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1 Introduction

In today’s digital era, the field of machine learning has become increasingly popular. Data plays a crucial role similar to
that of oil in the past, and machine learning serves as the driving force behind this data-centric world. The significance
of machine learning cannot be emphasized enough given its pivotal role in modern technology. However, many people
use the technology or want to become experts in this field without fully comprehending the underlying concept. It’s
a mistake to see some students solely relying on libraries for learning about machine learning, as it doesn’t provide a
thorough understanding. A solid grasp of mathematics not only allows us to better comprehend existing algorithms but
also empowers us to develop new models and more efficient techniques.

One method for instructing computers to learn from data is through the use of machine learning. Machine learning
involves teaching computers how to learn from data, aiming to develop algorithms capable of generating predictions or
insights without explicit programming. This field is grounded in mathematical principles [1]. Mathematics provides the
necessary basics to build an algorithm for the machine-learning process. We present a simple linear regression model for
predicting salaries, a multiple linear regression model for predicting graduate admissions, and a logistic linear regression
model for predicting whether a student will pass or fail an exam by using the logistic regression techniques. The role of
statistics in these models is discussed.

Statistics is essential for concluding evidence [2]. It involves methods for collecting, presenting, analyzing, and
interpreting numerical data. In Machine Learning, statistics play a vital role in handling large amounts of data and are
crucial for an organization’s progress and success. They are crucial for understanding insights and serve as the
foundation for further analysis. Techniques like condensation, summarization, and concluding use methods like central
tendencies, dispersion, skewness, kurtosis, correlation, regression, and others.

In this work, we use the Statsmodels library for the analysis of the results of prediction. After the prediction of models,
we must have some error between prediction and the actual value in the dataset if we consider that our model are high
quality. In linear or multiple regression, the errors between ŷ and y are typically measured using the Euclidean norm

error = (y− ŷ)2. (1)
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Each prediction comes with an error, so we have n errors. The residual sum of squares is

SSE =
n

∑
i=1

(yi − ŷi)
2, (2)

where n is the total number of observations, yi is the observed value for observation i, ŷi is the predicted value by the
model for observation i.

The goal is to minimize the difference between the predicted and the actual value with the smaller residuals indicating
better accuracy. We use the sum of the squares since the residuals can be positive and negative, their sum does not
accurately reflect the true error [3].

The paper is organized as follows. In section 2, we present the simple linear regression model, followed by the multiple
linear regression model in section 3, and the logistic regression in section 4. The conclusion is given in section 5.

2 Simple linear regression model

Machine learning includes the supervised algorithm known as linear regression. This method performs regression tasks
and predicts targets based on the independent variables. The primary focus of linear regression is to identify the
relationship between variables and make forecasts, making it applicable in various scenarios [4].

y = β0 +β1x+ ε. (3)

The linear equation (3) represents a simple linear relationship, where the dependent variable y is expressed as a
function of the independent variable x, β1 is the slope, β0 is the intercept and ε is an error.

2.1 Example of a model to predict salaries

Let’s consider an example of using a model to predict salaries with regression techniques in machine learning. We use
linear regression to build our model, as it provides the best fit with the training dataset. To do this, we use an experience
dataset, apply linear regression, and assess the accuracy and error. Additionally, we intend to use a set of random test cases
to observe the predicted salary values [5].

2.1.1 Data loading and preparation

This dataset contains two columns Years of Experience and Salary of some unknown employees. The primary objective
is to accurately calculate and predict employees salaries within a specific area using simple linear regression. Viewing the
dataset, we obtain the following scatter plot in Figure 1.

Fig. 1: Salary dataset
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After applying data preprocessing techniques to improve the quality of the dataset, such as handling missing data,
removing duplicated data, we divide the data into training 80% and test 20% sets. We can see this with the following plot
in Figure 2.

Fig. 2: Distribution of data between training and test sets

2.1.2 Model evaluation

We used Python’s Statsmodels library, which provides a wide range of algorithms and functionalities for estimating
various statistical models. It is an important resource for econometric analysis. Its capabilities include supporting linear
regression models, generalized linear models, robust linear models, and time-series analysis [6]. This is shown in Figure
3.

2.1.3 Interpretation of the ordinary Least Squares regression results

–R-squared and Adjusted R-squared
–R-squared (0.965): The high coefficient of determination (R-squared) of 96.5% suggests that the independent

variable in the model can substantially account for the variation in the dependent variable. This implies that the
model exhibits a strong goodness-of-fit to the empirical data under examination.

–Adjusted R-squared (0.963): The R-squared value is adjusted to account for the number of predictors in the model.
It is marginally less than the R-squared value, but still very high, indicating a good fit.

–Analyze of F-statistic and its p-value
–F-statistic (601.7): This assesses the overall importance of the model. A high F-statistic value suggests that the

model is statistically significant.
–Prob (1.80e-17): This represents the p-value linked with the F-statistic. A very low p-value (considerably less than

0.05) indicates that the model has statistical significance and that the independent variable(s) fit the data well.
–The coefficients (coef) and their standard errors (std err)

–const (2.447e+04): The intercept represents the predicted value of the dependent variable (Salary) when the
independent variable (YearsExperience) is zero. In this case, the intercept is 24.470, which indicates the expected
Salary when the individual has no years of experience.
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Fig. 3: Table of Ordinary Least Squares regression results for linear regression model

–YearsExperience (9436.9135): This represents the slope of the regression line, indicating the expected adjustment
in Salary for each additional unit increase in YearsExperience. This coefficient implies that an extra year of
experience is connected to a rise in Salary of about 9436.91 units.

–The t-statistics and p-values for each coefficient
–const (t = 10.003, P> |t| = 0.000): The intercept is statistically significant (p-value ¡ 0.05).
–YearsExperience (t = 24.530, P> |t| = 0.000): This indicates a statistically significant relationship with Salary, as

the p-value is less than 0.05.
–Confidence intervals for the coefficients

–const [1.94e+04, 2.95e+04]: According to the 95% confidence interval for the intercept, we can be 95% certain
that the actual intercept value falls between 19,400 and 29,500.

–YearsExperience [8639.089, 1.02e+04]: The 95% confidence interval for the slope indicates that we are confident
at a level of 95% that the genuine slope value is between 8639.089 and 10,200.

2.1.4 Model building and training

We construct the model using the simple linear regression formula, then perform a fonction to fit the model and minimize
the parameters, and finally, make predictions on all test data. We can see the following result in Figure 4.

2.2 Role of statistics in simple linear regression

Standard errors (std err): The statistical properties of the least squares estimators for the regression parameters β0 and β1
can be readily detailed. The model Y = β0 +β1x+ ε assumes that the error term ε is a random variable with an expected
value of zero and a variance of σ2. We will examine the bias1 and variance2 characteristics of the least squares estimators
β0 and β1.

Let’s begin with β1. As β1 is a linear combination of the observed value Yi, we can apply properties of expectation to
demonstrate that the anticipated value of β1 is

1 Bias is the difference between the model’s prediction and the correct outcome, with a preference for a certain direction [8]
2 variance to the stability in performance on future data[8]
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Fig. 4: Curve of prediction on test data

E[β̂1] = β1. (4)

Same thing for the intercept
E[β̂0] = β0. (5)

To show that these estimators are unbiased, we need to demonstrate that

E[β̂1] = β1; and E[β̂0] = β0. (6)

1.Expectation of β̂1: Let’s start with β̂1. By definition of β̂1,

β̂1 =
∑

n
i=1(xi − x̄)(yi − ȳ)

∑
n
i=1(xi − x̄)2 , (7)

where

Sxx = ∑
n
i=1(xi − x̄)2 (8)

xi : The individual values of the independent variable. (9)
x̄ : The mean of the independent variable values. (10)

Sxx : The sum of the squares of the deviations from the mean of x (11)

It used to estimate and evaluate the regression coefficients. Substituting yi with its expression in the regression model

yi = β0 +β1xi + εi, (12)

we have

β̂1 =
∑

n
i=1(xi − x̄)((β0 +β1xi + εi)− ȳ)

∑
n
i=1(xi − x̄)2 . (13)
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Note that
ȳ = β0 +β1x̄+ ε̄, (14)

where ε̄ = 1
n ∑

n
i=1 εi. Substituting this expression for ȳ,

β̂1 =
∑

n
i=1(xi − x̄)[(β0 +β1xi + εi)− (β0 +β1x̄+ ε̄)]

∑
n
i=1(xi − x̄)2 ; (15)

β̂1 =
∑

n
i=1(xi − x̄)[β1(xi − x̄)+(εi − ε̄)]

∑
n
i=1(xi − x̄)2 . (16)

Breaking down this sum,

β̂1 = β1 +
∑

n
i=1(xi − x̄)(εi − ε̄)

∑
n
i=1(xi − x̄)2 . (17)

Now let’s calculate the expectation of β̂1

E[β̂1] = β1 +E
[

∑
n
i=1(xi − x̄)(εi − ε̄)

∑
n
i=1(xi − x̄)2

]
. (18)

Given that εi are independent random variables with zero expectation (E[εi] = 0),

E

[
n

∑
i=1

(xi − x̄)(εi − ε̄)

]
=

n

∑
i=1

(xi − x̄)E[εi − ε̄] = 0. (19)

Therefore
E[β̂1] = β1. (20)

2.Expectation of β̂0: For β̂0, we have
β̂0 = ȳ− β̂1x̄. (21)

Taking the expectation
E[β̂0] = E[ȳ− β̂1x̄], (22)

where ȳ = β0 +β1x̄+ ε̄ and, using the linearity of expectation, we have

E[β̂0] = E[β0 +β1x̄+ ε̄ − β̂1x̄], (23)

E[β̂0] = β0 +β1x̄+E[ε̄]−E[β̂1x̄]. (24)

Since E[ε̄] = 0 and E[β̂1] = β1,
E[β̂0] = β0 +β1x̄−β1x̄; (25)

E[β̂0] = β0. (26)

3.Now, let’s examine the variance of β1 and β0: Given our assumption that V (εi) = σ2, it can be concluded that V = σ2.

The model is given by
yi = β0 +β1xi + εi, (27)

where εi ∼ NID(0,σ2).

Estimator β̂1:

The ordinary least squares (OLS) estimator for β1 is given by

β̂1 =
∑

n
i=1(xi − x̄)(yi − ȳ)

∑
n
i=1(xi − x̄)2 =

∑
n
i=1(xi − x̄)yi

Sxx
, (28)

where Sxx = ∑
n
i=1(xi − x̄)2.
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Variance of β̂1:

To find the variance of β̂1, we use the property of the variance of weighted sums of errors

β̂1 =
∑

n
i=1(xi − x̄)(β0 +β1xi + εi)

Sxx
= β1 +

∑
n
i=1(xi − x̄)εi

Sxx
. (29)

Since E[εi] = 0 and Var(εi) = σ2, we have

Var(β̂1) = Var
(

∑
n
i=1(xi − x̄)εi

Sxx

)
.

As εi are independent and identically distributed (i.i.d.)

Var(β̂1) =
∑

n
i=1(xi − x̄)2σ2

S2
xx

=
σ2

∑
n
i=1(xi − x̄)2

S2
xx

=
σ2Sxx

S2
xx

=
σ2

Sxx
.

Estimator β̂0:
The ordinary least squares (OLS) estimator for β0 is given by:

β̂0 = ȳ− β̂1x̄. (30)

Variance of β̂0:
To find the variance of β̂0, we use the definition

Var(β̂0) = Var(ȳ− β̂1x̄). (31)

Since ȳ and β̂1x̄ are linearly combined

Var(β̂0) = Var(ȳ)+ x̄2Var(β̂1)−2x̄Cov(ȳ, β̂1). (32)

Using Var(ȳ) = σ2

n and Cov(ȳ, β̂1) = 0 (because ȳ and β̂1 are uncorrelated), we obtain

Var(β̂0) =
σ2

n
+

x̄2σ2

Sxx
. (33)

In the context of simple linear regression, the estimated standard error for the slope and intercept are calculated as
follows

se(β̂1) =

√
σ2

Sxx
. (34)

se(β̂0) =

√
σ̂2

[
1
n
+

x̄2

Sxx

]
. (35)

The t-statistics for each coefficient: An essential aspect of evaluating the effectiveness of a linear regression model
involves conducting statistical tests on the model parameters and creating specific confidence intervals. This section
covers hypothesis testing3 in simple linear regression, while methods for constructing confidence intervals. To test
hypotheses regarding the slope and intercept of the regression model, we need to also assume that the error component
in the model, denoted as e, follows a normal distribution[7].
Let us examine the hypothesis that the slope of the model, denoted as β1,0, is equal to a specific constant value. The
relevant hypotheses are:

H0 : β1 = β1,0; H1 : β1 ̸= β1,0. (36)

The test statistic for the slope, denoted T0, is given by

3 hypothesis test is decision making process[7]
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T0 =
β̂1 −β1,0√

σ̂2

Sxx

, (37)

where the standard error of the slope is denoted as σ̂β . Under the null hypothesis that the slope parameter β1 is equal
to a specified value β1,0, the test statistic T0 follows a t-distribution with (n−2) degrees of freedom4. We would reject
H0 : β1 = β1,0 if |t0|> tα/2,n−2, where t0 is computed from the above equation.
Analogous procedures may be employed to investigate hypotheses concerning the regression intercept. To test

H0 : β0 = β0,0 H1 : β0 ̸= β0,0. (38)

We would use the statistic T0 given by

T0 =
β̂0 −β0,0√
σ̂2

[
1
n +

x̄2

Sxx

] (39)

can be rejected if the calculated value of the test statistic, t0, exceeds the critical value tα/2,n−2. Additionally, the null
hypothesis should be rejected when the calculated value of the test statistic, t0, is greater than tα/2,n−2. It is important
to note that the denominator of the test statistic equation (4.3.19) represents the standard error of the intercept.
A highly significant instance of the hypotheses presented in Equation 4.3.16 is:

H0 : β1 = 0 H1 : β1 ̸= 0 (40)

The hypotheses pertain to the significance of regression. If we fail to reject the null hypothesis H0 : β1 = 0, it means
that we are concluding that there is no linear correlation between the variables x and Y .
Confidence intervals on the slope and intercept: further to calculating the point estimates for the slope and intercept,
it is also possible to derive confidence interval estimates for these parameters. The range of these confidence intervals
provides a measure of the overall reliability of the regression line. If the error terms εi in the regression model follow
a normal distribution and are independent.
This leads to the following definition of 100(1−α)%. 5.
Assuming the observations follow a normal distribution and are statistically independent, a 100(1−α)% confidence
interval for the slope coefficient, β1, in a simple linear regression model is given by

β̂1 − tα/2,n−2

√
σ2

Sxx
≤ β1 ≤ β̂1 + tα/2,n−2

√
σ2

Sxx
. (41)

Similarly, a 100(1−α)% confidence interval on the intercept β0 is

β̂0 − tα/2,n−2

√
σ2

[
1
n
+

x̄2

Sxx

]
≤ β0 ≤ β̂0 + tα/2,n−2

√
σ2

[
1
n
+

x̄2

Sxx

]
. (42)

F-statistic: It is a method to evaluate the significance of the model. The significance of regression can be tested using
a technique known as analysis of variance6. This method involves breaking down the total variability in the response
variable into distinct components, serving as the foundation for conducting the test. The formula for analysis of
variance is expressed as:

n

∑
i=1

(yi − ȳ)2 =
n

∑
i=1

(yi − ŷi)
2 +

n

∑
i=1

(ŷi − ȳ)2, (43)

where
–yi: The actual value of the i-th observation.
–ȳ: The mean of all observed values y, calculated as ȳ = 1

n ∑
n
i=1 yi.

4 ”Degrees of freedom are the maximum number of logically independent values, which may vary in a data sample. Degrees of
freedom are calculated by subtracting one from the number of items within the data sample” [10]

5 A confidence interval provides a range of values depending on λ̂ (estimate) such that the probability of λ (parameter) being within
the interval is 1−α [11]

6 “Analysis of variance (ANOVA) is a statistical test used to evaluate the difference between the means of more than two groups”
[12]
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–ŷi: The predicted value of the i-th observation.
–∑

n
i=1(yi − ȳ)2: The total sum of squares (TSS), which measures the total variation in the observed values.

–∑
n
i=1(yi − ŷi)

2: The residual sum of squares (RSS), which quantifies the variation in the observed values not
accounted for by the model.

–∑
n
i=1(ŷi − ȳ)2: The regression sum of squares, which quantifies the variation in the predicted values explained by

the model. Equation 4.3.10 expresses the relationship between the total sum of squares, the regression sum of
squares, and the error sum of squares by [7]:

SST = SSR+SSE. (44)

R-squared and Adjusted R-squared: The coefficient of determination R-squared is computed by dividing SSR by SST.
A value nearing 1 indicates that the variable in the equation has a stronger capability to explain Y, and signifies that
the model fits the data well [3].

R2 =
SSR

SST
= 1− SSR

SSE
. (45)

The coefficient judges the adequacy of a regression model.

3 Multiple linear regression model
Multiple linear regression is a statistical technique utilized to predict the value of a dependent variable by employing
multiple independent variables. The purpose of MLR is to construct a model that represents the linear correlation between
the independent variables x and dependent variable y, which will then be examined [9].

y = β0 +β1x1 +β2x2 +β3x3 +β4x4 + . . .+βnxn. (46)

3.1 Practical example of predicting graduate admissions

We can take an example like the Prediction of Graduate Admissions. Many students struggle with choosing graduate
programs due to a lack of knowledge about university rankings and misleading advice, leading to missed admissions
and wasted resources. Our goal is to help students connect with their preferred university by thoroughly evaluating their
profiles, ensuring accurate assessments without overestimating or underestimating their potential.

3.1.1 Data loading and preparation

During the preparation of our manuscript, the dataset has been downloaded over 400 times and viewed more than 2000
times. It includes parameters that are meticulously evaluated by the admissions committee, such as GRE scores, TOEFL
scores, Undergraduate GPA, University rating, research, Statement of Purpose, and Letter of Recommendation[16].

Fig. 5: graduate dataset

Viewing the dataset in Figure 5, we obtain the following plot in Figure 6.
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Fig. 6: Features vs Chance of Admit

Dividing the data into training 80% and test 20% sets, we have the following plot in Figure 7.

Fig. 7: Distribution of data between training and test sets
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3.1.2 Model evaluation

We have the result on prediction of test data in Figure 8.

Fig. 8: Result on prediction of test data

Fig. 9: Curve on prediction of test data
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3.1.3 Interpretation of the ordinary Least Squares regression results

–R-squared and Adjusted R-squared

–R-squared (0.817): The R-squared value of 0.817 implies that the independent variables in the model account for
approximately 81.7% of the observed variation in the dependent variable, indicating a strong model fit.

–Adjusted R-squared (0.813): This value, at 0.813, takes into account the number of predictors and remains high,
further supporting a good fit for the model.

–F-statistic and its p-value

–F-statistic (218.4): It evaluates the overall significance of the model, with a high value indicating statistical
significance.

–Prob (F-statistic) (3.85e−139): It represents the p-value associated with the F-statistic; an extremely low p-value
(much less than 0.05) signifies that the model is statistically significant, suggesting that the independent variables
collectively strongly predict the dependent variable.

–Coefficients (coef) and their standard errors (std err)
–const (-1.2539): The intercept value represents the predicted Chance of Admit when all other independent variables

in the regression model are held constant at zero. This intercept has a negative value, which might not have a
meaningful real-world interpretation in this context.

–GRE Score (0.0016): For each one-point increase in GRE Score, there is an associated 0.16% increase in the
Chance of Admit while holding all other variables constant- indicated by its statistically significant coefficient
with a p-value of 0.006.

–TOEFL Score (0.0031): Similarly, a one-unit rise in TOEFL Score is associated with a 0.31% increase in the
probability of admission while keeping all other factors constant; this coefficient is also statistically significant,
with a p-value of 0.003.

–University Rating (0.0043): The coefficient is not statistically significant with a p-value of 0.320, indicating that
University Rating might not have a meaningful impact on the Chance of Admit.

–SOP (0.0057): The coefficient is not statistically significant with a p-value of 0.272, indicating that SOP might not
have a meaningful impact on the Chance of Admit.

–LOR (0.0147): A one-unit rise in LOR is linked to a 1.47% increase in the probability of admission while keeping
all other factors constant. This coefficient demonstrates statistical significance with a p-value of 0.002.

–CGPA (0.1198): A one-unit rise in CGPA is linked to an 11.98% increase in the Chance of Admit while keeping
all other factors constant. This coefficient demonstrates statistical significance with a p-value of 0.000.

–Research (0.0261): Participation in research activities is associated with a 2.61% higher Chance of Admission
when controlling for other factors. This finding is statistically significant with a p-value of 0.001.

–The t-statistics and p-values for each coefficient
–const (t = -10.519,(P> |t| = 0.000): The intercept is statistically significant (p-value ¡ 0.05) indicating that the

constant term is significantly different from zero. This implies that the baseline Chance of Admit when all other
predictors are zero is meaningful and not due to random chance.

–Serial No. (t = 4.892, P> |t| = 0.000): The coefficient for Serial No. a statistically significant (P-value ¡ 0.05),
indicating that the serial number has a non-zero effect on the Chance of Admit. However, the effect size is very
small and likely not practically significant.

–GRE Score (t = 2.753, P> |t| = 0.006): The coefficient for GRE Score a statistically significant (P-value < 0.05),
indicating that GRE Scores have a significant positive effect on the Chance of Admit.

–TOEFL Score (t = 3.020, P> |t| = 0.003): The coefficient for TOEFL Score a statistically significant (P-value
< 0.05), suggesting that higher TOEFL Scores are associated with a higher Chance of Admit.

–University Rating: (t = 0.996, P> |t| = 0.320): The coefficient for University Rating is not statistically significant
(P-value ¿ 0.05), indicating that university rating does not have a significant effect on the Chance of Admit.

–SOP: (t = 1.100, P> |t| = 0.272): The coefficient for SOP is not statistically significant (P-value ¿ 0.05), suggesting
that the statement of purpose does not significantly affect the Chance of Admit.

–LOR: (t = 3.059, P> |t| = 0.002): The coefficient for LOR is statistically significant (P-value ¡ 0.05), indicating
that stronger letters of recommendation are associated with a higher Chance of Admit.

–CGPA: (t = 10.497, P> |t| = 0.000): The coefficient for CGPA is highly significant (P-value ¡ 0.05), suggesting
that higher cumulative GPA is strongly associated with a higher Chance of Admit.

–Research: (t = 3.509, P> |t| = 0.001): The coefficient for Research is statistically significant (P-value ¡ 0.05),
indicating that having research experience is associated with a higher Chance of Admit.
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3.1.4 Model building and training

We construct the model using the multiple linear regression formula, then perform a function to fit the model and minimize
the parameters, and finally make predictions on all test data. We can see the following result on the curve on prediction of
test data in Figure 9.

3.2 Role of statistics in multiple linear regression

Standard errors(std err): To calculate the standard error we must compute the estimation of variance. The estimator of the
variance of the error terms, σ̂2, is given by

σ̂
2 =

SSE
(n− p)

. (47)

In this formula

–n is the number of observations.
–p is the number of model parameters (including the intercept).

then determine the matrix C j j is the j-th component of the matrix (X ′X)−1. Once we have c we can extract the diagonal
component. Finally the standard errors of the least squares estimator β is

β̂ j =
√

σ2 [(XT X)−1] j j. (48)

The F-statistics for each coefficient: In this part, we outline several significant hypothesis-testing methods. Just like
in the case of simple linear regression, hypothesis testing necessitates that the error terms εi in the regression model
follow a normal and independent distribution with an average of zero and variance σ2. The significance test for regression
examines whether there is a linear association between the response variable y and a subset of the predictor variables
x1,x2, ...,xk. It evaluates the following hypotheses:

H0 : β1 = β2 = · · ·= βk = 0. (49)
H1 : β j ̸= 0 for at least one j. (50)

The rejection of the null hypothesis suggests that at least one of the predictor variables x1,x2, . . . ,xk makes a significant
contribution to the model. If H0 : β1 = β2 = · · ·= βk = 0 is indeed true, SSR/σ2 follows a chi-square distribution with k
degrees of freedom. The test statistic for ANOVA.

F0 =
SSR/k

SSE/n− p
. (51)

We must reject the null hypothesis if the calculated test statistic value in Equation (51), denoted as f0, exceeds fα,k,n−p.
The t-statistic: Hypothesis testing could be employed to assess the relative significance of each regressor variable

within the regression model. This may involve considering the inclusion of extra variables or the removal of existing
ones to enhance the model’s effectiveness. One essential hypothesis test involves determining if an individual regression
coefficient, denoted as β j, equals a specified value β j0.

H0 : β j = β j,0; H1 : β j ̸= β j,0. (52)

The test statistic for this hypothesis is

T0 =
β̂ j −β j,0√

σ2C j j
=

β̂ j −β j,0

se(β̂ j)
. (53)

The diagonal element C j j of (X′X)−1 corresponds to β̂ j. The denominator of Equation 4.3.29 represents the standard error
of the regression coefficient β̂ j. The null hypothesis H0 : β j = β j,0 is rejected if the absolute value of the test statistic t0
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exceeds the critical value tα/2,n−p. This is considered a partial or marginal test, as the estimated regression coefficient β̂ j
depends on all other predictor variables xi included in the model [7].

R-squared and Adjusted R-squared: The coefficient of determination, denoted as R-squared, can be employed as a
comprehensive metric to assess the model’s goodness of fit. From a statistical standpoint, this value can be computed as:

R2 =
SSR

SST
= 1− SSR

SSE
. (54)

4 Logistic linear regression model

Logistic regression is a statistical model used for classification tasks, where the goal is to predict a categorical or discrete
outcome variable. It estimates the probability of the dependent variable B, which is a binary or dichotomous class, based
on the independent variables A by determining P(A|B). The model classifies the binary class label B using the following
equations [17]:

P(B = 1|A) = 1
1+ exp(W0 +∑

n
i=1 WiAi)

. (55)

P(B = 0|A) = exp(W0 +∑
n
i=1 WiAi)

1+ exp(W0 +∑
n
i=1 WiAi)

. (56)

4.1 Practical example

We can take an example like some information about students and aims to predict whether a student will pass or fail based
on several characteristics. The columns in the dataset are as follows

1.Student Id: An identifier unique to each student.
2.Gender: The gender of the student, where ’M’ stands for male and ’F’ stands for female.
3.Age: The age of the student in years.
4.Final mark: The final grade obtained by the student in the exam or course.
5.Pass: A binary indicator where 1 means the student passed and 0 means the student failed.

The goal is to use this information to predict the probability of a student passing or failing the exam or course by using
logistic regression techniques, we can model the relationship between the students’ characteristics (age and final mark)
and their success or failure, as represented by the ’pass’ column.

4.1.1 Data loading and preparation

Fig. 10: dataset students
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Fig. 11: train test split data between training and test sets

4.1.2 Model building and training

It is the same process as the last model.

Fig. 12: Curve of prediction on training data

4.1.3 Model evaluation

We can see the following figure below
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Fig. 13: Curve of prediction on test data

Fig. 14: Table of classification report for the logistic regression model

Fig. 15: Table of confusion matrix for the logistic regression model
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4.1.4 Interpretation

–Precision The precision metric represents the proportion of true position predictions among the total number of positive
predictions made by the model. A precision of 1.00 for classes 0 and 1 means that all positive predictions in your model
are correct.

–Recall The recall measure reflects the fraction of true positive predictions out of the total number of actual positive
instances. A recall of 1.00 for classes 0 and 1 means that our model has correctly identified all positive instances in
each class.

–F1-Score The f1-Score represents the harmonic mean of precision and recall. An f1-Score of 1.00 for classes 0 and 1
means that our model performs perfectly in terms of precision and recall.

–Support The support values represent the number of true examples belonging to each class. In your case, there are 3
instances of class 0 and 5 instances of class 1.

–Accuracy: Accuracy is the proportion of correct predictions out of all predictions. An accuracy of 1.00 means that all
predictions in our model are correct.

4.2 Role of statistics in logistic regression

A binary classifier’s confusion matrix is depicted in Figure 16. It shows the actual values labeled as True and False, along
with their predictions as Positive and Negative. The performance of a classification model is evaluated based on the values
of true positive, true negative, false positive, and false negative entries in the confusion matrix.

Fig. 16: Confusion matrix for the binary classification problem

TP (True Positive): A true positive in the confusion matrix occurs when a positive result is accurately predicted.

FP (False Positive): In the confusion matrix, a false positive arises when the model incorrectly predicts a positive
outcome, yet the actual outcome is negative. This situation corresponds to Type 1 Error and can be likened to an
unwelcome stroke of luck.

FN (False Negative): A false negative occurs in the confusion matrix when a negative result is wrongly predicted as
positive. This situation is commonly referred to as a Type 2 Error and is considered equally detrimental as a Type 1 Error.

TN (True Negative): When a negative prediction aligns with the actual outcome, it is considered a True Negative in
the confusion matrix. This is demonstrated in the binary classification results depicted in Figure 16 [20].

The model’s accuracy is calculated by summing the number of correctly predicted positive and negative cases (TP +
TN) and then dividing that sum by the total number of data sets (P + N). The highest possible accuracy score is 1.0, while
the lowest is 0.00 [21].

© 2026 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


252 B. Gueye, L. Gouba: The Role of Statistics in Machine Learning...

Fig. 17: Representation of the test set classification results in elliptical form for four binary outcomes.

Fig. 18: Two ellipses demonstrate the method of accuracy calculation

The sensitivity metric, also referred to as recall or true positive rate, is calculated by dividing the number of correct
positive predictions by the total number of actual positive cases. It is referred to as Sensitivity or Recall. A perfect TP
Rate is represented by 1.0, while the lowest rate is denoted by 0.0 [21].

Fig. 19: Two ellipses demonstrate the method of accuracy calculation
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Precision is determined by the ratio of correctly predicted positive cases to the total number of predicted positive cases
(TP + FP). The highest achievable accuracy is 1.0, while the lowest is 0.0 [21].

Fig. 20: Two ellipses demonstrate the method of precision calculation

The F-Measure, also known as the F-score, quantifies the test’s accuracy and is computed using precision and recall
in the following formula [21].

F-Score = 2× precision× recall
precision+ recall

. (57)

5 Conclusion

Statistics plays a crucial role in the field of machine learning. In this work, we studied three models: simple linear
regression, a multiple linear regression model, and the logistic regression model. The evidence role of statistics in
machine learning is highlighted. The fundamentals of machine learning are deeply rooted in mathematical concepts. It is
applied to aid real estate companies in predicting apartment prices, and banks in detecting anomalies and classifying
handwritten digit recognition (postal codes) among other uses. This is accomplished through a blend of mathematics and
extensive programming skills, particularly using Python. In future work, we will explore other more complex algorithms,
fostering innovation and pushing the limits of what machine learning can accomplish. For instance, we can consider
exploring the multinomial logistic regression, ridge and lasso regression, and Generalized Linear Models (GLMs)
algorithm to understand its mathematical principles, potential enhancements, and efficacies. Why not create our
algorithm for machine learning?
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