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Abstract: Insurance losses comprises of small and large claims rendering single distributions incapable of holistically capturing the
different sizes together accurately. Risk measures associated with insurance losses are crucial for determining reserve levels and for
assessing solvency. Hence, in estimating risk measures, the right probabilistic distributions has to be carefully fitted in order not to
underestimate or over estimate associated parameters. In view of this, this paper employs a two component composite distribution
to describe automobile insurances losses from Ghana using 11,879 data points. This research fitted 240 composite distributions and
results of the top ten are selected and presented based on some goodness of fit criteria. Threshold values and mixing weights for each
composite distribution are also estimated and presented. Value at Risk and Tail value at Risk are then estimated and presented for the
top ten composite distributions at 95% and 99% security levels.
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1 Introduction

Risk modelling associated with insurance losses is an integral part of the work of an Actuary as it aids in estimating
reserves and other crucial elements such as expected claims and variances. To this end, it is essential to employ the right
probabilistic distribution that properly capture the dynamics in claims data in order to accurately estimate desired risk
measures. While risk modelling help underwriters and actuaries to understand and predict claim frequency and severity,
it also aid the insurer to estimate potential losses [1]. According to [2], risk modelling assist insurers to set adequate
premiums by estimating expected losses to ensure that right premiums are charged to cover indemnities. More
importantly, risk modelling guide the insurer to adequately strike a healthy balance between reserve and amount to be
invested [3]. If the probabilistic model fitted to help estimate the risk measure mimic reality, it can be used to accurately
predict losses which eventually help to minimize risk [4]. On a more general level, risk modelling also helps the insurer
identify potential risk factors which assists in risk management practices through underwriting. Consequently, this helps
the insurer adopt some risk mitigation strategies to ensure stability of the insurance industry in the face of potential
losses. Furthermore, risk modelling provide insights for the insurance industry to strategise their business decisions
especially on their product development, market expansion, and investment strategies.

When insurance losses are not modelled with the right probabilistic distributions, it leads to under reserving or over
reserving. If an insurer reserves more than necessary, this subsequently affects other areas of the company as huge sum
of money will be allocated to settle claims. This can consequently affect financial inflows of the insurance company such
as investment income. On the other hand, if the insurer reserve less than necessary, it will be unable to settle claims as
and when they arise. To this end, it is important to fit appropriate probabilistic distributions to claims data in order to
mitigate issues that arise from over reserving or under reserving. This will in turn help the insurance company meet its
obligation of paying claims. An insurance company inability to properly fit claims amount using an appropriate
probabilistic distributions can plunge the company into insolvency if not properly handled [5].
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Single distributions have been used extensively to model loss data (see [6]). However, given that loss data comprise of
small and large losses, single distributions cannot properly capture the underlying dynamics of the different sizes leading
to under estimation or over estimation of the required metrics useful for making prudent decisions. In sequel, this can
subsequently lead to under reserving and other related consequences. In view of this, although now gaining momentum,
composite distributions have been employed to model losses (see [7], [8], [9]) due to its ability to piece together
distributions that reflect different sizes of claims together in a novel manner. This in essence captures the tail behaviour
of the relatively large losses in the data alongside the small and medium claims. In composite distributions, two or more
distributions (normally called head and tail distributions) are pieced together at some threshold [7]. One peculiar
question that however arises is how this threshold is optimally chosen in order to maximise the parameters of the
distributions pieced together while ensuring that the composite distribution properly mimics the underlying data. In the
case of insurance, composite models have been proven to model insurances loss well than single distributions.

On important reason for determining the probabilistic distribution of an insurance data is to compute associated risk
measures. Risk measures have been used extensively in the insurance industry to know on average the possible loss an
insurance company is expected to pay on any given day. These risk measures guide the insurance industry on reserve
amount and also provide quantitative structure that can be used to assess and manage potential losses that can render the
company insolvent. Reserving is a very key aspect of the insurance industry and as such it is expected of Actuaries and
underwriters to ensure that right tools are employed in order to churn out precise estimates for reliable decision making
[10]. This is achievable when risk measures at various percentiles of claims are well calculated as they inform the reserve
amount in order not to render the company insolvent. Risk measures guide insurance companies to allocate enough
capital to cover potential losses [11],[12]. This will ensure solvency of the insurance industry whilst protecting
policyholders as well. Again, risk measures inform premium pricing decisions as it aids insurers to quantify risk of losses
so that adequate premium is charged for the corresponding loss amounts [13]. Risk measures may also be used as
insurance regulatory compliance metrics such as Solvency II [14]. Although there are several risk measures, this study
considered two risk measures; Value at Risk (VaR) and Tail value at Risk (TVaR). Whereas VaR computes the average
worst possible loss within any single day, TVaR on the other hand focuses on more severe losses which helps insurers to
manage tail risk and catastrophic losses [15]. VaR and TVaR impacts the insurers capital planning decisions by looking
at the potential impact of extreme events on insurer ability to pay claims [16]. TVaR aids to design a comprehensive
enterprise risk management structure by addressing potential losses beyond expected levels which can impede the core
activities of paying claims. In summary, VaR and TVaR are very vital risk measures in insurance reserving because they
aid insurers manage potential losses, allocate capital, inform premium pricing, assists in reserve estimation and ensure
regulatory compliance. The challenge is how ensuring that probabilistic distributions used in estimating these risk
measures capture the dynamics in the data in a holistic manner.

This current study is motivated by the work of [7] where 256 composite models were evaluated for Danish fire loss data
and South African taxi claims data. This study also considers 240 composite models for auto mobile insurance claims
from Ghana. The study aims to discover composite models that have not been studied previously for auto mobile losses.
The study also estimated the differentiability and continuity condition for composite distributions.

2 Methods

2.1 Composite Model

Composite models was first introduced by [17]. The probability density function of the composite model which was
adapted by [18] is expressed in the form:

g(α1,α2,γ,β ) =

{
1

1+β
g∗1(y|α1,γ), i f 0 < y ≤ γ,

β

1+β
g∗2(y|α2,γ), i f 0 < y < ∞,

(1)

whereas the cdf can be written as;

G(α1,α2,γ,β ) =

{
1

1+β

G1(y|α1)
G1(γ|α1)

, i f 0 < y ≤ γ,
1

1+β
[1+β

G2(y|α2)−G2(γ|α2)
1−G2(y|α2)

], i f γ < y < ∞
(2)
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where γ represent the threshold and β the mixing weights. α1 and α2 represent the parameters for the first and second
distributions. Also, g∗1 =

g1(y)
G1(γ)

for 0 < y < γ and g∗2 =
g2(y)
G2(γ)

for γ < y < ∞

To ensure a smooth composite distribution at the threshold γ , differentiability and continuity conditions are imposed. For
continuity at the threshold, f (γ−) = f (γ+) and consequently, must hold if the following condition is satisfied;

c =
f2(γ)F1(γ)

f2(γ)F1(γ)+ f1(γ)(1−F2(γ))
(3)

For differentiability condition, the following condition must be satisfied;

c =
f ′2(γ)F1(γ)

f ′2(γ)F1(γ)+ f ′1(γ)(1−F2(γ))
(4)

Solving 3 and 4 ensures that the pdf of a composite distribution is always differentiable and continuous if f1(γ)
f2(γ)

=
f ′1(γ)
f ′2(γ)

is
satisfied.

Next, we present some few parametric loss distributions known in literature and their corresponding density functions.
This is in presented in Table 1 below

Table 1: Parametric loss distributions and their parameters

Distribution Parameters PDF

Burr
α > 0,β > 0,
γ > 0

αβ ( x
γ
)β

x[1+( x
γ
)β ]α+1

Exponential η > 0 e−
x
η

η

Gamma ξ > 0,ζ > 0,
( x

ζ

ξ )e
− x

ζ

xΓ (ξ )

Generalised
Pareto

ψ > 0,ρ > 0,
σ > 0

Γ (ψ+ρ)
Γ (ψ)Γ (ρ)

σ ψ xρ−1

(x+σ)ψ+ρ

Inverse Burr
α > 0,β > 0,
γ > 0

αβ ( x
γ
)βα

x[1+( x
γ
)β ]α+1

Inverse Exponential η > 0 ηe−
η
x

x2

Inverse Gamma ξ > 0,ζ > 0,
( x

ζ
)ξ e−

ζ
x

xΓ (ξ )

Inverse Gaussian µ > 0,τ > 0, ( τ

2πx3 )
1
2 e−

τz2
2x ,

z = x−µ

µ

Inverse Paralogistic ω > 0,κ > 0, ω2( x
κ
)ω2

x[1+( x
κ
)ω ]ω+1

Inverse Pareto λ > 0,δ > 0, λδxλ−1

(x+δ )λ+1

Inverse Weibull ε > 0,ν > 0, ε( ν

x )
ε e−( ν

x )

x

Loglogistic ι > 0,τ > 0, ι( x
τ
)ι

x[1+( x
τ
)ι ]

Lognormal µ > 0,σ > 0,
1

xσ
√

2π
e−

z2
2 =

φ(z)
σx

z = lnx−µ

σ

Paralogistic ω > 0,κ > 0, ω2( x
κ
)ω

x[1+( x
κ
)ω ]ω+1

Pareto λ > 0,δ > 0, λδ λ

(x+δ )λ+1

weibull ε > 0,ν > 0, ε( x
ν
)ε e−( x

ν )ε

x
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2.2 Model Selection Criteria

We estimate 240 composite distributions and present results on only the top ten (10) distributions based on the three
goodness of fit criteria below:

–Akaike Information Criterion (AIC)
–Bayesian Information Criterion (BIC)
–Negative Log-Likelihood (NLL)

The AIC is defined mathematically as:

AIC =−2ℓ(θ)+2(G+K −1), (5)

where G defines the number of components and K is the length of the vector θ . The AIC takes into account the log
likelihood function ℓ(θ).

The BIC is also defined as:

BIC =−2ln(l̂)+ k ln(n) (6)

Where l̂ is the model maximum value of the likelihood function, k measures the number of parameters in the model and
n represent the number of observation in the data set.

The NLL is defined by letting ℓ(θ) represent the log-likelihood function for a particular model.

NLL =−ℓ(θ). (7)

2.3 Risk Measures

Given the security level p, tractable risk measures for composite models for a given random loss X can be obtained. Value
at risk (VaR) for this random loss X according to [17] and [18] is defined as:

VaRp(X) =

{
G−1

1 (p(1+β )G1(α)), i f 0 < p ≤ 1
1+β

,

G−1
2 (G2(α)+(p(1+β )−1(1−G2(α))/β ), i f 1

1+β
< p < 1.

(8)

while [18] also defined the theoretical estimates for the TVaR of X as:

TVaRp(Y ) =


1

1−p

[ ∫
α
πp yg1(y)dy

G1(α) +
∫

∞
α yg2(y)dy
1−G2(α)

]
, i f 0 < p ≤ 1

1+β
,

1
1−p

1
1−G2(α)

[∫
∞

πp
yg2(y)dy

]
, i f 1

1+β
< p < 1

(9)

3 Results and Discussions

3.1 Preliminary analysis

The data used for the study consist of third party auto-mobile insurance losses from an insurance company in Ghana. It
consist of 11,879 observations spanning two years. The descriptive statistics of the data is presented in Table 2 below:
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Table 2: Descriptive statistics of the third party loss data

Statistic value(in hundred Ghana Cedis)
Minimum 0.1
Mean 19.32651862
Maximum 435
Quantiles (6.12,12.68,26.01)
Standard deviation 23.30407555
Skewness 5.241443498
Kurtosis 55.84664572

Figure 1 below shows a boxplot of the loss data used for the study. Clearly, the data is right skewed suggesting that the
data comprises of relatively larger losses. This gives an idea of some plausible candidate distributions that can fit the data.

Fig. 1: Boxplot of auto-mobile loss

3.2 Fitting Composite distributions to the auto-mobile claims data

The 16 loss distributions in R-software package ’actuar’ outlined in Table 1 was used in fitting the 240 composite
distributions. This was obtained by taking two distributions at a time making 16C2 × 2 = 240 in total. The model
parameters are estimated using the the R-software package ’composite’. Next we fit the auto-mobile claims data to the
240 distributions and present result of the top ten(10) based on the model selection criterion discussed in section 2.2.
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This is presented in Table 3 below. It could be seen that distributions such us lognormal, burr and inverse burr fitted well
to the body of data. This results is consistent with the work of [8] where lognormal was described as a good candidate for
modelling smaller/moderate losses. Also, distributions such as Pareto, paralogistic and Weibull seem ideal for modelling
large losses based on the results obtained. This result also side with the work of [8] where Pareto was described to have
longer and thicker upper tails and therefore good for modelling larger losses. Also, using paralogistic and inverse
paralogistic as the tail distribution is consistent with the work of [19] who proposed these distributions as good
candidates for modelling large losses.

Table 3: Summary of the model selection criterion of the top 10 composite models and their parameters for the
third party insurance loss data

Distribution Model Sel. Criterion Parameter (head) Parameter(tail)

lognormal-Pareto
AIC=695.4123
BIC=695.6962
NLL=347.6662

µ=3.785412
σ=0.288956

λ =2.66793794
δ=0.04428109

Pareto-Paralogistic
AIC=701.4178
BIC=701.7016
NLL=350.6689

λ=2.496217
δ=0.062531

ω=2.600253
κ=0.482254

Burr-Inverse paralogistic
AIC=701.8400
BIC=702.1948
NLL=350.8700

α=0.5328918
β=1.32230835
γ=0.08777131

ω=2.58731399
κ=0.06027439

Burr-Inverse weibull
AIC=701.8400
BIC=702.1948
NLL=350.8700

α=0.5328918
β=1.32230835
γ=0.08777131

ε=2.58731399
ν=0.06027439

Inverse burr-Inverse Weibull
AIC=701.8413
BIC=702.1961
NLL=350.8707

α=1.1715960
β=1.1383744
γ=0.0627656

ε=2.5113566
ν=0.0406657

Inverse paralogistic-burr
AIC=701.8433
BIC=702.1933
NLL=350.8767

ω=1.14938086
κ=0.06123319

α=0.52644470
β=4.40846999
γ=0.04595472

Loglogistic-loglogistic
AIC=701.8855
BIC=702.1693
NLL=350.9027

ι=1.27827853
τ=0.05834516

ι=2.62845713
τ=0.04387424

Weibull-inverse burr
AIC=701.9740
BIC=702.3287
NLL=350.9370

ε=1.275757
ν=12.510394

α=0.11010811
β=2.87621009
γ=0.02695229

Inverse burr-Inverse burr
AIC=701.9740
BIC=702.3287
NLL=350.9370

α=1.275757
β=12.510394

α=0.11010811
β=2.87621009
γ=0.02695229

Inverse Weibull-burr
AIC=701.9841
BIC=702.3388
NLL=350.9420

ε=1032.058881
ν=9.999596

α=3.24130945
β=1.23005170
γ=0.02437112

The table shows that lognormal-pareto was the best composite distribution with an AIC of 695.4123. A critical look of the
the Q-Q plots of the nine composite distributions in Figures 2, 3 and 4 show that most of them fitted quite well. However,
Figure 5 which is the composite lognormal Pareto shows a very good fit as well. Clearly, the composite lognormal-Pareto
fitted the data well than the other nine composite distributions. Further assessment of the top ten composite distributions
clearly is needed.
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Fig. 2: Q - Q plots of composite Pareto-Paralogistic, Burr-Inverse Paralogistic and Burr-Inverse Weibull distributions
respectively
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Fig. 3: Q - Q plots of composite Inverse Burr - Inverse Weibull, Inverse Paralogistic - Burr and Loglogistic - Loglogistic
distributions respectively
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Fig. 4: Q-Q plots of composite Weibull - Inverse Burr, Inverse Burr - Inverse Burr and Inverse Weibull - Burr distributions
respectively
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Fig. 5: Q-Q plot of Composite lognormal-Pareto distribution

Furthermore, the CDF plot of the lognormal Pareto in Figure 6 below has confirmed lognormal-Pareto as a good fit to the
claims data. Below, further tests are performed to check the goodness of fit and to further cement the superiority of the
preferred distribution that was used in the risk estimation.
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Fig. 6: Cumulative density plot for lognormal-Pareto distribution
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Next in Table 4 below, we perform Kolmogorov- Smirnov (KS) test, and Cramer-von Mises (CVM) test to confirm whether
the loss data follows the theoretical distributions specified. According to the K-S and CVM test, only the lognormal-
Pareto had its p-value (0.2040 > 0.01) making it the most suitable distribution at 1% significance level. However at
5% significance level, the Pareto-Paralogistic distribution also provided a good fit to the data. The Vuong test was also
conducted to compare the lognormal-Pareto distribution to the other nine composite distributions to confirm its superiority.
The p-values affirm that the loss data is better fiited by the lognormal-Pareto comparatively. Clearly for all the tests
conducted and from the plots, the lognormal-Pareto emerged as the best distribution and as such was used for the risk
estimation. Next we describe the mixing weights and the threshold values. The threshold values where chosen in a way
that continuity and differentiability conditions are satisfied.

Table 4: Goodness of Fit Test Statistics

Distribution K-S Statistic CVM Statistic Vuong Test
Lognormal-Pareto 0.2040 0.3421 -
Pareto-Paralogistic 0.0520 0.0531 0.2341
Burr-Inverse Paralogistic 0.0001 0.0021 0.0041
Burr-Inverse Weibull 0.0002 0.0024 0.0020
Inverse Burr-Inverse Weibull 0.0054 0.0022 0.0201
Inverse Paralogistic-Burr 0.0032 0.0006 0.3421
Loglogistic-Loglogistic 0.0022 0.0018 0.5412
Weibull-Inverse Burr 0.0017 0.0067 0.1320
Inverse Burr-Inverse Burr 0.0034 0.0089 0.7890
Inverse Weibull-Burr 0.0022 0.0091 0.0020

Next, we present the top 10 models and their corresponding threshold and mixing weights for the composite distribution.
This is presented in table 5 below. The mixing weights which is given by 1

1+β
, β

1+β
with β > 0 ensures that appropriate

segment of the data set is fitted to the head and tail distribution respectively in the composite model to ensure good fit
(that is by maximising the log-likelihood function of the joint distribution). From the table, all the top 10 composite
distributions had greater percentage of the data points assigned to their body distributions with the remaining assigned to
the tail distribution. Lognormal-Pareto, the best fitting composite distribution to our loss data revealed that about majority
of the losses should be modelled with lognormal whilst the remaining is modelled by Pareto. The possible explanation is
that the data at hand comprises of quite a number of smaller losses than larger losses. The threshold γ > 0 for the composite
lognormal-pareto of 23.19613 is the point at which the data is divided for fitting the lognormal and pareto distribution
since the composite model is a piecewise distribution. That is, losses up to 23.19613 was fitted with lognormal whilst
losses above 23.19613 was fitted with Pareto. More generally, given that Xi are the losses, then Xi < γ are fitted by the
head distribution and Xi ≥ γ are fitted by the tail distribution. Surprisingly, Pareto-Paralogistic estimated that losses up
to 64.37197 should be fitted with Pareto. This threshold is quite large as compared to that of lognormal in the composite
lognormal-Pareto. This could possibly be explained that Pareto has been described in some literature to be capable of
fitting relatively larger losses (see;[8]). Therefore using Pareto as head distribution will capture relatively larger loss as
compared to lognormal. The 10 composite distributions estimated that on average, losses up to 23.5271109 should be
fitted with the head distribution whilst losses above this threshold should be fitted with the tail.
Modelling claims data using lognormal-pareto distribution has many advantages and it truly reflects the distorted
behaviour of insurance claims as there are some large claims that occurs at very small frequencies. The lognormal part
fits the body of claims data which are moderate in size and highly skewed. This is consistent with several papers (See for
example [6]; [20]; [21]). The pareto distribution on the other hand is ideal for extreme claims and used when there are
large losses where heavy tailed behaviour is observed. This is also consistent with several papers (See for example, [22];
[23]; [24]). Hence our best composite distribution gives a good balance between small and large claims making it
appropriate for estimating the underlying risk associated with the insurances losses. This gives furtherance to the
Insurance Regulatory frameworks like solvency II and IFRS 17 which emphasizes correct modelling of tail risk. Also,
since lognormal distribution is light tailed it usually underestimate risk while the Pareto distribution may overestimate
solvency needs and these defects are cured by composite distributions as it gives a good balance between the two
distributions. Cooray and Amanda (2005) also observed lognormal-Pareto distribution although the paper did not
estimate any risk measure like in our paper and there was a vast difference in how the threshold was chosen. In this paper
the thresholds are chosen in a way to ensure continuity and differentiability of the composite distributions. Some of the
other 9 composite distributions although had a good fit, cannot be compared to the lognormal-distribution. These
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Table 5: Summary of the top 10 composite models for the third party insurance claims and their corresponding
threshold and mixing weight (in GH¢100)

Distribution Threshold (γ) Mixing weight (β )
lognormal-Pareto 23.19613 0.3983603
Pareto-Paralogistic 34.37197 0.3893017
Burr-Inverse paralogistic 24.84300 0.3393798
Burr-Inverse weibull 24.84300 0.3393798
Inverse burr-Inverse weibull 25.53389 0.3195328
Inverse paralogis-burr 26.11041 0.3035585
Log logistic-Log logistic 24.85599 0.3349225
Weibul-inverse burr 10.70834 0.3009890
Inverse burr-Inverse burr 10.70834 0.3009890
Inverse weibull-burr 10.00039 0.4247165

distributions have some advantages but their K-S statistics showed that they were not a good fit to our data hence their
relevance to the actuarial modelling of claims are not discussed.
Table 6 below presents the risk measures of the top 10 composite distribution that best fit the third party auto-mobile
insurance claims data. From the table, lognormal-Pareto shows that at the 99th percentile of claims, the insurance company
can make an average loss of GH¢14,038.30 within any given day. This loss is substantially large especially for a typical
Ghanaian third party. This loss is even much more higher for the same Lognormal-Pareto when looking at the tail value
risk for the same 99th percentile of claims. This result is a bit critical for the Ghanaian insurance industry. Furthermore,
Pareto-Paralogistic which was the second best fit distribution for the loss data shows that at the same 99th percentile of
claims, the insurer can incur a loss of GH¢11,430.21 per any given day. This loss is a bit closer to Lognormal-Pareto
which best fit the loss data. Again, inverse weibull-burr which was the least among the top 10 distributions that best fit
the loss data revealed that at 99th percentile of claim, the insurer can record a loss of GH¢10, 409.65 for any given day.
On average, the top 10 composite distribution that best fit the loss data revealed an average loss of GH¢9016.106 at 99th
percentile of claims within any given day. This loss on several policies within a single day can be catastrophic for the
ordinary insurance company in Ghana to settle.

Table 6: Risk Measures of the top 10 composite model of the third party insurance claim data (in GH¢100)

Distribution VaR0.95 VaR0.99 TVaR0.95 TVaR0.99
Lognormal-Pareto 50.80211 140.38300 101.941.40 261.09420
Pareto-Paralogistic 87.87502 114.3021 101.0325 134.9203
Burr-Inverse paralogistic 46.5173 86.64975 45.75662 52.40518
Burr-Inverse weibull 46.5173 86.64974 45.75662 52.40517
Inverse burr-Inverse weibull 47.85505 27.07551 71.96752 148.5736
Inverse paralogistic-burr 54.89154 110.2185 93.91548 179.6023
Loglogistic-loglogistic 45.9139 84.69704 72.532 128.8246
Weibull-inverse burr 41.69403 79.65294 67.1178 117.4582
Inverse burr-Inverse burr 33.70246 67.88554 56.50806 100.7699
Inverse weibull-burr 57.71673 104.0965 87.6859 143.9634

Furthermore, the work of [6] where insurance losses from Ghana were modelled with several single loss distributions
(like Burr, lognormal, Gamma, exponential Weibull etc.) projected lognormal as ideal for modelling the Ghanaian
insurance dataset. Subsequently, they estimated risk measures at 95% and 99% security levels using lognormal as
underlying distribution. However, given that loss data is righly skewed, the tail risk is likely to be underestimated and
hence can affect amount reserved for indemnifying claims. Composite distributions which is adopted in this paper have
shown good promise in modelling loss data properly than single than single distributions and consequently the risk
estimates. This study estimated risk measures for loss data from Ghana using composite models as underlying
probabilistic distributions. Similarly, [25] used single distributions with some parameter perturbations to estimate risk .
In their work, they modelled the well - known South African Taxi claims data and Danish fire insurance loss data. They
concluded that the transformed beta family of distributions provided a better fit to both datasets, they subsequently
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estimated risk measures using these single standard distributions. Our work is different form their work in the sense that
we estimated risk measures for the losses using composite distributions. [20] argued that composite distributions provide
good risk estimates. Hence the risk measure estimated in this this research is deeply rooted on the fact that composite
distributions provide better risk estimates in comparisons to those mentioned above.

3.3 Implication of study for risk assessment and mitigation

This study provides valuable insights for planning reserves and investment components of premiums collected by
insurance firms. It particularly provides estimates to inform policy on the purchase of reinsurance due to the dire
consequences of observing higher claims by insurance firms. The core objective of this study which is to provide ways of
quantifying risk ensures that insurers can offer appropriate coverage, set right premiums to ensure financial stability.
The main motive of purchasing reinsurance is to protect the insurer from large losses that can lead to insolvency. Also,
one main challenge that the insurance companies faces is determining the right amount of reserve that can pay future
losses. The estimates of the risk measures have provided a clue of how much the insurer should reserve in order to remain
solvent. TVaR for Lognormal-Pareto gave the largest possible loss for the data at hand. We recommend that reinsurance is
purchased by the insurance companies in Ghana. Due to the vast differences between estimates for the two risk measure,
we recommend that several risk measures are computed and then an average of the estimates is then used for decision
making. Again, the risk measures provided rough estimate of the nature of losses the company should expect in order to
cover unforeseen losses. This therefore inform the insurance company how much they should reserve in order to remain
solvent. That is risk estimates can be used as reserve benchmark whilst ensuring that enough is allocated for day to day
activities of the industry and for investment to attract investment income.
The estimates of the two risk measures are substantially large and it is therefore essential that the insurance industry
embark on some risk mitigation interventions that can reduce the frequency and severity of the losses.

3.4 Conclusion

Modelling insurance losses is an essential part of the work of an actuary as it aids in reserving and also create an
awareness of future unexpected claims. Modelling insurance losses with single distributions cannot capture the tail
behaviour of relatively large losses. In view of this, composite distributions have been used in several studies to model
insurance losses (see; [7], [8], [9]). This study modelled third party motor insurance losses from an insurance company
in Ghana using composite distribution. 240 composite distributions derived from 16 single loss distributions known in
literature were fitted to the loss data. Using model selection criteria, top 10 composite distributions that best fit the third
party motor insurance data were lognormal-Pareto, Pareto-Paralogistic, Burr-inverse Paralogistic, Burr-inverse Weibull,
inverse burr-inverse Weibull, inverse paralogistic-Burr, loglogitic-loglogistic, Weibull-inverse Burr, inverse Burr-inverse
Burr, and inverse weibull-Burr. This result is consistent with literature (see; [8], [19]). The mixing weights and the
threshold for the top 10 composite distributions were estimated. Two risk measures; VaR and TVaR at 95th and 99th
percentile of claims for the top 10 composite distributions were computed. Lognormal-Pareto which turned out to be the
best estimated that the insurance company on any single day can pay a loss of Gh¢14,038.30 on a single policy from its
risk estimate. This loss is relatively higher for a typical insurance company in Ghana. The top 10 composite distribution
considered revealed an average loss of Gh¢9016.106 on single policy within any given day at a security level of 99%.
This loss might look a bit smaller for the insurance industry but this could be catastrophic for the industry especially
when looking at several policies together within any single day. The implication of this relatively large loss is that the
industry should resort to reinsurance so that the losses could be shared to mitigate losses which could impact
profitability. Also the insurance companies could engage policyholders on some risk management interventions so as to
minimise the severity of the losses reported.
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