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Abstract: In this paper, we propose an attack model based on partial information, which means that one can obtain the information
of a part of nodes in the networks. We study the efficient attack strategy (EAS) in random scale-free networks. It is shown that the
attack strategy can affect the attack effect remarkably and the EAS can achieve better attack effect than other typical attack strategies.
Extensive simulations are performed to validate and illustrate our analytical results. Our results will be of theoretical and practical
significance both for protecting infrastructural networks and stopping the spreading of harmful things (like disease) on networks.
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1. Introduction stroyed if a small fraction of hubs are removed. Recently,
some researchers investigate the effective attack strategy
The structure and behavior of complex networks have re{EAS) for harmful networks such as epidemic spreading
ceived growing attention in various kinds of studies [1-8]. networks, cancer networks, and terrorist networks. Lloyd
Of special interest are the power-law random networks inet al. [19] study the most effective strategy against an epi-
which the fraction of vertices of degréds proportionalto ~ demic spreading among computers and people. Quetyle
k—* for some scaling exponeit> 1. Such networks lack  al. [20] address various network attack strategies to max-
a clear scale and have been called as “scale-free”. Scalémize the preferential perturbation in cancer networks. In
free graphs are popular in random network theory and havénost of the existing works concerning attack strategies, it
been proposed as a common way to model the behavior gk assumed that we can obtain complete information on the
technological, biological and social network structure. However, complete information is often
networks [4,9]. For fitting empirical distributions to the- not available in real-world networks, especially when the
oretical models, we refer the reader to the recent reviewhetworks are large-scale. Déz al. [21] analyze a biased
[10]. treatment strategy against viruses spreading in scale-free
Due to its broad application, the attack vulnerability networks based on uncertain information, which means
of complex networks, namely, how attacks affect the in-that one can obtain the information of all nodes, but the in-
tegrity and operation of the networks, has attracted mucHormation may be uncertain. An efficient vaccination strat-
attention [11-18]. In the pioneer work of Albetal. [11], ~ €gy is proposed by Holme [22] based on local information,
they study the robustness of networks against two types otvhich means that each individual only knows the informa-
attacks: random failure, where nodes are sequentially retion of its neighbors. Liet al. [23] treat an attack strat-
moved with equal probability, and intentional attack, whereegy performing on scale-free networks using incomplete
hubs (.e., nodes with large degrees) are preferentially re-information, meaning that one can obtain the information
moved. It is shown that scale-free networks having 3 of part of the nodes, not necessarily their neighbors. Our
are exceptional robust against the random failure in theprior work [24] explores a scheme where the information
sense that almost all nodes have to be removed to disof all nodes can be extracted but is subject to some ran-
integrate a scale-free network while are rather fragile todomly distributed measurement errors.
the intentional attack in the sense that the network is de-
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Inspired by the above works, in the current paper, we introduce an attack model for scale-free networks based ©
information of partial nodes. Unlike [23], we do not fix the attack size,the number of nodes under attack, but focus on
the effect of the attack over the network. We derive various efficient attack strategies (EAS), which vary with the magnitude
of attack information in an intricate way. It is found that the attack strategy can affect the attack effect remarkably and
the EAS derived can achieve better attack effect than other typical strategies. The theoretical results are confirmed by o
simulation study on random scale-free networks.

The rest of the paper is organized as follows. In Section 2, we introduce the attack model. Section 3 and Section 4 al
devoted to analytical and simulation studies, respectively. We finally conclude the paper in Section 5.

2. Model and Notations

A complex network is usually modeled by a simple undirected géa@h E), whereV is the set of nodes, arfd C V xV
is the set of edges. LéY = |V| be the number of nodes, add be the degree of nodg € V. Denote bym and M
the minimum and maximum degrees@f respectively. Lep(k) ~ k= (m < k < M) be degree distribution of the
scale-free network in question.

Let V C V be thewhite areain which one can obtain the attack information drid= V\V theblack areain which
one can not obtain the attack information. We remark that “white area of a map” colloquially means an “unchartered
territory”, however, we believe the use of wondhite andblackis visual herein and helps to understand. To characterize
the magnitude of attack information quantitatively, we assumelthandV have the same degree distributioniasThe
ratioa = |V|/N € [0,1] can then be seen as a measure of magnitude of attack information. For simplicity we use the
degree sequendgl; }¥ ; as the attack information and choose the relative size of the largest comgbeefit, 1] [11]
as the performance measure of a network. We define the increfiteof the relative size of the largest component after
attack as the attack effect [23]. .

We takef? C V as the attack targets. Thus, = |£2 N V| is the number of attacked nodes in the white area, while
ny = [2N V| = |£2] — n, is the number of attacked nodes in the black area. Since we can obtain the attack information
d; in the white area, we will attack the,, nodes in the descending orderdfin the white area. Nevertheless, we can
only attack then, nodes in the black area randomly due to the absence of attack information. We,take:,,/|V| as
the white attack proportion anf} = nb/|f/| as the black attack proportion. Our aim is to determine the optimal white (or
black) attack proportiorf;;, (or f;) that maximizes the attack effedtS for any given black (or white) attack proportigip
(or f,). Itis clear thatx = 0 corresponds to the random failure ané- 1 corresponds to the intentional attack. Therefore,
our attack model, like [24], interpolates the two extreme scenarios studied in [11].

3. Analytical Study

In this section, we will exploit the generating function formalism [4,25] to analytically derive the optimal attack propor-
tions f;; and f;.

Letq(k) be the probability distribution that a node is not attacked given that it has dedbesmote byK the maximum
degree of the remain nodes in the white area after the attack. Then we can expjess

[ (- k<K
q(k)_{l—a—(l—al;fb,k>f( (1)

Let K be the maximum degree of nodes in the white area before attack. Sdvthatlodes in the white area in the
decreasing order of degree, andrét) be the rank of a node with degréen the white area. We obtain

K
r(k) = Na/k p(t)dt 2

Sincer(K) = Naf,,, we have

K
r(K) = Na/ p(t)dt = Naf, 3)
We can obtain K by solving (3). For scale-free networks with power-law distribution

p(k) = ck™ (m < k < M), wherec = (A — 1)m*~! and M ~ mN'/*~1) by extreme value theory [4], we
calculateK as

~ 1 ﬁ L
K(Oé; f’wa fb) =m (fw —+ N> ~m ul)—x (4)
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The generating function fas(k) is given byGy(z) = Zf:f:mp(k:)xk. The excess degree distribution, that is, the
distribution of the degree of the nodes that we arrive at by choosing a random edge and following it to one of its ends,
is another important quantity [26]. The normalized distributi®fk) of the remaining degree is then given Byk) =
(k+ Dp(k + 1)/(k), where(k) is the average degree of the graghHence, the corresponding generating function is

M
Gi(x) =Y R(k—1)a*"" = Gy(x)/ (k) (5)
k=m

Let wo(k) = p(k)q(k) be the probability that a randomly chosen node has degieed is not attacked. Let, (k) =
R(k)q(k + 1) be the probability that a node at the end of a randomly chosen edge has remainingkdagdeis not
attacked. Thus, the generating functionswgfk) andw; (k) are seen to be given by

M M

Fo(z) = > wolk)a® = pk)a(k)a* (6)
k=m k=m

and

A@= Y wmet =3 W e BO -
k=m-—1 k=m <k> k>

respectively.

As derived in [4,25], the generating function for the distribution of the size of component by following a randomly
chosen edge i#l; () = 1 — Fy(1) + zF 1 (H;(z)). Similarly, the probability distribution for the size of component to
which a randomly chosen node belongs is generatelddty.), whereHy(x) = 1 — Fo(1) + 2 Fy(Hq(x)). Let the relative
size of the largest component after the attaclsheHence, we can writé, as

Sy = Fo(1) — Fy(u) (8)

wherew is the smallest non-negative solution of the equatios- 1 — Fy(1) + Fj(u). Assume that the network is
connected before the attack and then we obtain the attack effeet 1 — S, as a function of attack proportiorfs, and
f». Consequently, we can obtain the optimal white (and black) attack propgfifigand f;’) that maximizes the attack
effect, AS.

4. Simulation Results

To validate our above model and results, we perform extensive simulations in random scale-free networks. We generate
random scale-free networks with degree distribugioh) = ck~* using the method of configuration model described in
[27]. The parameters of this model used here are the number of N&e2000, the exponenk = 2.5 and the minimum
degree allowedn = 2. In this model, the degrees of the nodes are determined initially from the desired distribution and
then connections are assigned at random.

In Figure 1, we show the numerical results for the attack effe€t We find that the white attack proportigfy, and
the black attack proportiofi, affect AS remarkably. For instance, if one can obtain the attack informati@id%@fnodes
and intend to attack0% of nodes in black areag. o = 0.4 and f;, = 0.6, the attack effectAS achieves its maximum
when f,, = 0.4, namely, attacking,, = f,, Na = 320 nodes in the white area and attackimg= f,N(1 — «) = 720
nodes in the black area.

Next, we consider two typical attack strategies as comparison.

(i) Linear attack strategy (LASY., = c1 f5 Or f, = c1 f, fOr somec; € [0, 1].
(i) Power attack strategy (PAS}, = f,? or f, = f52 for somec, € (0, 00).

We present the attack effect under the EAS along with the attack effects under the LAS and PAS in Figure 2 and
Figure 3. We draw the following observations. First, the attack effg€is increasing with the attack proportiofis and
f», which agrees with our intuition. Second, there is a clear variatiad ®fwith distinct differences between the three
attack strategies, implying\S may be used to measure the attack effect stably even for relatively small sized networks.
Third, the EAS can achieve better attack effect than the two typical attack strategies as desired.
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Figure 1 The attack effectAS as the function of the white attack proportign for different magnitude of attack informatianand
black attack proportiory; in random scale-free networks with degree distributioh) = ck~*, where N = 2000, A\ = 2.5 and
m = 2. The results are the average of 50 independent simulation runs.£d).2, f, = 0.2 and (b)a = 0.4, f, = 0.4.
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Figure 2 The attack effectAS under the efficient attack strategy (EAS), linear attack strategy (LAS) and power attack strategy (PAS)
as the function of the black attack proportignfor different magnitude of attack informatiamin random scale-free networks with
degree distributiop(k) = ck~*, whereN = 2000, A = 2.5 andm = 2. (@)a = 0.3, f, = 0.8f, and (b)ae = 0.7, fu, = f2.

5. Conclusion

To conclude, we have proposed an attack model based on partial information and addressed the efficient attack strategy
random scale-free networks both analytically and numerically. We have shown that the attack strategy can affect the atta
effect remarkably and the EAS, including the optimal white attack propofifoand optimal black attack proportiofy,

can achieve better attack effect than other typical strategies. Our results are of great theoretical and practical significan
to attack and defense issues in complex networks. Needless to say, there are still some problems remain open. For ex:
ple, does the network topology has a significant impact on the efficient strategies? How can we characterize this affe
gualitatively? What other kinds of measurement of information such as centrality can be used instead of degree? We wi
treat some of these problems in the future research.
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