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Abstract: In this paper, we propose an attack model based on partial information, which means that one can obtain the information
of a part of nodes in the networks. We study the efficient attack strategy (EAS) in random scale-free networks. It is shown that the
attack strategy can affect the attack effect remarkably and the EAS can achieve better attack effect than other typical attack strategies.
Extensive simulations are performed to validate and illustrate our analytical results. Our results will be of theoretical and practical
significance both for protecting infrastructural networks and stopping the spreading of harmful things (like disease) on networks.
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1. Introduction

The structure and behavior of complex networks have re-
ceived growing attention in various kinds of studies [1–8].
Of special interest are the power-law random networks in
which the fraction of vertices of degreek is proportional to
k−λ for some scaling exponentλ > 1. Such networks lack
a clear scale and have been called as “scale-free”. Scale-
free graphs are popular in random network theory and have
been proposed as a common way to model the behavior of
technological, biological and social
networks [4,9]. For fitting empirical distributions to the-
oretical models, we refer the reader to the recent review
[10].

Due to its broad application, the attack vulnerability
of complex networks, namely, how attacks affect the in-
tegrity and operation of the networks, has attracted much
attention [11–18]. In the pioneer work of Albertet al. [11],
they study the robustness of networks against two types of
attacks: random failure, where nodes are sequentially re-
moved with equal probability, and intentional attack, where
hubs (i.e., nodes with large degrees) are preferentially re-
moved. It is shown that scale-free networks havingλ ≤ 3
are exceptional robust against the random failure in the
sense that almost all nodes have to be removed to dis-
integrate a scale-free network while are rather fragile to
the intentional attack in the sense that the network is de-

stroyed if a small fraction of hubs are removed. Recently,
some researchers investigate the effective attack strategy
(EAS) for harmful networks such as epidemic spreading
networks, cancer networks, and terrorist networks. Lloyd
et al. [19] study the most effective strategy against an epi-
demic spreading among computers and people. Quayleet
al. [20] address various network attack strategies to max-
imize the preferential perturbation in cancer networks. In
most of the existing works concerning attack strategies, it
is assumed that we can obtain complete information on the
network structure. However, complete information is often
not available in real-world networks, especially when the
networks are large-scale. Dezsó et al. [21] analyze a biased
treatment strategy against viruses spreading in scale-free
networks based on uncertain information, which means
that one can obtain the information of all nodes, but the in-
formation may be uncertain. An efficient vaccination strat-
egy is proposed by Holme [22] based on local information,
which means that each individual only knows the informa-
tion of its neighbors. Liet al. [23] treat an attack strat-
egy performing on scale-free networks using incomplete
information, meaning that one can obtain the information
of part of the nodes, not necessarily their neighbors. Our
prior work [24] explores a scheme where the information
of all nodes can be extracted but is subject to some ran-
domly distributed measurement errors.
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Inspired by the above works, in the current paper, we introduce an attack model for scale-free networks based on
information of partial nodes. Unlike [23], we do not fix the attack size,i.e., the number of nodes under attack, but focus on
the effect of the attack over the network. We derive various efficient attack strategies (EAS), which vary with the magnitude
of attack information in an intricate way. It is found that the attack strategy can affect the attack effect remarkably and
the EAS derived can achieve better attack effect than other typical strategies. The theoretical results are confirmed by our
simulation study on random scale-free networks.

The rest of the paper is organized as follows. In Section 2, we introduce the attack model. Section 3 and Section 4 are
devoted to analytical and simulation studies, respectively. We finally conclude the paper in Section 5.

2. Model and Notations

A complex network is usually modeled by a simple undirected graphG(V,E), whereV is the set of nodes, andE ⊆ V ×V
is the set of edges. LetN = |V | be the number of nodes, anddi be the degree of nodevi ∈ V . Denote bym andM
the minimum and maximum degrees ofG, respectively. Letp(k) ∼ k−λ (m ≤ k ≤ M) be degree distribution of the
scale-free network in question.

Let V̂ ⊆ V be thewhite areain which one can obtain the attack information andṼ = V \V̂ theblack areain which
one can not obtain the attack information. We remark that “white area of a map” colloquially means an “unchartered
territory”, however, we believe the use of wordswhiteandblack is visual herein and helps to understand. To characterize
the magnitude of attack information quantitatively, we assume thatV̂ andṼ have the same degree distribution asV . The
ratio α = |V̂ |/N ∈ [0, 1] can then be seen as a measure of magnitude of attack information. For simplicity we use the
degree sequence{di}N

i=1 as the attack information and choose the relative size of the largest componentS ∈ [0, 1] [11]
as the performance measure of a network. We define the increment∆S of the relative size of the largest component after
attack as the attack effect [23].

We takeΩ ⊆ V as the attack targets. Thus,nw = |Ω ∩ V̂ | is the number of attacked nodes in the white area, while
nb = |Ω ∩ Ṽ | = |Ω| − nw is the number of attacked nodes in the black area. Since we can obtain the attack information
di in the white area, we will attack thenw nodes in the descending order ofdi in the white area. Nevertheless, we can
only attack thenb nodes in the black area randomly due to the absence of attack information. We takefw = nw/|V̂ | as
the white attack proportion andfb = nb/|Ṽ | as the black attack proportion. Our aim is to determine the optimal white (or
black) attack proportionf∗w (or f∗b ) that maximizes the attack effect∆S for any given black (or white) attack proportionfb

(or fw). It is clear thatα = 0 corresponds to the random failure andα = 1 corresponds to the intentional attack. Therefore,
our attack model, like [24], interpolates the two extreme scenarios studied in [11].

3. Analytical Study

In this section, we will exploit the generating function formalism [4,25] to analytically derive the optimal attack propor-
tionsf∗w andf∗b .

Let q(k) be the probability distribution that a node is not attacked given that it has degreek. Denote byK̃ the maximum
degree of the remain nodes in the white area after the attack. Then we can expressq(k) as

q(k) =
{

1− (1− α)fb, k ≤ K̃

1− α− (1− α)fb, k > K̃
(1)

Let K be the maximum degree of nodes in the white area before attack. Sort allNα nodes in the white area in the
decreasing order of degree, and letr(k) be the rank of a node with degreek in the white area. We obtain

r(k) = Nα

∫ K

k

p(t)dt (2)

Sincer(K̃) = Nαfw, we have

r(K̃) = Nα

∫ K

K̃

p(t)dt = Nαfw (3)

We can obtain K̃ by solving (3). For scale-free networks with power-law distribution
p(k) = ck−λ (m ≤ k ≤ M), wherec ≈ (λ − 1)mλ−1 and M ≈ mN1/(λ−1) by extreme value theory [4], we
calculateK̃ as

K̃(α, fw, fb) = m

(
fw +

1
N

) 1
1−λ

≈ mf
1

1−λ
w (4)
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The generating function forp(k) is given byG0(x) =
∑M

k=m p(k)xk. The excess degree distribution, that is, the
distribution of the degree of the nodes that we arrive at by choosing a random edge and following it to one of its ends,
is another important quantity [26]. The normalized distributionR(k) of the remaining degree is then given byR(k) =
(k + 1)p(k + 1)/〈k〉, where〈k〉 is the average degree of the graphG. Hence, the corresponding generating function is

G1(x) =
M∑

k=m

R(k − 1)xk−1 = G′0(x)/〈k〉 (5)

Let w0(k) = p(k)q(k) be the probability that a randomly chosen node has degreek and is not attacked. Letw1(k) =
R(k)q(k + 1) be the probability that a node at the end of a randomly chosen edge has remaining degreek and is not
attacked. Thus, the generating functions ofw0(k) andw1(k) are seen to be given by

F0(x) =
M∑

k=m

w0(k)xk =
M∑

k=m

p(k)q(k)xk (6)

and

F1(x) =
M−1∑

k=m−1

w1(k)xk =
M∑

k=m

kp(k)
〈k〉 q(k)xk−1 =

F ′0(x)
〈k〉 (7)

respectively.
As derived in [4,25], the generating function for the distribution of the size of component by following a randomly

chosen edge isH1(x) = 1 − F1(1) + xF1(H1(x)). Similarly, the probability distribution for the size of component to
which a randomly chosen node belongs is generated byH0(x), whereH0(x) = 1−F0(1)+xF0(H1(x)). Let the relative
size of the largest component after the attack beSa. Hence, we can writeSa as

Sa = F0(1)− F0(u) (8)

whereu is the smallest non-negative solution of the equationu = 1 − F1(1) + F1(u). Assume that the network is
connected before the attack and then we obtain the attack effect∆S = 1− Sa as a function of attack proportionsfw and
fb. Consequently, we can obtain the optimal white (and black) attack proportionf∗w (andf∗b ) that maximizes the attack
effect,∆S.

4. Simulation Results

To validate our above model and results, we perform extensive simulations in random scale-free networks. We generate
random scale-free networks with degree distributionp(k) = ck−λ using the method of configuration model described in
[27]. The parameters of this model used here are the number of nodesN = 2000, the exponentλ = 2.5 and the minimum
degree allowedm = 2. In this model, the degrees of the nodes are determined initially from the desired distribution and
then connections are assigned at random.

In Figure 1, we show the numerical results for the attack effect∆S. We find that the white attack proportionfw and
the black attack proportionfb affect∆S remarkably. For instance, if one can obtain the attack information of60% nodes
and intend to attack60% of nodes in black area,i.e., α = 0.4 andfb = 0.6, the attack effect∆S achieves its maximum
whenfw ≈ 0.4, namely, attackingnw = fwNα = 320 nodes in the white area and attackingnb = fbN(1 − α) = 720
nodes in the black area.

Next, we consider two typical attack strategies as comparison.

(i)Linear attack strategy (LAS):fw = c1fb or fb = c1fw for somec1 ∈ [0, 1].
(ii)Power attack strategy (PAS):fw = fc2

b or fb = f c2
w for somec2 ∈ (0,∞).

We present the attack effect under the EAS along with the attack effects under the LAS and PAS in Figure 2 and
Figure 3. We draw the following observations. First, the attack effect∆S is increasing with the attack proportionsfw and
fb, which agrees with our intuition. Second, there is a clear variation of∆S with distinct differences between the three
attack strategies, implying∆S may be used to measure the attack effect stably even for relatively small sized networks.
Third, the EAS can achieve better attack effect than the two typical attack strategies as desired.

c© 2012 NSP
Natural Sciences Publishing Cor.



4 Yilun Shang : Efficient strategies for attack via partial ...

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

f
w

∆ 
S

(b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

f
w

∆ 
S

Figure 1 The attack effect∆S as the function of the white attack proportionfw for different magnitude of attack informationα and
black attack proportionfb in random scale-free networks with degree distributionp(k) = ck−λ, whereN = 2000, λ = 2.5 and
m = 2. The results are the average of 50 independent simulation runs. (a)α = 0.2, fb = 0.2 and (b)α = 0.4, fb = 0.4.
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Figure 2 The attack effect∆S under the efficient attack strategy (EAS), linear attack strategy (LAS) and power attack strategy (PAS)
as the function of the black attack proportionfb for different magnitude of attack informationα in random scale-free networks with
degree distributionp(k) = ck−λ, whereN = 2000, λ = 2.5 andm = 2. (a)α = 0.3, fw = 0.8fb and (b)α = 0.7, fw = f2

b .

5. Conclusion

To conclude, we have proposed an attack model based on partial information and addressed the efficient attack strategy in
random scale-free networks both analytically and numerically. We have shown that the attack strategy can affect the attack
effect remarkably and the EAS, including the optimal white attack proportionf∗w and optimal black attack proportionf∗b ,
can achieve better attack effect than other typical strategies. Our results are of great theoretical and practical significance
to attack and defense issues in complex networks. Needless to say, there are still some problems remain open. For exam-
ple, does the network topology has a significant impact on the efficient strategies? How can we characterize this affect
qualitatively? What other kinds of measurement of information such as centrality can be used instead of degree? We will
treat some of these problems in the future research.
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Figure 3 The attack effect∆S under the efficient attack strategy (EAS), linear attack strategy (LAS) and power attack strategy (PAS)
as the function of the white attack proportionfw for different magnitude of attack informationα in random scale-free networks with
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