform parallel computation on many values
simultaneously at the bit level while a classical computer
can perform simultaneous operations at the CPU level
[15].

To extract information from a quantum system, a
measurement must be used [15]. If that quantum system
exists in a superposition, the measurement will break the
superposition to one of the superposed values in a random
manner. Otherwise, a quantum system behaves
classically, i.e. if no superposition exists. Many useful
methods are known to increase the probability of a
required value to be found with a probability close to
certainty when the measurement is applied [7,12,6,5,20].

Many quantum algorithms exploit a superposition
and/or an entanglement to perform computation faster
than it can be done on classical computers [17,10,23],
where all the possible inputs of a problem are examined
simultaneously. A superposition can be understood as a
list of values superposed together on the same memory
location. A database file is a two dimensional data
structure (a table) where every column represents a field
over certain data type and every row represents a record
(a collection of related fields) [14]. A database file is
simply a list of unique records. Combining the fields in
each record in some fixed binary representation, a list of
records can be manipulated as a list of values that can
exist in a superposition on a quantum system.

Structured Query Language (SQL) is a tool widely
used in manipulating the classical databases [14]. Basic
operations in SQL include inserting a new record to a
database file (INSERT), updating an existing record
(UPDATE), deleting an exiting record (DELETE),
selecting (SELECT) and performing an arbitrary
operation on some records, backing up a portion of a
database (BACKUP), and restoring the backup
(RESTORE). This paper proposes some elementary
operations for a Quantum Query Language (QQL)
required to manipulate a database file exists in a
superposition.

The paper is organized as follows: Section 2 briefly
reviews the basic concepts in quantum computation.
Section 3 defines the basic quantum transformations
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required to construct the QQL. Section 4 defines the basic
operators of the QQL. Section 5 will conclude the work
showing some future directions to the way of constructing
a complete Quantum Database Management System
(QDBMS).

2 Quantum Systems

2.1 Quantum Bits

The quantum bit (qubit [16]) is the quantum analogue of
the classical bit. The basic difference between the qubit
and the classical bit is that the qubit can exist in a linear
superposition of the two states|0〉 and|1〉 at the same time
(Quantum Parallelism),

a|0〉+b|1〉 , (1)

wherea andb are complex numbers called the amplitudes
of system and satisfy the condition|a|2 + |b|2 = 1. The
states|0〉 and |1〉 can be taken as the classical bit values
0 and 1 respectively.| 〉 is called theDirac notation [8]
and is considered as the standard notation for describing
quantum states. In quantum circuits shown in this paper, a
qubit will be represented as a horizontal line and the time
flow of the circuit will be from left to right.

Consider the case where we have a quantum system
(quantum register) with more than one qubit. In
conventional computers, a two-bit register will be able to
carry only one value out of the four possible values
{00,01,10,11} at a time. The corresponding states in a
two-qubit quantum register will be{|00〉, |01〉, |10〉,
|11〉}, so its state in a superposition can be represented as,

|ψ〉= a0 |00〉+a1 |01〉+a2 |10〉+a3 |11〉 , (2)

where ai are complex numbers satisfy the condition
∑i |ai |2 = 1. Any measurement applied on the qubits will
lead to one of the four possible states|i〉 with probability
|ai |2, wherei is the integer representation of that state.

2.2 Quantum Gates

In general, quantum computation process can be
understood as applying a series of quantum gates
followed by applying a measurement to obtain the result
[13]. Quantum gates used during the computation must
follow the fundamental laws of quantum physics [8]. To
satisfy this condition, any matrixU that represents a
quantum gate must be unitary, i.e. the inverse of that
matrix must be equal to its complex conjugate transpose:
U−1 = U† andUU† = I , whereU−1 denotes the inverse
of U , U† denotes the complex conjugate transpose ofU
and I is the identity matrix. Any gate applied on a
quantum register of sizen can be understood by its action
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b.CNOTa. Controlled-U

Fig. 1: Controlled gates. The black circle• indicates the control
qubits, and the symbol⊕ in part (b.) indicates the target qubit.

on the basis vectors and can be represented as a unitary
matrix of size2n×2n.

For example, theNOT gate is a single input/output
gate that inverts the state|0〉 to |1〉 and visa versa. Its

2× 2 unitary matrix:NOT =
[

0 1
1 0

]
. Another important

example is the Hadamard (H) gate. Its 2× 2 unitary

matrix: H = 1√
2

[
1 1
1 −1

]
. Hadamard gate has a special

importance in setting up a superposition of a quantum
register. Consider a three qubits quantum register|000〉,
applying Hadamard gate on each of them in parallel will
set up a superposition of the23 possible states. Applying
any operation on that register afterward will be applied on
the23 states simultaneously.

Controlled operations play an important role in
building up quantum circuits for any given operation [1].
The Controlled-U gate is a general controlled gate with
one or more control qubit(s) as shown in (1.a). It works as
follows: U is applied on the target qubit|t〉 if and only if
all |xk〉 are set to|1〉, i.e. qubits will be transformed as
follows,

|xk〉 → |xk〉 , k : 0→ n−1,
|t〉 → |tCU〉= Ux0x1...xn−1 |t〉 , (3)

wherex0x1...xn−1 in the exponent ofU denotes theAND-
ing operation of the qubit-valuesx0, x1, ...,xn−1.

If U in the general case is replaced with theNOT gate
mentioned above, the resulting gate is calledCNOT gate
(shown in (1.b). It inverts the target qubit if and only if all
the control qubits are set to|1〉 as follows,

|xk〉 → |xk〉 ; k : 0→ n−1,
|t〉 → |tCN〉= |t⊕x0x2...xn−1〉 , (4)

where⊕ is the classicalXORoperation.

3 Basic Operations

Before defining the operators of the QQL, three basic
operations must be defined. Firstly, a simple way to
convert the standard irreversible logic operations, e.g.
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AND, OR, NOT, etc[3], to reversible logic operations
suitable for quantum computers. This has a special
importance in applying an arbitrary operation based on
two or more SELECT operators. Then, a quantum oracle
is used to apply aquery on a database file exists in a
superposition and gives the output of the query entangled
with a temporary qubit dedicated for subspace
identification purposes. Finally, an operator that acts only
on a certain subspace of the system to be used in the
process of backing up and restoring a portion of a
quantum database.

3.1 Boolean Quantum Logic (CNOT gates)

A relational expression is an expression that has two
operands connected with a relational operator from the set
{>,≥,<,≤,=, 6=}. A relational expression evaluates
either totrue (1) or to false(0). A logical expression is an
expression that combines two or more relational
expressions with logical operators such asAND, OR and
NOT, e.g.(x0OR(NOT x1)), wherex0,x1 ∈ {0,1}. These
sort of logical expressions cannot be used directly as
quantum logical expressions because their operations are
not reversible [19]. A logical expression can be
understood as a Boolean function while the relational
expressions are the inputs to that Boolean function.

In building quantum circuits for Boolean functions, an
extra temporary qubit will be added to the system and will
be initialized to state|0〉, to hold the result of the Boolean
function at the end of the computation. For clarity
purposes, theCNOT gates will be presented as follows
[11]: CNOT(C|t) is a gate where the target qubit|t〉 is
controlled by a set of qubitsC such thatt /∈C, the state of
the qubit|t〉 will be flipped from|0〉 to |1〉 or from |1〉 to
|0〉 if and only if all the qubits inC are set to true (state
|1〉), i.e. the new state of the target qubit|t〉 will be the
result ofXOR-ing the old state of|t〉 with theAND-ing of
the states of the control qubits. For example, consider the
CNOT gate shown in (2), it can be represented as
CNOT({x0,x2}|x3), where• on a qubit means that the
condition on that qubit will evaluate to true if and only if
the state of that qubit is|1〉, while ⊕ denotes the target
qubit which will be flipped if and only if all the control
qubits are set to true, which means that the state of the
qubit |x3〉 will be flipped if and only if |x0〉 = |x2〉 = |1〉
with whatever value in|x1〉; i.e. |x3〉 will be changed
according to the operationx3 → x3⊕ x0x2. If C = {}, i.e.
an empty set, then the target qubit will be flipped
unconditionally (NOT gate).

3.2 Boolean Quantum Circuits (BQC)

A general Boolean quantum circuitU of sizem (size of
the circuit refers to the total number ofCNOT gates in
that circuit) overn qubit quantum system with qubits
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|x3〉

Fig. 2: CNOT({x0,x2}|x3) gate.
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Fig. 3: Boolean quantum circuit.

|x0〉 , |x1〉 , . . . , |xn−1〉 can be represented as a sequence of
CNOT gates [11] as follows,

Ug = CNOT(C1|t1) . . .CNOT(Cj |t j) . . .CNOT(Cm|tm) ,
(5)

wheret j ∈ {x0, . . . ,xn−1}; Cj ⊂ {x0, . . . ,xn−1}; t j /∈Cj and
j : 1→m. The BQC that will be used in this paper can be
represented as follows,

U = CNOT(C1|t)...CNOT(Cj |t)...CNOT(Cm|t), (6)

where t ≡ xn−1; Cj ⊆ {x0, . . . ,xn−2}. For example,
consider the quantum circuit shown in (3), it can be
represented as follows,

U = CNOT({x0,x1}|x2).CNOT({x1}|x2).CNOT(x2),
(7)

Now, to trace the operations that have been applied on
the target qubit|x2〉, we will trace the operation of each of
theCNOT gates that has been applied:

–CNOT({x0,x1}|x2)⇒ x2 → x2⊕x0x1,
–CNOT({x1}|x2)⇒ x2 → x2⊕x1 ,
–CNOT(x2)⇒ x2 → x2 = x2⊕1.

Combining the three operations, we see that the
complete operation applied on|x2〉 is represented as
follows,

x2 → x2⊕x0x1⊕x1⊕1. (8)

If |x2〉 is initialized to |0〉, applying the circuit will
make|x2〉 carry the result of the operation (x0x1⊕x1⊕1),
which is equivalent to the operationx0 + x1, i.e.
(x0OR(NOT x1)). More details on how to convert more
complexcanonical Boolean expression(expressions use
AND, OR, NOT) to quantum circuits usingReed-Muller
expression(expressions useAND, XOR, NOT) can be
found in [22].
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3.3 Quantum Oracle

Consider an unstructured listL of N items. For simplicity
and without loss of generality we will assume thatN = 2n

for some positive integern. Suppose the items in the list
are labeled with the integers{0,1, ...,N−1}, and consider
a Boolean functionf which maps an itemi ∈ L to either 0
or 1 according to some properties this item should satisfy,
i.e. f : L→{0,1}.

It follows directly, from the discussion in the above
sections, that the functionf can be represented as a
unitary matrix U f . U f will be taken as an oracle that
applies aqueryon the database file and returns the results.
U f has the following effect when applied on a quantum
register|x,y〉,

U f : |x,y〉 → |x,y⊕ f (x)〉 , (9)

where |x〉 is a quantum register of sizen and |y〉 is a
temporary qubit. If|y〉 is initially set to |0〉, thenU f has
the following effect on the quantum register,

U f : |x,0〉 → |x, f (x)〉 . (10)

This oracle has a special importance in setting up an
entanglement on the states that make the oracle evaluates
to true as follows: assume that|ψ〉 is a quantum register
of sizen+ 1 qubits. The firstn qubits in a superposition
and the last qubit is an extra qubit initialized to state|0〉.
Assume thatU f is a quantum oracle used to identify the
states in the superposition that makef evaluate to true.
Applying U f on |ψ〉 can be understood as follows,

U f |ψ〉= U f

2n−1
∑

i=0
αi |i〉⊗ |0〉=

2n−1
∑

i=0
αi |i〉⊗ | f (i)〉

=
2n−1
∑

i=0

′αi |i〉⊗ |1〉+
2n−1
∑

i=0

′′αi |i〉⊗ |0〉,
(11)

where,∑i
′

denotes a sum overi which are desired items,
and∑i

′′
denotes a sum overi which are undesired items in

the list, i.e. the desired items are entangled with state|1〉 of
the extra qubit and the undesired items are entangled with
state|0〉. So far, this can be considered as the SELECT
operator since the selected states are entangled with state
|1〉. Applying any operationU based on the condition that
the extra qubit is in state|1〉 will be applied only of the
subspace of the desired items as shown in (4). To apply an
arbitrary operationU (2n×2n unitary matrix) only on the
subspace entangled with state|1〉, U must be transformed
to a unitary matrix of size2n+1×2n+1 as follows,

U →U⊗|1〉〈1|+ In⊗|0〉〈0| , (12)

whereIn is the identity matrix of size2n×2n.

3.4 Partial Diffusion

The partial diffusion operator, Dp, is an operator that
performs amplitude alteration only on the subspace of the
system entangled with the extra qubit workspace in state
|0〉 [23]. The diagonal representation ofDp when applied
onn+1 qubits system takes this form,

Dp =
(
H⊗n⊗ I1

)(
(1−eiϕ) |0〉〈0|− In+1

)(
H⊗n⊗ I1

)
,

(13)
where the vector|0〉 used in Equation (13) is of length
2N = 2n+1, Ik is the identity matrix of size2k×2k andϕ
is an arbitrary angle such thatϕ 6= 0 . Consider a general
state|ψ〉 of n+1 qubits register,

|ψ〉=
2N−1

∑
k=0

δk |k〉=
N−1
∑
j=0

α j (| j〉⊗ |0〉)

+
N−1
∑
j=0

β j (| j〉⊗ |1〉),
(14)

where{α j = δk : k even} and{β j = δk : k odd}. The effect
of applyingDp on |ψ〉 produces,

Dp |ψ〉= (H⊗n⊗ I1)
(
(1−eiϕ) |0〉〈0|− In+1

)
(H⊗n⊗ I1) |ψ〉

=
N−1
∑
j=0

(1−eiϕ)〈α〉(| j〉⊗ |0〉)−
2N−1

∑
k=0

δk |k〉

=
N−1
∑
j=0

(
(1−eiϕ)〈α〉−α j

)
(| j〉⊗ |0〉)

−
N−1
∑
j=0

β j (| j〉⊗ |1〉),
(15)

where〈α〉 = 1
N ∑N−1

j=0 α j is the mean of the amplitudes of
the subspaceα j (| j〉⊗ |0〉), i.e. applying the operatorDp
will only alter the amplitudes of the subspace
α j (| j〉⊗ |0〉) and will only change the signof the
amplitudes for the subspaceβ j (| j〉⊗ |1〉). If ϕ = π, Dp
will perform the inversion about the mean only on the
subspaceα j (| j〉⊗ |0〉) [23]. For simplicity and without
loss of generality, we will useDp with ϕ = π throughout
the rest of the paper.

4 Quantum Query Language

The architecture of the memory of the quantum system
required for the operations of the QQL consists of a
quantum register of sizen+ t qubits. Initially, the system
is set to state|0〉⊗n⊗|0〉⊗t . Then qubits can hold up to2n

records at a time and thet qubits will be used as
temporary qubits for processing purposes. If it is required
to storer records in a superposition such that1≤ r ≤ 2n,
thendlog2(r)e qubits will be used out of then qubits.

It is important to clearly declare that the following
QQL operators care only about the effects to be applied
on the states of the system (values in the list). For
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Fig. 4: Setting up entanglement on a subspace of the superposition.

simplicity, the effects to be applied on the amplitudes
associated with the states in the superposition have been
ignored as long as the required states exist in the
superposition. The QQL operators could be associated
with some quantum operators, to be constructed
separately, for amplitude manipulation and to maintain
the stability of the amplitudes during the processing time
in specific situations.

4.1 Inserting Records to the Superposition
(INSERT)

Suppose that it is required to insert some records to a
superposition. To insert2r records directly to the
superposition such thatr ≤ n, apply H⊗r ⊗ I⊗n−r on the
first r qubits to create a system in a superposition as
follows,

(
2r−1

∑
i=0

αi |i〉
)
⊗|0〉⊗n−r . (16)

If it is required to insert certain number of recordsr to
a superposition such that only one record is inserted at a
time, then controlled Hadamard gates can be used to
achieve this goal. For example, assume that there is a
quantum register of three qubits that can hold up to eight
values. To insert item-by-item in sequence to the
superposition, apply in sequence the set of operators
Si , i = 0, . . . ,7 defined as follows (as shown in (5)),

S1 = I ⊗ I ⊗H,
S2 = I ⊗H⊗|0〉〈0|+ I ⊗ I ⊗|1〉〈1| ,
S3 = I ⊗ I ⊗|0〉〈0|+ I ⊗H⊗|1〉〈1| ,
S4 = H⊗|00〉〈00|+

3
∑

i=0,i 6=0
|i〉〈i|⊗ I ,

S5 = H⊗|01〉〈01|+ I ⊗
3
∑

i=0,i 6=1
|i〉〈i|,

S6 = H⊗|10〉〈10|+ I ⊗
3
∑

i=0,i 6=2
|i〉〈i|,

S7 = H⊗|11〉〈11|+ I ⊗
3
∑

i=0,i 6=3
|i〉〈i|.

(17)

Initially, the system is in state|ψ0〉 = |000〉, so, the
system already contains an item. To insert the second item,
applyS1, so the system is transformed to the following,

|ψ1〉= α0 |000〉+α1 |001〉 , (18)

where∑i |αi |2 = 1, |i〉 ∈ |ψ1〉 and, to insert the third item,
applyS2 to get,

|ψ2〉= α00|000〉+α01|001〉+α10|010〉 , (19)

and so on. If we keep applyingS′is up toS6, we get,

|ψ6〉= α000|000〉+α001|001〉+α010|010〉
+α011|011〉+α100|100〉+α101|101〉
+α110|110〉 .

(20)

Finally, applyingS7 will completethe superposition
over the whole quantum register. To speed up this process
a little bit, assume that it is required to insert five records
to the superposition, then, firstly, applyI ⊗ H ⊗ H, to
insert four records directly to the superposition in a single
step, sinceI ⊗H⊗H = S3S2S1, then applyS4 to insert the
5th record. The natural question that might arise here is:
What if it is required to insert some specific states, not
necessarily in sequence, to the superposition? The answer
might be more obvious after the UPDATE operator is
defined in the next section.

4.2 Updating a Set of Records (UPDATE)

Updating a record is just sending the state that represents
that record to another state that represents the updated
record such that the record remains unique within the
context of the database file. For example, assume that we
have some records in a superposition as following,

α000|000〉+α010|010〉+α011|011〉+α101|101〉+α110|110〉 .
(21)
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Fig. 5: Sequential insertion of items to a superposition.

To update the record|011〉 to be |111〉, i.e. it is
required to transform the system shown in Equation (21)
to the following system,

α000|000〉+α010|010〉+α011|111〉+α101|101〉+α110|110〉 ,
(22)

such that no change in the amplitude of the updated
record, then this is a permutation. A permutation operator
is a widely known operator that can be represented as a
unitary matrix with 0’s and 1’s as its entries such that
each row and column contains a single 1 and 0
everywhere else. So, theUPDATE operator that will
transform the superposition in Equation (21) to the
superposition in Equation (22) can be written as follows,

U|011〉↔|111〉 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0




. (23)

The UPDATE operator shown in Equation (23) is just
an identity matrix of size23× 23 (3-qubit register) with
the 4th(|011〉) and 8th(|111〉) columns beenswapped
together to affect the basis of the system as required.
Notice that, applyingU|011〉↔|111〉 shown in Equation (23)
again will undo the update. More update operations can
be achieved using a single UPDATE operator. For
example, to update the records|000〉 and |010〉 to states
|100〉 and |001〉 respectively, a single UPDATE operator
is required as follows,

U |000〉↔|100〉
|010〉↔|001〉

=




0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




. (24)

A quantum circuit can be constructed for such
permutation matrices using elementaryCNOT gates [21].
We may conclude from the INSERT and UPDATE
operators that any arbitrary records can be included in a
superposition. They are not necessarily to be in sequence.
This can be done by inserting the required number of
states, then apply an UPDATE operator on some states to
get the final required states in the superposition.

4.3 Deleting a Set of Records (DELETE)

Assume that we want to delete some specific records from
the superposition. This problem is an interesting problem
by itself. How can we remove some items from a
superposition in a single step? The answer to this question
is still open. In this section, we will discuss some key
points that might be used to solve this problem. Firstly,
we need to identify the items to be removed from the
superposition. Assume that we have a Boolean functionf
that evaluates to true for the items we want to delete.
Applying a quantum oracleU f on the superposition
taking a temporary qubit as the target qubit will identify
these items by entangling the subspace of the items we
want to keep in the superposition with state|0〉 of the
temporary qubit, and the subspace of the items we want to
delete with state|1〉 of the temporary qubit. The rest is a
matter of amplitude amplification to find the temporary
qubit in state|0〉 when a partial measurement is applied
on that particular temporary qubit. This will erase the
unnecessary states directly from the system, and will
leave a superposition with the rest of the states.

4.4 Performing Conditional Operations on
Some Selected Records

A usual scenario in the processing of a database is to
select certain sets of records, each set is selected based on
some condition, then apply an operation on the
intersectionof the selected set of records according some
global condition. For example, assume thatR1 andR2 are
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two selected set of records according to the two
conditions c1 and c2 respectively. Assume that an
operationU should be applied on the intersection of the
selected records according to the global condition
(c1AND(NOT c2)). (6) shows such construction where
the setR1 of records is selected by a Boolean functionf1
and the setR2 of records is selected by a Boolean function
f2. Both selected records are combined using the global
condition(c1AND(NOT c2)) on the last temporary qubit
and a conditional application ofU is done for only the
records thatsatisfy the global condition. In general, to
apply such an arbitrary operatorU on k selected sets of
records,k+1 temporary qubits are required.

4.5 Backing Up a Required Portion of a
Database File (BACKUP)

Suppose that a copy of some states in a superposition
should be stored in a safe to be protected from any
arbitrary operations to be done by mistake on the
superposition. To achieve this, assume thatf is a Boolean
function that identifies the records to be backed up.
Firstly, applyU f on the superposition taking a temporary
qubit as the target qubit, this creates an entanglement
between the required subspace and the temporary qubit in
state|1〉, and the rest of the system entangled with the
temporary qubit in state|0〉. This temporary qubit will be
considered as thekeyof the safe (the safe key).

Now, there are two separate subspaces in the
superposition. A subspace entangled with the temporary
qubit in state|1〉 representing the items sent to the backup
and the rest of the superposition that does not contain the
states in the backup, entangled with state|0〉 of the
temporary qubit. To create a copy of the states in the
backup and insert them in the subspace entangled with
state|0〉, apply the partial diffusion operatorDp on the
system including the temporary qubit. The mechanism of
these operations can be understood as follows: Assume
that the system is initially as follows,

|ψ0〉
2n−1

∑
i=0

αi |i〉⊗ |0〉. (25)

1-Applying the Oracle. Apply the oracleU f that maps
the items in the list to either 0 or 1 simultaneously and
stores the result in the temporary qubit:

|ψ1〉= U f |ψ0〉
= U f

2n−1
∑

i=0
αi |i〉⊗ |0〉=

2n−1
∑

i=0
αi |i〉⊗ | f (i)〉. (26)

2-Partial Diffusion. Let M be the number of matches,
which make the oracleU f evaluate to true, i.e. items
to be sent to the backup andN = 2n. Assume that∑i

′
denotes a sum overi representing the items to be sent
to the backup, and∑i

′′ denotes a sum overi

representing the rest of the items in the list. So, the
system|ψ1〉 shown in Equation (26) can be written as
follows:

|ψ1〉=
N−1

∑
i=0

′′
αi (|i〉⊗ |0〉)+

N−1

∑
i=0

′
αi (|i〉⊗ |1〉). (27)

Applying Dp on |ψ1〉 will result in a new system
described as follows:

|ψ2〉=
N−1
∑

i=0

′′
ai (|i〉⊗ |0〉)+

N−1
∑

i=0

′
bi (|i〉⊗ |0〉)

+
N−1
∑

i=0

′
ci (|i〉⊗ |1〉),

(28)

where the mean used in the definition of partial
diffusion operator is,

〈α〉=
1
N

(
N−1

∑
i=0

′′
αi

)
, (29)

andai , bi andci used in Equation (28) are calculated
as follows:

ai = 2〈α〉−αi , bi = 2〈α〉 , ci =−αi . (30)

Notice that, the states with amplitudebi had
amplitudezerobefore applyingDp. The system ends
up with a copy of the required states, previously sent
to the backup by the oracle, in the subspace entangled
with state |0〉 of the safe key qubit. Applying any
further operations on the records of the database
should be applied by controlling that operations by
the temporary qubit to be in state|0〉, in an equivalent
manner to that shown in Equation (12), keeping the
backup in the safe entangled with state|1〉 of the
temporary qubit. Notice that, a superposition of the
database file together with its backup cost an extra
qubit added to the system.

4.6 Restoring a Backup

Suppose that some required records are lost from the
superposition due to some invalid update and/or mistaken
deletion providing that, a copy of these states has been
kept in a backup and all applied operations were
controlled with the safe key qubit to be in state|0〉. So,
the system can be represented as follows,

∣∣∣ψ ′〉
=

N−1
∑

i=0

′′
a
′
i (|i〉⊗ |0〉)+

N−1
∑

i=0

′′′
b
′
i (|i〉⊗ |0〉)

+
N−1
∑

i=0

′
ci (|i〉⊗ |1〉),

(31)
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Fig. 7: Backing up a portion of a database file.

where∑i
′ denotes a sum overi representing the items in

the safe, and∑i
′′ denotes a sum overi representing the

rest of the items in the list, and∑i
′′′ denotes a sum overi

representing the set of the correct items left in the
superposition after applying the invalid operations.
Applying the oracleU f , originally used to create the

backup, on
∣∣∣ψ ′〉

will flip the safe key qubit only for the

items in∑i
′ and∑i

′′′, sending the remaining correct items
left in the superposition to the backup safe and restoring
the items in the safe to the superposition entangled with
state|0〉 as follows,

U f

∣∣∣ψ ′〉
=

N−1
∑

i=0

′′
a
′
i (|i〉⊗ |0〉)+

N−1
∑

i=0

′
ci (|i〉⊗ |0〉)

+
N−1
∑

i=0

′′′
b
′
i (|i〉⊗ |1〉).

(32)

Since the items in the backup safe is no longer valid
(as a set of items), they can be deleted by the DELETE
operator. A new fresh backup could be created using the
BACKUP operator.

5 Conclusion

The quantum databases are expected to replace the
classical databases once quantum computers are
implemented on the commercial scale. Quantum
computers can behave classically if superposition and/or
entanglement are not used. Superposed quantum database
will be useful in reducing the processing time where
many operations could be done simultaneously on a
database file as well as saving memory space. Extracting
useful information from a quantum system in a
superposition is still under investigation by many
researchers. Distributed processing of databases could be
possible where teleportation might help in sending a
quantum database file in a superposition from one place
to another instantly for further processing and extracting
useful information.

The QQL operators defined in this paper still require
further investigation to adjust the amplitudes of the
system as required. General purpose amplitude
manipulation techniques must be found to be combined
with the operators of the QQL. Finding a quantum
version of referential integrity and relational algebra to
get useful information from larger databases where many
database files are used could be the next research step. For
a full functioning QDBMS, the QDBMS should keep
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track of which items are inserted for not inserting an item
more than once or to delete non existence item.

To summarize, in this paper, a method for inserting
exponential number of items simultaneously as well as
inserting item-by-item to a superposition has been
defined. A method to update many records
simultaneously has been shown. A way to delete certain
records from the database simultaneously has been
suggested which still need special attention as a separate
problem. Performing the selection of some records and
applying conditional operations on the intersection of
these selected records has been shown. And finally a
method to backup and restore a database file without the
need of vast extra memory has been proposed.
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