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Abstract: In this paper, maximum likelihood and Bayes estimators efdtale parameter, survival function and hazard rate fomcti
are obtained for the Rayleigh failure time distribution,emtthe life test is progressively first-failure censoredyd¥aestimators have
been developed using the standard Bayes method under ssruareand LINEX loss functions, using inverted gamma priamrthe
parameter. Asymptotic confidence intervals and two baagpstonfidence intervals for the parameter are also propd¥edyive an
example to illustrate our proposed methods. Results fronulsition studies assessing the performance of our proposgdod are
included. The Bayes estimates are found to be, generattgriiban the maximum likelihood estimates against the ggeg prior, in
the sense of having smaller mean square errors.
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1 Introduction

Censoring is very common in life tests. There are surviva¢s/of censored tests. One of the most common censored test
is type Il censoring. It is noted that one can use type Il cengdfor saving time and money. However, when the
lifetimes of products are very high, the experimental tinfieaaype Il censoring life test can be still too long. A
generalization of type Il censoring is the progressive titpmensoring. Johnsonl] described a life test in which the
experimenter might decide to group the test units into séwats, each as an assembly of test units and then run all the
test units simultaneously until occurrence the first falir each group. Such a censoring scheme is called firstdailu
censoring. Wu et alf] and Wu and Yu 8] obtained MLE, exact confidence intervals and exact confideagions for the
parameters of the Gompertz and Burr Type XII distributioasdd on first failure-censored sampling, respectivelyo Als
one can refer to Wu et al4] and Lee et al. ]. Note that a first-failure-censoring scheme is terminatbeén the first
failure in each set is observed. The first-failure censodiogs not allow for sets to be removed from the test at the point
other than the final termination point. however, this alloe@will be desirable in practice. This leads us to the area of
progressive censoring. Wu and Ku§] fombine the concepts of first-failure censoring and prsgjie censoring to
develop a new life test plan called a progressive first-failtensoring scheme. Soliman et &|. $tudied the coefficient

of variation of Gompertz distribution under progressivstfiailure censoring. Soliman et aB,p] introduced MLE,
Bayesian estimates, exact confidence intervals and exafileace regions for the parameters of Gompertz and Burr
Type Xl distributions under progressive first failure-sened sampling.

Suppose that independent groups witkiitems within each group are put in a life teB. groups and the group in
which the first failure is observed are randomly removed fthetest as soon as the first failig, ., has occurred,
R, groups and the group in which the second failure is observedamdomly removed from the test as soon as the
second failuré(gm,n’k has occurred and finally when the— th failure erf;m’n,k is observed, the remaining grougs are

removed from the test. Then the observed ordered lifetiigs, , < XF 0 < - < XR ok are called progressive first-
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failure censored order statistics with the progressiveaerd schemB = (Ry, Ry, ...,Rn). Itis clear than = m+ Z Ri.

If the failure times of then x k items originally in the test are from a continuous populalmth distribution funct|0n
F (x) and probability density functiofi (x), the joint probability density function foXf,, ., X5 - Xk 1S given

by

m K(Ri+1)—1
f1,2,---‘ (Xl :m,n,k> X2 mnk> - Xﬁw;m,n,k) = Ckml_! f(xii?m,n,k) X [1 - F(Xil?m,n,k)] (1)
1=
0< XT;m,n,k < Xg;m,n,k <..< XE];m,n,k <,
where
C= n(nf Ry — 1)([']7 Ri—Ry— 2)...(n7 RiI—Ry—...—Rp_1—m+ 1). (2)

This censoring scheme has advantages in terms of reduaintjnes, in which more items are used but ontyof n x k
items are failures. Note that using the above notation, stensoring rules can be accommodated such as the firstefailur
censored order statistics whdd = (0,0, ...,0), a progressive type |l censored order statistics whenl, a usual type

Il censored order statistics whé&nr= 1 andR = (0,0, ...,n—m) and complete sample caseiE 1 andR = (0,0, ...,0),

with n = m. Also, it should be noted that the progressive first-failceasored samplf . XF 1 - Xiemnk With
distribution functionF(x), can be viewed as a progressive type Il censored sample frompualgiion with distribution
function 1— (1— F(x))X.

The RD provides a population model which is useful in sevarehs of statistics, Rayleigh(]. References on this
model may be found, among many others in Sinha and Howlddgiahd Anand 12]. Arturo [13] studied a Bayesian
inference from Type-1l doubly censored Rayleigh data.i§ia&l inference on Rayleigh distribution based on record
values can be found in Soliman and AL-Aboudl].

The probability density functioripd f), cumulative distribution functioncgf), failure rateH(t), and reliability
functionS(t) of the Rayleigh distribution with paramet&r> 0 respectively, given by

f(x;/\):i—xexp(fx;), x>0, A>0, 3
X2
FOGA)=1—exp(—), 4
HD =2, ©
X2
S(t) =exp(— 7). (6)

The rest of the paper is organized as follows. Secfiamroduces the MLE estimators and the asymptotic approtdma
confidence interval of the parameter. Two bootstrap confidénterval are discussed in Secti®nSection4 describes
Bayes method to estimate parameter as well as reliabiltiyh@zard rate functions. Sectiércontains the analysis of a
simulate life data set to illustrate our proposed methoduRe from simulation studies are given in Secttorinally we
conclude with some comments in Section

2 Maximum Likelihood Estimation

Let X; = X& ‘mnk | = 1,2,....,m, be a progressive first-failure censored order statistiosifRD, with censored scheme
R = (Ry,Ry,...,Rm) . From (1), (3) and @), the likelihood function is given by

( ) CK™2MA m<|'|>q>exp< .;i AZ (R+1)— ) @)

whereC is given by @). The logarithm of the likelihood function may then be weriitas

I (X;A) = Log(CK"2™) — mLog) + Log( ﬁx. Z (Ri+1)%¢ (8)
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Calculating the first partial derivatives d)(with respect tod and equating to zero, we obtain the likelihood equation

ol(xA)  m k2 5
) ’*X+ﬁi;(R'+1M*O’

hence, the MLE of is
m
X k3 (R+1)x
AMLE = ——— 9
m

By the invariance property of the MLE, we can obtain the MLE$I¢t) andS(t) by replacingk by AmLe in (5) and
(6), respectively.

2.1 Approximate Confidence Interval

From the log-likelihood function ing), we have

a)i = /\2 - F I;(R' + 1)Xi (10)

whereX; = XR . The Fisher informatiomh(A) is then obtained by taking expectation of minus ed§).(In practice ,
;m.n,k y g exp p

we usually estimaté (A) by lo (A) where
| () =€ [ 58] (11)

lo(A) = - [X—rz—xz—':imﬂ)

Under some mild regularity conditionfs,is approximately normally distributed with me&h) and variance (1), i.e.

(12)

M) ~N (A1),
Thus, the 100L-y)% approximate confidence interval fbris

~

(X-zg lo(A),A +2y |0(A)) (13)

wherez% is the percentile of the standard normal distribution wight-tail probability 3.

3 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical infegelt is commonly used to estimate confidence intervalseMo
survey of the nonparametric and parametric bootstrap rdstbhan be found in Davison and Hinkleyq, Efron and
Tibshirani [Lg]. In this section, we use the parametric bootstrap methambistruct Confidence Intervals (Cl) for the
unknown parameter. Two parametric bootstrap methods &@: (i3 Studentized-t bootstrap (Boot-t) Cl suggested by
Hall (1988). (ii) Percentile bootstrap (Boot-p) Cl suggesby Efron (1982).
The following steps are followed to obtain bootstrap sanfmen RD with parameteA and based on simulated
progressive first-failure-censoring order statistics.
1.From an original data S&t= X¥,., 1 1. Xomn i -+ Xmn.k COMpute the MLE of parametekssayA from equations9)
2.UseA to generate a bootstrap samplaith the same values &, (i = 1,2,...,m) using the algorithm of Balakrishnan
and Sandhul7]. R
3.As in step 1 based oti compute the bootstrap sample estimated sayA*.
4.Repeat steps 2-3 N times representing N bootstrap'MbE based on N different bootstrap samples.
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5.Arrange alk* in an ascending order to obtain bootstrap sample
(¢[l],¢[2],...,¢[N]) ,where ¢ = A%).

I- Percentile bootstrap method (Boot-p)
Let G(x) = P($* < x) be the cumulative distribution function d@*. Define dipoor-p = G 1(x) for givenx. The
approximate bootstrap 10D— y)% confidence interval af is given by

[#800t-p(3). #e00t-p(1—2)] (14)

[I- Bootstrap-t method (Boot-t)
Compute the following statistic:

- Var(¢+)
whereVar(¢*) are obtained using the observed Fisher information mabtaioed in (2) . Using T* values, determine
the upper and lower bounds of the 106- y)% confidence interval af as follows: letH (x) = P(T* < x) be the cumulative
distribution function ofT *. For a giverx, define

Peoott(X) = @ +m Y2 Var(§)H 1 (x).

Here also\ar(¢) can be computed as same as computinydréd* ). The approximate 14Q — y)% confidence interval
of ¢ are given by

SN ()

3

(@Bootft(lz/)v PBoot-—t (1 — %)) : (15)

4 Bayes Estimation

The Bayesian approach to reliability analysis allows psgobjective knowledge on lifetime parameters and technical

information on the failure mechanism, as well as experiaedéta, to be incorporated into the inferential procedure.

Hence Bayesian methods usually require less sample dathigvea the same quality of inferences than methods based
on sampling theory, which becomes extremely important seaaf expensive testing procedures. In this section, we
discuss the Bayesian estimation of the RD based on progedssit-failure censored data.

4.1 Loss Functions

A wide variety of loss functions have been developed inditere to describe various types of loss structures. The
symmetric squared error loss (SE) is one of the most popodar functions. It is widely employed in inference, but its
application is motivated by its good mathematical progsitnot by its applicability to representing a true losscaitre.

A loss function should represent the consequences of diffeerrors. There are situations where over- and
under-estimation can lead to different consequences.@mmgle, when we estimate the average reliable working fife o
the components of a spaceship or an aircraft, over-estmatiusually more serious than under-estimation. The S& los
equally penalizes over- and under-estimation of the sanmgnimale. The SE depend on the scalar eftor u), which
represents the distance between an unknown parameted the decisiom. Another way to measure this error is the
expressiori/u. A value of this quotient close to 1 corresponds to a sitmatibere the estimator is close to the unknown
parameter. This expression is less than 1 in the case ofestienation and greater than 1 for under-estimation. A usefu
asymmetric loss function of this type is known as the geremtibpy (GE) loss with the following form

Ly (T,u) O (g)qqlog (g) -1, (16)

whose minimum occurs at = u. This loss function is a generalization of the Entropy-lased in several papers
whereq = 1, see for example, Day et alL§] and Day and Liu 19. Whenq > 0, a positive errort{ > u) causes more
serious consequences than a negative error. The Bayestsigg of u under GE lossX6) is

U = (Ey[u™9)~Y/9, (17)

provided thaE,[u 9] exists, and is finite, wherlg, is the posterior expectation.
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4.2 Prior Distribution and Posterior Analysis

In this subsection we first describe the prior informatioeded for the Bayesian analysis of the unknown parameter.
When the parametepsis assumed to be unknown, we can use the conjugate inventehgéo, 8) prior given by

BG
r(a)

gA) = A exp(_TB),)\ >0, a>0,p>0. (18)

By using the Bayes theorem, the conditional posterior dgffishction of the parametey take the form

T | ) = L(xA)9(2) (19)

~ HL(xA)g(A)dA’

using (7) and (@8), the conditional posterior density function of the parten# is the inverted gamma given by

mA |x) = %AM exp(—?) , (20)

where o
A=a+mand B:kZ(Ra+1)><,-2+B (21)
i=

4.2.1Bayes Estimation Under a Squared Error Loss function

Based on progressively first-failure censored data, the8agtimator for the parametemunder SE loss function, can be

derived as
B

TA-1
Similarly, the Bayes estimato%s(t) andﬁgs(t), at mission time of the reliability functionS(t) and hazard function
H(t) are given, respectively, by

Res=E (A x) = [ Am(r [ x)dr (22)

R B 1A
Ss)= | gree) @3)
and oA
Has(t) = B (24)

whereA andB are as given byA1).

4.2.2Bayes Estimation Under General Entropy loss Function

Under GE loss function, the Bayes estimate of the paraneier

1 -1
o= (B4 919) @ —8|Fnd] @ (25)
Similarly, the Bayes estimatoBsg(t) andHgg(t) of S(t) andH () are given respectively, by
—A
Scll) = | gn| - @6)
and 1
o= £59] @ [3].
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4.3 Bayesian Two-Sided Equitailed Probability Intervals

To construct 100l — y)% Bayesian two-sided equitailed probability intervals, meed to solve the following two
equations

L )
/Jn(A|x)dA:%and/Lj n(/\|>_<)d)\:g, 28)
hence FA B)
an _V
I'(A§ T2 (29)
B\ T (A E) y
(6) e % 50

where for given value o, the lowerL and the upped bounds are obtained fro@9) and @0) numerically.

5 lllustrative Example

To illustrate the use of the estimation methods proposedimarticle, a progressively first-failure-censored samigl
generated from a RD using the algorithm of Balakrishnan amtiBu L 7]. We useA =2, k=3, n=30andn= 15. Table

1 lists the generated data. Concerning the hyperparanadténe prior, we consider two cases: priorl (noninfarmative
prior with a = 3 = 0) and proir2: ( informative prior witlw = 4, 3 = 3). The point estimates of the parameter, reliability
and failure rate functions using the ML, bootostrap and Bayethods are presented in Table 2. The 9a@f8 95%
approximate confidence intervals (ClIs), using maximumililic®d, bootstrap (Boot-p and Boot-t), as well as Bayes
probability interval of paramtex are presented in Table 3.

Tablel: Simulated progressively first-failure-censoraule.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rj 3 0 2 0 0 2 0 0 0 1 0 0 3 0 4
Xi;15;30;3 0.092 0.098 0.231 0.325 0.388 0.389 0.458 0.464 0.487 0.5716850 0.774 0.854 0.863 894

Table2: The ML, Boot-p and Bayes estimates\oS(t) andH (t), t = 0.8

(mL (-)Boot ()Bs ()BG ()BG (1)Bs ()sc ()es
Priorl Prior2
q=-1 q=2 q=- q=2
1.9347 1.9072 2.11228 2.03594 1.84597 1.66892 1.77895 28%64
S(t) 0.71835 0.71419 0.6866 0.717172 0.70926 0.6701 0.6866 8D.67
h(t) 0.82698 0.83893 0.94937 0.840077 0.758295 0.89013 0.9493%87407

Table 3:Two-sided 90% and 95% confidence/probability iratisrof A

Method 95% C.1. Length 90% C.1. Length
MLE (1.6959, 2.1939) 0.498 (1.7603, 2.3941) 0.6092
Boot-p (1.2112,2.8891) 1.6778 (1.1113, 3.0221) 1.9107
Boot-t (0.8859, 3.5052) 2.6193 (0.9209, 3.5245) 2.6036
Bayes (1.7098, 2.1446) 0.4348 (1.7944, 2.3065) 0.5121

6 Simulation Study

In this section we report some numerical experiments peréorto evaluate the behavior of the proposed methods for
different effective sample sizes, different sampling sobs, different parameter values and different priors. ¢J¢ire

fact that the progressive first-failure censored sample digtribution functior (x), can be viewed as a progressive type
Il censored sample from a population with distribution fiioie 1— (1 — F (x))¥, we generate a progressively first-falure
censored samples from the CRD using the algorithm desciii®alakrishnan and Sandhiiq], with A =0.5,A =2. We
used the sample siZe = 30), with effective sample sizegn= 15 and 20, differentk (k=1 and 3, different values of
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the hyper parameters andf3, and different sampling schemes (i.e., differBntalues). For computing Bayes estimates,
we used two informative priors, the first one is the prior thwir = 0.5, 8 = 0.5), the second is the prior 2, witlx (= 2,

B = 2). In each case, we compute the MLE and Bayes estimates &) andH (t).We replicate the process 1000 times
and compute the average values of the estimates and meardguar (MSE). The results, up to four decimal places, are
reported in Tables (4-7). It should be noted that in tableg)(4Corresponding to each scheme, the first figure represent
the average estimates, with the corresponding MSEs repbeiew.

7 Conclusions

Censoring is a common phenomenon in life-testing, andbiitia studies. The subject of progressive censoring has
received considerable attention in the past few years, mpeauiit to the availability of high speed computing resources
which make it both a feasible topic for simulation studies riesearchers and a feasible method of gathering lifetime
data for practitioners. It has been illustrated by Viverod BalakrishnanZ(] that the inference is feasible and practical
when the sample data are gathered according to a Type-ltgssigely censored experimental scheme. Combining the
concept of first-failure censoring and the concept of pregjk@ censoring, a progressive first-failure censoringiseh
has been introduced by Wu and Ku.[This censoring scheme has advantages in terms of redteshgost and test
time, in which more items are used but ontyof n x k items are failures. Based on this new censoring schemerésemt
paper shows how the things can be routinely managed for tigeigh model in a Bayesian and classical frameworks.
We have considered the ML and Bayes estimates for surviva fiarameter, reliability and hazard functions, as well as
the parameter of the Rayleigh model using progressiveltyféiikire censored data. The Bayes estimators are distusse
under symmetric and asymmetric loss functions. A simutasitudy was conducted to examine the performance of the
different estimators. From the results, we observe theviotg:

1.Tables 4 and 6 shows that the Bayes estimates relative tgetheral entropy loss function has the smallest (MSE) if
compared with both quadratic Bayes estimates or the MLEdiffarent choices ok, n, mand censoring schenfr

2.If we adopt Bayesian approach in estimating reliabilityl dazard functions for different prior under symmetric and
asymmetric loss functions, one would expect that estinsatobe better ( in the sense of MSE’s) than the MLEs. In
general, this can be seen in the results in Tables 5 and 61isodag schem® . Also, the MSE'’s of the asymmetric
Bayes estimates of reliability and hazard functions ardlemiian MSE’s of the symmetric Bayes estimates.

3.When the effective sample proportion/n increases, the MSE of different Bayes estimators and MLEgeduced.
The censoring schenie= (n—m, ..., 0) is most efficient for all choices, it seems to usually provitesmallest MSE
for all estimators.

4.The results establish that for optimum decision makingpartant should be given on the choice of loss function and
not just the choice of prior distribution only.
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Table 4: Average values of the different estimates and thesponding MSE wheiA =0.5

Bayes Bayes

k m (scheme MLE Tgﬂ Wgrz
q=05 q=2 q=05 g=2
AmL ABs ABG ABG As ABG ABG

1 15 (15,18) 0.4995 0.5512 0.5241 0.5036 0.5893 0.5628 0.5467
0.0177 0.0215 0.0176 0.0145 0.0225 0.0172 0.0139

(ash 0.5025 0.5544 0.5173 0.5026 0.5799 0.5678 0.5439
0.0161 0.0202 0.0160 0.0142 0.0196 0.0177 0.0146

(14°,15) 0.5007 0.5524 0.5252 0.4976 0.5979 0.5687 0.5469
0.0164 0.0165 0.0165 0.0147 0.0246 0.0183 0.0148

20 (10,19) 0.4986 0.537 0.5171 0.5026 0.5751 0.5552 0.5329
0.012 0.014 0.012 0.0108 0.0173 0.0139 0.0104

(1,0,---,1,0) 0.5033 0.5418 0.5217 0.5032 0.5753 0.5493 0.5371
0.0141 0.0165 0.0140 0.0114 0.0104 0.0125 0.0104

(19,10) 0.5058 0.5444 0.5242 0.5031 0.5694 0.5490 0.5316
0.0124 0.0149 0.0123 0.0118 0.0155 0.0123 0.0103

5 15 (15,18) 0.5034 0.6931 0.5278 0.5036 0.5633 0.5711 0.5445
0.0174 0.0559 0.0176 0.0153 0.0194 0.0176 0.0144

(ash 0.5012 0.6909 0.5257 0.4961 0.5761 0.5646 0.5393
0.0158 0.0533 0.0158 0.0148 0.0211 0.0171 0.0145

(14°,15) 0.5008 0.6905 0.5253 0.5006 0.5691 0.5645 0.5448
0.0171 0.0546 0.0171 0.0143 0.0196 0.0168 0.0138

20 (10,19) 0.5044 0.6456 0.5214 0.5044 0.5500 0.5522 0.5313
0.0114 0.0332 0.0124 0.0104 0.0131 0.0137 0.0114

(1,0,---,1,0) 0.4923 0.6332 0.5139 0.4928 0.5549 0.5536 0.5347
0.0122 0.0305 0.0124 0.0111 0.0177 0.0135 0.0117

(1%,10) 0.4934 0.6342 0.5171 0.4938 0.5504 0.5497 0.5306
0.0111 0.0297 0.0127 0.0101 0.0141 0.0127 0.0105
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Table 5. Average values of the different estimates and thregponding MSE
whenA = 0.5,S(0.8) = 0.278037H (0.8). = 3.2

k m scheme MLE __E;ﬁggs

q=05 q=2
SvL HmL SBs Hes SBc Hee SBc Hec

1 15 (15,1@) 0.2696 3.4426 0.2953 3.3033 0.2727 3.1452 0.2544 2.9454
0.0082 0.9897 0.0073 0.7394 0.0068 0.6206 0.0081 0.6079

(151) 0.2724 3.408 0.2978 3.2726 0.2700 3.1795 0.2539 2.9540
0.0076 0.9474 0.0082 0.7083 0.0072 0.6866 0.0082 0.6333

(140,15) 0.2710 3.4179 0.2966 3.2819 0.2754 3.1235 0.2499 2.993
0.0076 0.9333 0.0086 0.6936 0.0070 0.6281 0.0087 0.6756
20 (10,1@) 0.2713 3.3687 0.2909 3.2723 0.2747 3.1529 0.2603 3.0072
0.0057 0.6135 0.0052 0.4969 0.0054 0.4586 0.0059 0.4494
(1,0,---,1,0) 0.2737 3.3608 0.2931 3.264 0.2770 3.1448 0.2605 3.0100
0.0065 0.6824 0.0060 0.5567 0.0062 0.5161 0.0062 0.4739

(190,10) 0.2763 3.3258 0.2955 3.2322 0.2795 3.1142 0.2602 3.017
0.0058 0.6269 0.0055 0.5124 0.0055 0.4821 0.0065 0.4966
5 15 (15,13) 0.2724 3.4078 0.2979 3.2727 0.2768 3.1148 0.2541 2.9536
0.0079 0.9286 0.0071 0.6981 0.0073 0.6349 0.0085 0.6285
(151) 0.2715 3.4014 0.2971 3.2687 0.2759 3.1110 0.2486 2.9924
0.0073 0.8244 0.0066 0.6239 0.0068 0.5688 0.0086 0.5891

(140,15) 0.2706 3.4268 0.2963 3.2897 0.2751 3.1309 0.2523 2.964
0.0080 0.9462 0.0071 0.7095 0.0074 0.6402 0.0083 0.6192
20 (10,1@) 0.2757 3.3215 0.295 2.9917 0.2776 3.1334 0.2618 2.9917
0.0054 0.5681 0.0051 0.4418 0.0055 0.4977 0.0057 0.4418
(1,0,---,1,0) 0.2668 3.4208 0.2866 3.3196 0.2722 3.1804 0.2529 3.0756
0.006 0.7001 0.0053 0.5576 0.0056 0.4933 0.0065 0.4818
(190,10) 0.268 3.3993 0.2878 3.3006 0.2744 3.1625 0.2541 3.0580
0.0056 0.6255 0.0049 0.501 0.0057 0.5011 0.0060 0.4415
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Table 6: Average values of the different estimates and thesponding MSE whehA =2

Bayes Bayes

k m (scheme MLE Tgﬂ Wgrz
q=05 q=2 q=05 g=2
AmL ABs ABG ABG As ABG ABG

1 15  (151%)  1.9900 2.0931 1.9899 19053 20141 1.9237 1.8265
0.2641 0.2912 0.2554 0.2490 0.2395 0.2242 0.2218

(15 1.9899 2.0930 1.9898 1.9253 2.0056 1.9156 1.8211
0.2736 0.3013 0.2646 0.2425 0.2239 0.2113 0.2065

(14°15)  1.9997 2.1032 1.9995 1.9457 1.9672 1.9030 1.7993
0.2714 0.3011 0.2625 0.2507 0.2253 0.2105 0.2278

20  (10,18)  1.9842 2.0607 1.9842 1.9171 2.0005 1.9055 1.8676
0.2008 0.2147 0.1959 0.1988 0.1807 0.1753 0.1750

(1,0,---,1,0) 1.9697 2.0458 1.9699 1.9242 2.0044 1.9351 1.8689
0.1953 0.2066 0.1905 0.1896 0.1747 0.1670 0.1827

(1%,10) 1.985 20615 1.9850 1.9451 2.0008 1.9317 1.8726
0.1935 0.2071 0.1888 0.1776 0.1677 0.1610 0.1802

5 15  (1514)  1.9954 2.2366 1.9952 1.9093 25162 1.9257 1.8501
0.2569 0.3309 0.2485 0.2331 05168 0.2339 0.2210

(15 1.9959 2.2372 19957 1.8847 2.4938 1.9043 1.8315
0.2711 0.3464 0.2622 0.2473 0.4675 0.2132 0.2169

(14°15)  1.9821 22228 1.9821 1.8758 2.5224 19316 1.8134
0.2748 0.3434 0.2658 0.2562 0.5108 0.2217 0.2357

20  (10,18)  2.0007 2.1802 2.0006 1.9352 2.374 1.9246 1.8906
0.1869 0.2291 0.1823 0.1823 0.3174 0.1708 0.1694

(1,0,---,1,0) 1.9813 2.1603 1.9814 1.9353 2.3812 1.9083 1.8674
0.1956 0.2311 0.1908 0.1978 0.3235 0.1871 0.1729

(19,10)  1.9855 2.1646 19855 1.9056 2.3621 1.9127 1.8538
0.1890 0.2257 0.1843 0.1721 0.2995 0.1646 0.1779
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Table 7. Average values of the different estimates and thregponding MSE
whenA =2,5(0.8) =0.726149, H0.8) =0.8

k m scheme MLE __E;ﬁggs

q=0.5 q=2
SvL HuLe SBs Hes SBc Hee SBc Hec

1 15 (15,1@) 0.7114 0.8628 0.7108 0.8746 0.7066 0.8324 0.7032 0.7860
0.0045 0.0635 0.0043 0.0641 0.0047 0.0541 0.0050 0.0466
(151) 0.7110 0.8654 0.7104 0.8771 0.7061 0.8347 0.7012 0.7916
0.0048 0.0724 0.0045 0.0719 0.0049 0.8347 0.0050 0.0445

(140,15) 0.7122 0.8601 0.7116 0.8719 0.7074 0.8298 0.7083 B8.770
0.0046 0.0647 0.0044 0.0652 0.0048 0.0553 0.0048 0.0468
20 (10,1@) 0.7141 0.8497 0.7135 0.8589 0.7104 0.8276 0.7117 0.7808
0.0032 0.0431 0.0031 0.0437 0.0033 0.0381 0.0032 0.0308
(1,0,---,1,0) 0.7123 0.8563 0.7118 0.8655 0.7086 0.8339 0.7088 0.7905
0.0034 0.0455 0.0033 0.0462 0.0035 0.0401 0.0034 0.0326

(193,10) 0.7147 0.8474 0.7140 0.8567 0.7110 0.8254 0.7119 D.780
0.0031 0.0410 0.0030 0.0416 0.0032 0.0363 0.0031 0.0314
5 15 (15,13) 0.7126 0.8578 0.7119 0.8697 0.7077 0.8277 0.7045 0.7814
0.0043 0.0586 0.0040 0.0593 0.0044 0.0500 0.0047 0.0438
(151) 0.7120 0.8605 0.7114 0.8723 0.7072 0.8302 0.7000 0.7963
0.0045 0.0629 0.0043 0.0634 0.0047 0.0536 0.0054 0.0498
(140,15) 0.7101 0.8678 0.7095 0.8796 0.7053 0.8371 0.699 0.7989
0.0047 0.0673 0.0044 0.0677 0.0049 0.057 0.0053 0.0478
20 (10,1@) 0.7169 0.839 0.7163 0.8483 0.7132 0.8173 0.7105 0.7850
0.0029 0.0374 0.0028 0.0379 0.0030 0.0334 0.0032 0.0317
(1,0,---,1,0) 0.7138 0.8513 0.7132 0.8605 0.7101 0.8290 0.7095 0.7890
0.0034 0.0459 0.0032 0.0465 0.0035 0.0406 0.0037 0.0362

(190,10) 0.7146 0.8482 0.7140 0.8574 0.7109 0.8261 0.7070 9.795
0.0033 0.0443 0.0031 0.0448 0.0033 0.0392 0.0034 0.0321
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