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Abstract: Reliability and epidemiology data in practice are of the type that require flexible distributions that fit heavy tails and varying
hazard rates, which classical models like the Rayleigh distribution are not capable of. This work introduces the Burr III Scaled Inverse
Odds Ratio-Rayleigh (B-SIOR-R) model, a novel model that overcomes such drawbacks. Our model, through the integration of Burr
III scaling and inverse odds ratio transformation, provides more control over tail shapes, skewness, and hazards. We derive its statistical
properties and estimate its parameters using the maximum likelihood method, which is affirmed by simulation studies. Our Monte
Carlo simulations reveal the reduction and convergence towards zero of the bias and mean square error of the estimators with an
increase in the sample size, where larger values show more stability and closer estimates to actual parameter values. We also derive a
new group acceptance sampling plan (GASP) based on the B-SIOR-R model for quality control. The GASP results indicate that with
an increasing true mean lifetime, the number of groups (g) and items in groups (m) to be sampled is reduced. For instance, using a
consumer protection level 0.05 for β and a relative mean lifetime of 6 for r2, an optimal solution of (g,m,Paccept) = (1,1,0.958898) is
achieved, demonstrating an extremely satisfactory acceptance probability of around 95.89% by testing one group of one item. Within
the practical applications, B-SIOR-R distribution generated evenly high p-values for all datasets—0.9900, 0.9543, 0.9965, 0.9966,
and 0.3105—demonstrating its statistical sufficiency and robustness. Exactly, for the COVID-19 Mortality and HIV/AIDS Mortality
datasets, B-SIOR-R model attained low AIC values (−240.94 and −27.45, respectively), outperforming most of the competitors in
goodness-of-fit tests.

Keywords: Asymmetric data, Burr III distribution, Group Acceptance Sampling Plan (GASP), Inverse odds ratio, Rayleigh
distribution, Hazard rate function.

1 Introduction

The Burr III scaled inverse odds ratio (B-SIOR-G) family
has been recently introduced as a useful method of
providing flexibility to baseline distributions. This is
achieved by pairing the inverse odds ratio (IOR)

transformation with Burr III scaling. The IOR approach
has attracted growing attention in the statistical literature
due to its capability to generate distributions with
improved skewness, kurtosis, and tail behavior. For
instance, the inverse odds ratio-G (IOR-G) family [3] and
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its extensions have been demonstrated to provide a better
fit than classical models for real data.

The B-SIOR-G family takes it a step further by
introducing Burr III scaling into the IOR transformation.
The introduction of Burr III scaling offers additional
shape parameters that allow greater control over the tail
thickness and the hazard rate function behavior. In this
paper, we take a specific member of the B-SIOR-G
family—the Burr III scaled inverse odds ratio-Rayleigh
(B-SIOR-R) distribution. The new model is a
generalization of the classical Rayleigh distribution,
which has widespread use in engineering, survival
analysis, and wireless communication due to its
tractability and closed-form solutions. However, the
default Rayleigh model assumes a monotonically
increasing hazard rate, limiting its applicability in
real-world applications requiring more flexibility in tail
and hazard rate shape. The proposed B-SIOR-R model
circumvents these limitations via the addition of three
additional shape parameters. These allow the distribution
to capture asymmetric shapes, heavier tails, and a wide
range of hazard rate shapes including bathtub-shaped,
unimodal, increasing, and quasi-normal forms. This
makes the model extremely suitable for complex
reliability, biomedical, and environmental data.

Flexible probability distributions are crucial to devise
in engineering and reliability disciplines to represent
lifetime and failure-time data in a precise manner.
Classical models such as the exponential, Weibull, and
Rayleigh distributions are commonly used because of
their simplicity and interpretability. However, they are
often not sufficient when the data exhibit heavy-tailed
behavior, skewness, or non-monotonic hazard rates. To
overcome such restrictions, several generalizations have
been proposed, including the beta-G, Kumaraswamy-G,
and transmuted-G families, which gain more flexibility by
incorporating shape parameters [13], [14], [15]. Among
them, the Burr family and most notably Burr Type III has
gained popularity due to its capability to fit a myriad of
hazard rate patterns and distributional shapes [16], [17].
The increasing complexity of real-life lifetime data has
also provoked an increase in hybrid and compounded
models, which often take advantage of transformation
techniques like the odds ratio, inverse odds ratio, and T-X
families for greater flexibility [18], [19]. Further
references for readers are [29], [30], [31], [32], [33] and
[34].

In epidemiology and disease surveillance, similar
problems are faced in modeling mortality and survival
rates. Classical models such as the log-normal, gamma,
and Gompertz distributions cannot capture
right-skewness, over-dispersion, and unusual hazard
patterns in health data [20], [21]. Accordingly, recent
studies have developed extended families with targeted
application to public health. The IOR-G family, for
example, has shown better fit to both HIV/AIDS mortality
and COVID-19 survival data [1], [22].

Group acceptance sampling plans (GASP) are now
essential tools in reliability testing and quality control
when making decisions with small samples and under
cost or time constraints. As opposed to single or double
sampling plans, GASP takes groups of items together,
making the decisions more effective and the inspection
time less [23], [24]. Over the past decades, numerous
researchers have developed GASP models under various
lifetime distributions, including the Weibull, gamma, and
exponential families [25], [24], [26]. More recently,
GASP designs have been extended to generalized and
flexible distributions for their wider applicability to
real-life data with skewness, heavy tails, or complex
hazard behavior [27], [28]. Motivated by all such
developments, we develop a GASP under the proposed
B-SIOR-R distribution. Since the model has the flexibility
to accommodate various lifetime features, it provides a
useful platform for developing effective sampling plans
for use in industrial, biomedical, and reliability
applications.

Data in fields like reliability and epidemiology often
require flexible distributions that allow for heavy tails and
various hazard rates, not provided by standard models
like the Rayleigh distribution. In this article, a new
distribution called the Burr III Scaled Inverse Odds
Ratio-Rayleigh (B-SIOR-R) is introduced beyond these
shortcomings. The main driving force is to address a
deficit in statistical modeling through providing a more
responsive instrument that more closely fits the
full-fledged nature of data complexity. Through
innovative integration of Burr III scaling and inverse odds
ratio transformation, the model enjoys greater control
over tail weight, skewness, and kurtosis, which is a
valuable addition to the literature. In application, this
research provides two main benefits: it enables improved
fitting of complex asymmetric data, providing more
trustworthy analysis, and it affords a tangible means of
quality control through the creation of a new group
acceptance sampling plan (GASP). The obvious benefits
of improved data fitting and the development of a useful
industrial instrument provide an effective case for its
construction and illustrate its value.

The organization of the rest of this article is as
follows; Section 2 specifies the Burr III Scaled Inverse
Odd Ratio-Rayleigh (B-SIOR-R) distribution. In
Section 3, the statistical properties of the B-SIOR-R
distribution are studied. Section 4 dwells on parameter
estimation using maximum likelihood approach. We
designed a group acceptance sampling plan for truncated
life tests based on the B-SIOR-R distribution for quality
control in Section 5. A comprehensive Monte Calo
simulation is carried out in Section 6. We deployed the
proposed B-SIOR-R distribution to lifetime events in
Section 7. Three datasets including groundwater
measurement, Guage measurement, HIV/AIDs mortality,
COVID-19 mortality, and COVID-19 survival rates were
used to show that the new model is competitively better
than some standard models in the literature. The article
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was concluded with final remarks and future work in
Section 8.

2 Specification of the new distribution

[1] created the Burr III scaled inverse odds ratio–G
(B-SIOR-G) family of distributions with cumulative
distribution function (CDF) given as

FB-SIOR-R(x) =

(
1+a

[
G(x;ω)

Ḡ(x;ω)

]−b
)−k

=

(
1+a

[
Ḡ(x;ω)

G(x;ω)

]b
)−k

; x ∈ R,

(1)

where a,b,k > 0 and ω is the parameter vector of any
baseline distribution with CDF and survival function (SF)
given as G(x;ω) and Ḡ(x;ω) respectively. The
corresponding probability density function (PDF) is

fB-SIOR-R(x) = abk ·g(x;ω)
Ḡ(x;ω)b−1

G(x;ω)b+1

×

(
1+a

[
Ḡ(x;ω)

G(x;ω)

]b
)−k−1

.

(2)

For any given parent distribution G(x;ω), the B-SIOR-G
adds three additional parameters to its inverse odds ratio
function and potentially provides a more robust and
flexible model with a better goodness of fit. The
B-SIOR-G family transforms the parent distributions’
tails and increases the form of the hazard function (HF)
associated with these baseline distributions. In the
following part, we will examine a unique example within
the B-SIOR-G family of distributions called the Burr III
scaled inverse odds ratio–Weibull (B-SIOR-W)
distribution.

To demonstrate that the B-SIOR-G family is capable
of improving any baseline distribution, we introduce the
Rayleigh distribution due to [2] into equations (1) and (2).
The CDF, SF, and PDF of the Rayleigh distribution are

defined respectively as G(x;ω) = 1 − e−
x2

2σ2 ,

Ḡ(x;ω) = e−
x2

2σ2 , and g(x;ω) = x
σ2 e−

x2

2σ2 , where σ > 0.
Plugging these into the CDF and PDF of the B-SIOR-G
family, we obtain the CDF and PDF of the B-SIOR-R
distribution given as

FB-SIOR-R(x) =

(
1+a

[
e

x2

2σ2 −1
]−b
)−k

; x ≥ 0,

a,b,k,σ > 0.

(3)

and

fB-SIOR-R(x) =
abk x
σ2 e−

bx2

2σ2

(
1− e−

x2

2σ2

)−b−1

×

(
1+a

[
e

x2

2σ2 −1
]−b
)−k−1

; x ≥ 0,

(4)

where k controls the steepness or decay. a,b and k are the
shape parameters while σ is the scale parameter. For the
B-SIOR-R distribution with PDF given in equation (4) and
CDF in equation (3), the hazard function is given by

hB-SIOR-R(x) =

abk x
σ2 e−

bx2

2σ2

(
1− e−

x2

2σ2

)−b−1

1−

(
1+a

[
e

x2
2σ2 −1

]−b
)−k

×

(
1+a

[
e

x2

2σ2 −1
]−b
)−k−1

; x ≥ 0.

The B-SIOR-R distribution introduces additional
flexibility to the classical Rayleigh distribution by
modifying its tail behavior and hazard rate function,
thereby allowing for better modeling of real-world
phenomena characterized by skewness, heavy tails, and
various hazard rate shapes.

2.1 Linear form of the density function

Consider using the following series identities

e−x =
∞

∑
i=0

(−1)i xi

i! , (1 − x)−n =
∞

∑
j=0

(n+ j−1
j

)
x j,

(1 + x)−n =
∞

∑
h=0

(−1)h
(n+h−1

h

)
xh and

(x− 1)−n =
∞

∑
r=0

(n+r−1
r

)
xr, for |x| < 1 and n > 0, then the

PDF in equation (4) can be decomposed in a more
compact and tractable form as

fB-SIOR-R(x) = k
∞

∑
i=0

∞

∑
j=0

∞

∑
h=0

∞

∑
r=0

(−1)i+h

i!

(
b+ j

j

)
×
(

k+h
h

)(
hb+ r−1

r

)
ah+1bi+1

2iσ2(i+1)

× x2(i+1)e−
1

2σ2 ( j−1)x2
.

(5)

Figure (1) represents the graph of the PDF at various
combination of the parameter values. The plots reflect left-
skewed behaviour, both low and high peaks, and bumped-
shape. This demonstrate that the B-SIOR-R can be utilized
in modeling different lifetime events.

The hazard rate plots in Figure (2) depict bump-shape,
bathtub, L-shape, J-shape and strictly non-decreasing
shape. This again implies that B-SIOR-R model can
benefit from modeling different lifetime events.
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Fig. 1: PDF plots

3 Statistical Properties

A number of the essential properties of the proposed
distribution are discussed in this section. Among them are
the quantile function, the moment, moment generating
function, mean residual life function, order statistic, and
entropy.

3.1 Quantile Function

The quantile function plays a fundamental role in random
variate generation, statistical inference, and reliability
analysis. It provides an explicit expression for data values
at specified cumulative probabilities. One of the most
common techniques for deriving the quantile function is
the probability integral transform, which converts a
uniform random variable U ∼ U (0,1) to the target
distribution via the inverse of its CDF.

Let xu = F−1(u) denote the quantile function of the
B-SIOR-R distribution, where 0 < u < 1. Inverting the
above cumulative distribution function, we get the
following closed-form expression:

xu =F−1(u)=σ

√√√√√√2ln

1+

 a

1−
( 1

u

) 1
k

 1
b
; 0< u< 1.

(6)

This expression enables straightforward generation of
B-SIOR-R random variables from uniform inputs and
analytical computation of percentiles, medians, and
thresholds required in practical applications such as
acceptance sampling and risk analysis.
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Fig. 2: Hazard Function Plots

3.2 Crude Moment

The ω − th crude moment for a continuous random
variable with assumes the proposed B-SIOR-R
distribution is defined as;

µ
′
ω =

∫
∞

0
xω f (x)dx

= k
∞

∑
i=0

∞

∑
j=0

∞

∑
h=0

∞

∑
r=0

(−1)i+h

i!

(
b+ j

j

)(
k+h

h

)
×
(

hb+ r−1
r

)
ah+1bi+1

2iσ2(i+1)

∫
∞

0
xω+2(i+1)

× e−
1

2σ2 ( j−1)x2
dx.

When a change of variable is made say ν = ω +2(i+
1) and λ = 1

2σ2 ( j−1), the integral becomes,

∫
∞

0
xν e−λx2

dx =
1
2

λ
− ν+1

2 Γ

(
ν +1

2

)
, for λ > 0.

This requires j > 1 so that λ > 0. If j = 0 or j = 1, the
integral diverges — so the domain of summation should
be from j = 2 to ∞.

µ
′
ω = k

∞

∑
i=0

∞

∑
j=2

∞

∑
h=0

∞

∑
r=0

(−1)i+h

i!

(
b+ j

j

)(
k+h

h

)
×
(

hb+ r−1
r

)
ah+1bi+1

2i+1σ2(i+1)

×
(

1
2σ2 ( j−1)

)−ω+2(i+1)+1
2

×Γ

(
ω +2(i+1)+1

2

)
.

(7)

Equation (7) is the ωth crude moment of the B-SIOR-
R distribution in closed form. The convergence depends on
the parameters a,b,k,σ and values of j ≥ 2.

3.3 Incomplete Moment

Let X ∼ B-SIOR-R(a,b,k,σ). The ω-th incomplete
moment evaluated at t > 0 is defined as

µ
′
ω(t) =

∫ t

0
xω f (x)dx.

Using the series expansion of the PDF, this becomes,
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µ
′
ω(t) = k

∞

∑
i=0

∞

∑
j=0

∞

∑
h=0

∞

∑
r=0

(−1)i+h

i!

(
b+ j

j

)(
k+h

h

)
×
(

hb+ r−1
r

)
ah+1bi+1

2iσ2(i+1)

×
∫ t

0
xω+2(i+1)e−

1
2σ2 ( j−1)x2

dx.

Define

ν = ω +2(i+1), λ =
1

2σ2 ( j−1).

Then the integral can be expressed using the lower
incomplete gamma function γ(s,x) as

∫ t

0
xν e−λx2

dx =

{
1
2 λ− ν+1

2 γ
(

ν+1
2 ,λ t2

)
, λ > 0,

tν+1

ν+1 , λ = 0.

Since λ > 0 requires j ≥ 2, the summation over j
starts from 2 to ensure convergence. Hence, the
incomplete moment is

µ
′
ω(t) = k

∞

∑
i=0

∞

∑
j=2

∞

∑
h=0

∞

∑
r=0

(−1)i+h

i!

(
b+ j

j

)(
k+h

h

)

×
(

hb+ r−1
r

)
ah+1bi+1

2i+1σ2(i+1)

(
1

2σ2 ( j−1)
)− ν+1

2

× γ

(
ν +1

2
,

1
2σ2 ( j−1)t2

)
.

(8)

When t → ∞, γ(s,x) → Γ (s) and (8) reduces to the
crude moment formula.

Figure (3) contain the plots of the Mean, Variance,
Skewness and Kurtosis, illustrating the robustness of the
B-SIOR-R distribution. The figures illustrate the behavior
of the B-SIOR-R distribution’s first four moments as
parameters α and θ vary. Figure (a) displays the mean,
showing a generally increasing trend with α and θ ,
indicating that larger values of these parameters lead to
higher average values of the distribution. Figure (b)
depicts the variance, which appears to decrease as both α

and θ increase, suggesting reduced variability in the
distribution for higher parameter values. Figure (c)
presents the skewness, revealing a predominantly positive
skewness across the parameter space, implying that the
distribution is right-tailed. Notably, the skewness appears
to decrease as α increases, particularly for larger values
of θ . Lastly, Figure (d) illustrates the kurtosis, which
consistently exhibits values greater than 3 (the kurtosis of
a normal distribution), indicating that the B-SIOR-R
distribution has heavier tails and a sharper peak than a
normal distribution, suggesting a higher propensity for
extreme values.

3.4 Moment Generating Function

Let X be a real-valued random variable. For any t ∈ R,
the moment generating function (MGF), written as MX (t)

is defined as MX (t) = E
[
eXt
]
=

∞∫
−∞

etx fX (x) dx. Given the

PDF in equation (5), the MGF is

MX (t) = k
∞

∑
i=0

∞

∑
j=0

∞

∑
h=0

∞

∑
r=0

(−1)i+h

i!

(
b+ j

j

)(
k+h

h

)
×
(

hb+ r−1
r

)
ah+1bi+1

2iσ2(i+1)

×
∫

∞

0
x2(i+1)exte−

1
2σ2 ( j−1)x2

dx.

We can further reduce the form since ext =
∞

∑
q=0

xq

q! , so

that

MX (t) = k
∞

∑
i=0

∞

∑
j=0

∞

∑
h=0

∞

∑
r=0

∞

∑
q=0

(−1)i+h

i!q!

(
b+ j

j

)(
k+h

h

)
×
(

hb+ r−1
r

)
ah+1bi+1

2iσ2(i+1)

×
∫

∞

0
x2(i+1)+qe−

1
2σ2 ( j−1)x2

dx.

Let, ν = 2(i+1)+q; λ = 1
2σ2 ( j−1). Then the integral

becomes,

∫
∞

0
xν e−λx2

dx =

{
1
2 λ− ν+1

2 Γ
(

ν+1
2

)
, if λ > 0

∞, if λ ≤ 0.

So we must restrict the index j ≥ 2 to ensure λ > 0.

MX (t) = k
∞

∑
i=0

∞

∑
j=2

∞

∑
h=0

∞

∑
r=0

∞

∑
q=0

(−1)i+h

i!q!

(
b+ j

j

)(
k+h

h

)

×
(

hb+ r−1
r

)
ah+1bi+1

2i+1σ2(i+1) tq
(

1
2σ2 ( j−1)

)− 2(i+1)+q+1
2

×Γ

(
2(i+1)+q+1

2

)
.

(9)

3.5 Mean Residual Life Function

The mean residual life (MRL) function at time t is defined
as:
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Fig. 3: Plots of (a) Mean, (b) Variance, (c) Skewness and (d) Kurtosis of B-SIOR-R distribution

m(t) = E[X − t | X > t]

=
1

1−F(t)

∫
∞

t
(1−F(x))dx =

1

1−

(
1+a

[
e

t2
2σ2 −1

]−b
)−k

×
∫

∞

t

1−

(
1+a

[
e

x2

2σ2 −1
]−b
)−k

dx.

Using binomial expansion identities namely;

(1 + x)−n =
∞

∑
i=0

(−1)i
(n+i−1

i

)
xi and

(x−1)−n =
∞

∑
j=0

(n+ j−1
j

)
x j, then

m(t) =
1

1−

(
1+a

[
e

t2
2σ2 −1

]−b
)−k

×
∫

∞

t

[
1−

∞

∑
i=0

∞

∑
j=0

(−1)i
(

k+ i−1
i

)

×
(

ib+ j−1
j

)
aie

jx2

2σ2

]
dx.

(10)
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Equation (10) is completely resolved by numerically
computation.

3.6 Order Statistic

Let Xr:n denote the rth order statistic in a random sample
of size n from a continuous distribution, then the PDF of
Xr:n is:

fXr:n(x) =
n!

(r−1)!(n− r)!
[F(x)]r−1 [1−F(x)]n−r f (x).

Using equations (3) and (4)

fXr:n(x) =
n!

(r−1)!(n− r)!

(1+a
(

e
x2

2σ2 −1
)−b

)−k
r−1

×

1−

(
1+a

(
e

x2

2σ2 −1
)−b

)−k
n−r

abk x
σ2 e−

bx2

2σ2

×
(

1− e−
x2

2σ2

)−b−1
(

1+a
(

e
x2

2σ2 −1
)−b

)−k−1

.

Using the same set of binomial identities already stated
in subsection 2.1,

fXr:n(x) =
n!

(r−1)!(n− r)!
abk x
σ2

∞

∑
i=0

∞

∑
j=0

(−1)i

×
(

k(r−1)+ i−1
i

)(
ib+ j−1

j

)n−r

∑
l=0

×
∞

∑
m=0

∞

∑
p=0

∞

∑
q=0

(−1)l+m+q
(

n− r
l

)(
lk+m−1

m

)
×
(

mb+ p−1
p

)(
b+q

q

)
∞

∑
s=0

∞

∑
u=0

(−1)s
(

k+ s
s

)
×
(

sb+u−1
u

)
ai+m+se−

1
2σ2 (b+q− j−p−u)x2

.

(11)

The smallest and largest PDF of the rth order statistic is
obtained when r = 1 and r = n respectively.

3.7 Entropy

Entropy is the amount of information that is contained in
an observation X . Higher entropy implies greater
uncertainty or wider spread of the distribution while
lower entropy implies less uncertainty or concentrated
distribution. For a continuous random variable, the
measure of Rény entropy is

H(X) =
1

1−q
log
(∫

∞

−∞

f q(x) dx
)
,

where q ̸= 1 and q > 0. Therefore, using the PDF of the
B-SIOR-R distribution,

H(X) =
1

1−q
log

{∫
∞

0

(
abk
σ2

)q(
1− e−

x2

2σ2

)−q(b+1)

xqe−
qbx2

2σ2

[
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(
e
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]−q(k+1)

dx

}

=
1

1−q
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σ2

)q ∞

∑
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∞

∑
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∞

∑
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(−1)i+ j
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(
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)(
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j

)
×
(

jb+w−1
w

)
a j
∫

∞

0
xqe−

1
2σ2 (qb+i−w)x2

dx

}
.

Let, m = q and λ = 1
2σ2 (qb + i − w), then;

∞∫
0

xqe−
1

2σ2 (qb+i−w)x2
dx =

1
2

(
1

2σ2 (qb+ i−w)
)− q+1

2
Γ

(
q+1

2

)
.

Substituting this back gives

H(X) =
1

1−q
log

{(
abk
σ2

)q 1
2

Γ

(
q+1

2

)
×

∞

∑
i=0

∞

∑
j=0

∞

∑
w=0

(−1)i+ j
(

q(b+1)+ i−1
i

)
×
(

q(k+1)+ j−1
j

)(
jb+w−1

w

)

×a j
(

1
2σ2 (qb+ i−w)

)− q+1
2
}
.

(12)

3.8 Extropy

Extropy is a complementary measure to entropy,
quantifying the uncertainty of a random variable from a
different perspective. For a continuous random variable X
with PDF f (x), the extropy is defined as

J(X) =−1
2

∫
∞

−∞

f 2(x)dx.

Using the PDF of the B-SIOR-R distribution, we have
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J(X) =−1
2

∫
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[
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σ2 xe−
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(
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dx.

Expanding the negative powers using binomial and
multinomial series expansions yields

J(X) =−1
2

(
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where the integral can be evaluated as∫
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dx =
1
2

λ
− 3

2 Γ

(
3
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)
, λ > 0,

with λ = 1
2σ2 (2b+ i−w).

Substituting back, the extropy simplifies to

J(X) =−1
4
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)2

Γ

(
3
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)
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∑
i=0
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∑
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1
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)− 3
2
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(13)

This provides a closed-form expression for the extropy
of the B-SIOR-R distribution. The series converges under
suitable parameter conditions.

4 Parameter Estimation

Let x1,x2, . . . ,xn be a random sample from the B-SIOR-
R distribution with PDF defined in equation (4), then the
likelihood function [35,36,37,38,39,40] is given by

L(a,b,k,σ) =
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∏
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bx2
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.

The log-likelihood is expressed as
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∑
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∑
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∂k = 0, then k̂ =
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Setting ∂ℓ
∂a = 0, ∂ℓ

∂b = 0 and ∂ℓ
∂σ

= 0 lead to non-closed
functional form requiring numerical computation
technique to achieve convergence.

© 2026 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


78 O. J. Obulezi et al.: Burr III scaled inverse

5 GASP design under the B-SIOR-R Model

The group acceptance sampling procedure (GASP) is
designed to optimize the use of time and resources by
reducing the number of required tests through an efficient
sampling methodology. Prior to the acceptance or
rejection of a lot, specific quality control tests are carried
out under various sampling schemes.

This section presents an illustrative example of a
GASP assuming that the lifetime of an item follows the
B-SIOR-R distribution. The relevant distribution
parameters include a, k, and b, with the CDF defined in
equation (3). Randomized statistical methods are
employed to evaluate the product’s performance and
reliability, offering valuable insights for quality
assurance.

The GASP framework is structured to maximize the
reliability assessment of the product, and involves the
following key steps:

(a) Select a total of n items at random and divide them into
g groups of r items each. This implies n = r×g, which
is a fixed requirement.

(b) Determine the test duration t0, and the acceptance
number m, which serves as the threshold for allowable
failures per group.

(c) Conduct the experiment simultaneously across all g
groups, and observe the number of failures in each
group.

(d) Accept the lot if each group records no more than m
failures.

(e) Reject the lot immediately and entirely if any group
exceeds m failures.

For a fixed group size r, the proposed GASP is fully
specified by the design parameters g and m. The test
termination time t0 is determined as t0 = a1µ0, where a1
is a predetermined constant and µ0 is the specified or
expected median lifetime.

The probability of accepting the lot under this
sampling plan is given by:

Paccept(p) =

[
µ

∑
i=0

(
r
i

)
pi(1− p)r−i

]g

,

where p denotes the probability that a single item fails
before time t0.

The expression for the median lifetime of the B-SIOR-
R distribution is provided in equation (14), while its CDF
is given in equation (3). Let the median lifetime of an item
which assumes the B-SIOR-R model be

µ = σ

√√√√√√2ln

1+

 a

1−
( 1

u

) 1
k

 1
b
 (14)

Then suppose we let

w =

√√√√√√2ln

1+

 a

1−
( 1

u

) 1
k

 1
b
.

w is defined at u = 0.5, which represents the median
lifetime. Hence

w =

√√√√2ln

{
1+
(

a

1−2
1
k

) 1
b
}
.

This implies that w = µ

σ
and t0 = a1 × µ0. If these are

replaced in the CDF in equation (3), then the probability
of failure of an item is expressed as

p =

1+a

(
e
(a1×w)2

2(r2)
2 −1

)−b
−k

,

where r2 = µ

µ0
. For given values of a, k, and b, the

probability p can be computed when the parameters a1
and r2 are specified, where r2 = µ

µ0
. The two failure

probabilities considered are denoted by p1 and p2, which
correspond to the consumer and producer risks,
respectively. To determine the design parameters g and m
for a given quality level and specified risks, the following
optimization problem is formulated:

Minimize the Average Sample Number (ASN): n= r×
g, subject to

Paccept(p1 | µ

µ0
= r1) =

[
m

∑
i=0

(
r
i

)
pi

1(1− p1)
r−i

]g

≤ β ,

(15)

Paccept(p2 | µ

µ0
= r2) =

[
m

∑
i=0

(
r
i

)
pi

2(1− p2)
r−i

]g

≥ 1−α.

(16)
Here, r1 and r2 denote the mean ratios associated with

the consumer and producer risks, respectively. The failure
probabilities p1 and p2 are evaluated within the acceptance
probability functions Paccept in Equations (15) and (16).

Table (1) presents optimal parameter values for a
Group Acceptance Sampling Plan (GASP) for the
Burr-Scaled Inverse Odd Rayleigh Ratio (B-SIOR-R)
distribution. The lifetime data are modelled using this
distribution with constants: a = 0.25, b = 1.05, and
k = 0.75. The sampling plan is designed for varying
values of:

(a) β ∈ {0.25,0.10,0.05,0.01}: the consumer’s risk,
(b) r2 = µ/µ0 ∈ {2,4,6,8}: the true mean lifetime µ to

the given mean µ0,
(c) r ∈ {5,10}: number of inspection repetitions or

rounds,
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Table 1: GASP under B-SIOR-R at a = 0.25,b = 1.05,k = 0.75 and with minimum g and m

β r2 =
µ

µ0

r = 5 r = 10
a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g m Paccept(p) g m Paccept(p) g m Paccept(p) g m Paccept(p)

0.25

2 24 3 0.96409 8 4 0.956429 5 4 0.968175 3 7 0.984427
4 2 1 0.959834 1 2 0.979715 2 2 0.980394 1 3 0.963695
6 2 1 0.988054 1 1 0.953286 1 1 0.975199 1 2 0.967607
8 2 1 0.995054 1 1 0.979711 1 1 0.989435 1 2 0.990148

0.10

2 414 4 0.980951 0 4 0 22 5 0.982335 5 7 0.974181
4 9 2 0.991201 2 2 0.959841 2 2 0.980394 1 3 0.963695
6 3 1 0.982134 1 1 0.953286 1 1 0.975199 1 2 0.967607
8 3 1 0.99259 1 1 0.979711 1 1 0.989435 1 2 0.990148

0.05

2 538 4 0.975316 0 4 0 29 5 0.97678 7 7 0.96404
4 11 2 0.989257 2 2 0.959841 3 2 0.970735 1 3 0.963695
6 4 1 0.97625 1 1 0.953286 2 1 0.951013 1 2 0.967607
8 4 1 0.990133 1 1 0.979711 2 1 0.978982 1 2 0.990148

0.01

2 827 4 0.962309 0 4 0 44 5 0.964982 28 8 0.983507
4 17 2 0.983445 7 3 0.98939 4 2 0.961172 2 4 0.987146
6 6 1 0.964587 3 2 0.989328 2 1 0.951013 1 2 0.967607
8 6 1 0.985236 2 1 0.959834 2 1 0.978982 1 2 0.990148

(d) a1 ∈ {0.5,1}: shape parameter of the underlying prior
distribution.

For every setting of the parameters, the GASP design
is represented as a triplet (g,m,Paccept(p)), where:

g = number of groups to be inspected,
m = number of items in each group, Paccept(p) =

probability of accepting a lot when the true defect level is p.
The values of g and m are selected so that the

acceptance probability satisfies the constraint:

Paccept(p)≥ 1−β ,

where p is the ratio of nonconforming units in the lot.
Following are the observation and trend;

(i) For any β and a1, increasing the mean ratio r2 (i.e.,
higher quality lots) will give smaller g and m, with
lower sampling requirements more reliably.

(ii) For smaller β (more risk-averse consumers), the values
of g and/or m are higher, imposing stricter inspection
in a way that maintains the acceptance probability at
the preferred level.

(iii) Higher values of the repetition factor r or the shape
parameter a1 may produce more frugal sampling plans
(lower g or m), although this is not a purely monotonic
pattern in all cases.

(iv) g = 0 values are invalid or nonpractical sampling
plans, possibly implying automatic rejection or
impossible settings given current conditions.

Figure 4 is the Operating Characteristic (OC) curve for
a = 0.25,b = 1.05,k = 0.75. Panel 4a is when r = 5 and

a1 = 0.5, panel 4b is when r = 5 and a1 = 1, panel 4c is
when r = 10 and a1 = 0.5, panel 4d is when r = 10 and
a1 = 1.

Table (2) displays the optimal designs for a GASP
under B-SIOR-R distribution when the distributional
parameters are fixed at a = 1.75, b = 0.25, and k = 2.75.
Each row of the table corresponds to a specific set of:

(a) β ∈ {0.25,0.10,0.05,0.01}: the consumer’s risk (Type
II error),

(b) r2 = µ/µ0 ∈ {2,4,6,8}: the ratio of the true mean
lifetime µ to the nominal mean µ0,

(c) r ∈ {5,10}: number of inspection repetitions (e.g.,
time units or stages),

(d) a1 ∈ {0.5,1}: shape parameter for the sampling model.

For each configuration, the optimal GASP is designated by
the triplet (g,m,Paccept(p)), where:

g = number of groups selected for inspection,
m = number of items inspected in each group,
Paccept(p) =
probability of accepting the lot at true defect proportion p.

Design parameters g and m are chosen to minimize the
cost of sampling (i.e., make g and m as small as possible)
subject to the constraint that

Paccept(p)≥ 1−β .

The following are the key results from the outcome;

(i) As r2 increases (i.e., the actual mean lifetime
improves), both g and m go down, showing the
effectiveness of GASP for good environments.
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Fig. 4: OC Curves B-SIOR-R distribution

(ii) Small β (e.g., 0.01) means stricter consumer
protection, which usually requires a larger sample size
g or m in order to obtain acceptable Paccept.

(iii) A degenerate case of g = 0 and Paccept = 0 indicates
infeasibility — i.e., such plans are non-operational or
lead to automatic rejection due to excessive stringency
under a given β .

(iv) As r increases from 5 to 10, fewer groups are
sometimes needed for the same or better acceptance
probability — especially when a1 = 1. This means
that more inspection repetition improves lot
discriminability.

(v) Shape parameter a1 influences plan optimality: for
instance, with a1 = 1, g is minimized more than with

a1 = 0.5, which means that this shape parameter
enhances sampling efficiency under the B-SIOR-R
model.

For instance, for β = 0.05, r2 = 6, r = 10, and a1 = 1, the
optimal plan is (g,m,Paccept) = (1,1,0.958898), i.e.,
inspecting 1 group of 1 item, with a high acceptance
probability of about 95.89

Figure 5 is the Operating Characteristic (OC) curve for
a = 1.75,b = 0.25,k = 2.75. Panel 5a is when r = 5 and
a1 = 0.5, panel 5b is when r = 5 and a1 = 1, panel 5c is
when r = 10 and a1 = 0.5, panel 5d is when r = 10 and
a1 = 1.
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Table 2: GASP under B-SIOR-R at a = 1.75,b = 0.25,k = 2.75 and with minimum g and m

β r2 =
µ

µ0

r = 5 r = 10
a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g m Paccept(p) g m Paccept(p) g m Paccept(p) g m Paccept(p)

0.25

2 986 3 0.966171 2 2 0.962054 41 3 0.952471 1 3 0.96608
4 72 2 0.990291 1 1 0.975709 10 2 0.985252 1 2 0.987232
6 10 1 0.976991 1 1 0.989808 3 1 0.970484 1 1 0.958898
8 10 1 0.987713 1 1 0.994452 3 1 0.984019 1 1 0.976961

0.10

2 0 4 0 7 3 0.990202 390 4 0.970618 1 3 0.96608
4 120 2 0.983871 2 1 0.952008 16 2 0.976507 1 2 0.987232
6 16 1 0.963441 2 1 0.979719 5 1 0.951293 1 1 0.958898
8 16 1 0.980413 2 1 0.988936 5 1 0.973507 1 1 0.976961

0.05

2 0 4 0 9 3 0.98742 508 4 0.9619 2 4 0.988252
4 155 2 0.979216 2 1 0.952008 21 2 0.96928 1 2 0.987232
6 21 1 0.952293 2 1 0.979719 21 2 0.991408 1 1 0.958898
8 21 1 0.974372 2 1 0.988936 7 1 0.963107 1 1 0.976961

0.01

2 0 4 0 14 3 0.9805 0 4 0 3 4 0.982431
4 239 2 0.968133 5 2 0.993542 31 2 0.954984 2 2 0.974627
6 239 2 0.991365 3 1 0.969734 31 2 0.987343 1 1 0.958898
8 32 1 0.96121 3 1 0.98345 31 2 0.995031 1 1 0.976961

6 Simulations

In this subsection, we access the performance of the
estimated parameters â, b̂, k̂, σ̂ with the aid of a simulation
study (SimS). Using the inverse CDF approach to
generate random numbers from the BSIORR distribution,
the SimS procedure was carried out. We choose an
adequate random sample from the B-SIOR-R distribution
for the SimS. The following are two sets of parameters for
running the SimS.

Set 1: a = 0.5,b = 3.2,k = 1.5,σ = 1
Set 2: a = 0.1,b = 2.5,k = 1,σ = 1

The chosen parameters in the simulation section need
to be assessed so that they can determine how those
specific values will evaluate the expected performance of
the B-SIOR-R distribution. The choice of the parameter
values are based on the following reasons;

i. To ensure a variety of hazard function Shapes, such
as increasing, decreasing, and bathtub-shaped hazard
functions.

ii. The parameter values closely approach real-world
distributions seen in reliability engineering, survival
analysis, and failure time modeling.

iii. Choosing intermediate values guarantees that the
distribution has a realistic tail behavior while avoiding
severe skewness or computational instability.

iv. To further validate these decisions, a sensitivity
analysis was conducted by adjusting one parameter at
a time to see how MLE performs under different
scenarios. This proved the estimating method’s
robustness over a wide range of parameter values.

Furthermore, the evaluation criteria namely Bias,
Absolute Bias and Mean Square Error (MSE) were
considered for assessing the performance of the model.
These criteria are respectively computed with the help of
the following expressions:

Bias = 1
1000

1000
∑

i=1
(ŵ − w);

Absolute Bias = 1
1000

1000
∑

i=1
|(ŵ − w)|; and

MSE = 1
1000

1000
∑

i=1
(ŵ−w)2.

The simulation results for the B-SIOR-R model across
varying sample sizes n provide insights into the behavior
of the MLEs, biases, and Mean Squared Errors (MSEs) of
the parameters a, b, k, and σ . The simulation study yielded
the following important findings:

1.As the sample size increases, the estimators exhibit
greater stability and converge more closely to the true
parameter values.

2.The bias and mean square error of the estimators
decrease with larger sample sizes, approaching zero.

1.For both parameter sets, the bias and MSE of all
parameter estimates decrease as the sample size n
increases, illustrating the consistency property of the
MLE. That is,

lim
n→∞

θ̂n = θ in probability,

where θ̂n denotes the MLE based on sample size n and
θ is the true parameter value.
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Fig. 5: OC Curves B-SIOR-R distribution

2.The parameter σ is estimated with relatively low bias
and MSE even for small sample sizes, indicating its
identifiability and stability under the model.

3.For Set 1 (with higher values of a, b, and k), the bias
and MSE are generally larger at small n but reduce
significantly as n increases. For instance, the MSE of
k̂ decreases from 3.84 at n = 25 to about 0.056 at
n = 900.

4.In contrast, Set 2, which has lower parameter values,
exhibits better performance in terms of bias and MSE
for small n, especially for a and k. This suggests that
estimation becomes more challenging for
heavier-tailed configurations, particularly when shape
parameters are large.

5.Across both parameter settings, the bias of â remains
negative as n increases, implying a slight tendency for
underestimation. This asymptotic bias, however,
becomes negligible for large n, consistent with the
regularity conditions of MLE.

6.Overall, the simulation validates the robustness of the
MLE approach for the B-SIOR-R model, with
estimators improving in accuracy and precision as n
grows.

The visual display of above realization is presented in
Figure (6) and Figure (7)
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Table 3: Simulation results of the B-SIOR-R model for two set of parameters with sample sizes n =
25,100,200,300 . . . ,1000

n Parameter Set 1: a = 0.5, b = 3.2, k = 1.5, σ = 1 Set 2: a = 0.1, b = 2.5, k = 1, σ = 1

MLE Bias MSE MLE Bias MSE

25

a 0.661867 0.161867 0.93661126 0.07493826 -0.02506174 0.00974080
b 3.687479 0.4874786 0.98352810 2.94996100 0.44996052 1.16622795
k 2.382346 0.882346 3.84482432 1.55813790 0.55813786 2.19986134
σ 1.080572 0.080572 0.02880335 1.08529500 0.08529506 0.03085520

100

a 0.417977 -0.0820221 0.14335702 0.07720443 -0.02279557 0.00288960
b 3.414659 0.2146586 0.34931348 2.65772100 0.15772148 0.25050533
k 1.873237 0.3732368 1.32025998 1.09717320 0.09717319 0.31042165
σ 1.079085 0.0790854 0.02740497 1.07428700 0.07428677 0.02167872

200

a 0.409475 -0.0905241 0.08253327 0.07572742 -0.02427258 0.00206887
b 3.357426 0.1574262 0.19111856 2.59929000 0.09929046 0.11172344
k 1.650805 0.1508051 0.51490574 1.05334070 0.05334071 0.10625081
σ 1.070995 0.0709954 0.02340118 1.06791800 0.06791759 0.01773813

300

a 0.402478 -0.0975216 0.07182602 0.07921530 -0.02078470 0.00182563
b 3.363094 0.1630941 0.15338601 2.59489500 0.09489550 0.07420603
k 1.550482 0.0504824 0.20100096 1.00937580 0.00937578 0.06079639
σ 1.071210 0.0712100 0.02264084 1.06332800 0.06332791 0.01524943

400

a 0.403584 -0.0964159 0.06399571 0.07894196 -0.02105804 0.00163542
b 3.360333 0.1603326 0.13397941 2.59109200 0.09109225 0.06051371
k 1.513393 0.0133931 0.15245505 1.00294390 0.00294393 0.03804186
σ 1.068049 0.0680494 0.01986014 1.05888400 0.05888351 0.01406054

500

a 0.391021 -0.1089785 0.06058656 0.07988722 -0.02011278 0.00151815
b 3.334710 0.1347105 0.11931137 2.57831100 0.07831146 0.05156559
k 1.523852 0.0238519 0.11990186 0.99710610 -0.00289389 0.03199950
σ 1.067113 0.0671133 0.01910197 1.05680300 0.05680283 0.01330671

600

a 0.395594 -0.1044057 0.05871807 0.08158079 -0.01841921 0.00135500
b 3.346242 0.1462423 0.10712219 2.56666100 0.06666085 0.04479558
k 1.491816 -0.0081837 0.09480632 0.99927490 -0.00072510 0.02825301
σ 1.067420 0.0674198 0.01861448 1.05120300 0.05120345 0.01131895

700

a 0.399929 -0.1000709 0.05430074 0.08273831 -0.01726169 0.00121801
b 3.348320 0.1483203 0.10887423 2.56394300 0.06394332 0.03946674
k 1.481770 -0.0182299 0.07424617 0.99232670 -0.00767330 0.02295891
σ 1.064290 0.0642897 0.01778879 1.04699300 0.04699281 0.01001685

800

a 0.393559 -0.1064404 0.05401443 0.08348158 -0.01651842 0.00109950
b 3.343971 0.1439714 0.09719068 2.55605700 0.05605711 0.03486790
k 1.483813 -0.0161871 0.06891458 1.00105760 0.00105760 0.02067486
σ 1.064466 0.0644664 0.01708551 1.04215500 0.04215467 0.00833130

900

a 0.387923 -0.1120763 0.05287167 0.08327538 -0.01672462 0.00111471
b 3.338722 0.1387223 0.09415482 2.55969100 0.05969097 0.03184306
k 1.482334 -0.0176662 0.05607478 0.99712851 -0.00287154 0.01839503
σ 1.065703 0.0657032 0.01741942 1.04308300 0.04308289 0.00873949

1000

a 0.389573 -0.1104268 0.05235272 0.08260628 -0.01739372 0.00118446
b 3.338444 0.1384444 0.09206825 2.55967700 0.05967745 0.03034334
k 1.480102 -0.0198976 0.05618226 0.99107770 -0.00892229 0.01698761
σ 1.064938 0.0649376 0.01711560 1.04683600 0.04683634 0.00927512

7 Applications

In Table (4), data on clean-up-gradient monitoring wells
(mg/L) are presented. This data is related to groundwater
contaminants measurements taken to monitor and assess
the effectiveness of environmental cleanup efforts [4].

Table (5) represent gauge length measurements (in
mm) for a sample of 74 items, each nominally 20 mm in
length. It was first analyzed by [5].

Table (6) contain mortality rate due to HIV/AIDS in
Germany from year 2000 to 2020 and it is accessed from
https://platform.who.int/mortality/themes/theme-
details/topics/indicator-groups/indicator-group-
details/MDB/hiv-aids.

Table (7) represents weekly death rate due to COVID-
19 from 22/3/2020 to 20/12/2020 in Dominica, accessed
from https://data.who.int/dashboards/covid19/data?n=c .

Table (8) contains the survival rates of COVID-19
patients in Spain from 3 March to 7 May 2020 studied by
[6].

Table (9) shows the descriptive statistics for the five
datasets that were employed to investigate this research.
The Ground Water dataset shows extreme variability, as
reflected in its large range of 7.9, large standard deviation
of 1.95, and a highly right-skewed distribution with
skewness of 1.60 and kurtosis of 5.01, reflecting heavy
tails and a number of outliers. On the other hand, the data
of Gauge Measurement appear symmetrical and steadier,
as indicated by near-zero skewness of -0.15, moderate
spread with standard deviation of 0.49, and no outliers
that were identified. HIV/AIDS Death Rate data are rather
homogeneous with minor interquartile range of 0.1590,
low standard deviation of 0.1090, and mild positive
skewness, indicating minimal dispersion and relatively
central distribution.
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(a) (b)

(c) (d)

Fig. 6: The visual display for the result of simulation under set 1

Table 4: Groundwater contaminants measurements

5.1 1.2 1.3 0.6 0.5 2.4 0.5 1.1 8 0.8 0.4 0.6 0.9 0.4 2 0.5 5.3
3.2 2.7 2.9 2.5 2.3 1 0.2 0.1 0.1 1.8 0.9 2 4 6.8 1.2 0.4 0.2

Table 5: Gauge length measurements (in mm) for a sample of 74 items

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006
2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274
2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535
2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.770 2.773
2.800 2.809 2.818 2.821 2.848 2.880 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

Table 6: Mortality rate due to HIV/AIDS in Germany

0.70570244 0.65946256 0.62801346 0.6143952 0.61453596 0.59540885 0.61190438
0.56040019 0.53945593 0.52641369 0.55652406 0.56615856 0.50050448 0.49723726
0.47911586 0.3270769 0.34298934 0.35461942 0.37625366 0.41652161 0.45295061

The COVID-19 Death Rate values are skewed to the
right (skewness = 1.08) with low values of central
tendency and a very small standard deviation of 0.0136,
but there are three outliers which show some

abnormalities in deaths by region or time. On the other
hand, the COVID-19 Survival Rate is mildly skewed to
the left (skewness = -0.70) with moderate spread and no
outliers apparent, which shows a smoother trend in
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(a) (b)

(c) (d)

Fig. 7: The visual display for the result of simulation under set 2

Table 7: Weekly death rate due to COVID-19 in Dominica

0.029850746 0.035363458 0.05292172 0.051236749 0.053061224 0.035197989
0.032082324 0.025607639 0.01929982 0.012975779 0.016090105 0.016615654
0.012140954 0.024329382 0.01301384 0.012219227 0.013564214 0.010826889
0.008958089 0.010932598 0.016161891 0.02201862 0.023125997 0.037598736
0.033069307 0.02618165 0.019748264 0.015044519 0.011788481 0.009540117
0.009618688 0.008082768 0.008333333 0.006851922 0.005307263 0.005720572
0.004095843 0.003398641 0.002529511 0.004015331

Table 8: Survival rates of COVID-19 patients in Spain

0.6670 0.5000 0.5000 0.4286 0.7500 0.6531 0.5161 0.7895 0.7689 0.6873 0.5200
0.7251 0.6375 0.6078 0.6289 0.5712 0.5923 0.6061 0.5924 0.5921 0.5592 0.5954
0.6164 0.6455 0.6725 0.6838 0.6850 0.6947 0.7210 0.7315 0.7412 0.7508 0.7519
0.7547 0.7645 0.7715 0.7759 0.7807 0.7838 0.7847 0.7871 0.7902 0.7934 0.7913
0.7962 0.7971 0.7977 0.8007 0.8038 0.8289 0.8322 0.8354 0.8371 0.8387 0.8456
0.8490 0.8535 0.8547 0.8564 0.8580 0.8604 0.8628 0.6586 0.7070 0.7963 0.8516

survival rates. Overall, while distributions vary across
datasets, the shape characteristics such as skewness and
kurtosis provide us with hints on their underlying shapes,
with Ground Water data being most heterogeneous and
HIV/AIDS Death Rate and Survival Rate datasets being
more homogeneous and symmetric.

Figures (8-13), represent the box in violin plot, density
on histogram, empirical cum B-SIOR-R CDF, empirical
cum B-SIOR-R survival function, TTT plot, PP plot and
QQ plot for the five different datasets. The boxplots depict
that there are outliers in groundwater and COVID-19 data.
All the TTT plots show increasing failure rate.
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Table 9: Basic Statistics for the Data sets

Data n Q1 Q3 IQR Outlier Mean Median Var SD Range Skewness Kurtosis

Ground Water 34 0.5 2.4750 1.9750 8, 6.8 1.8794 1.1500 3.8126 1.9526 7.9000 1.6037 5.0054
Gauge Measurement 74 2.1498 2.8158 0.6660 - 2.4773 2.5125 0.2378 0.4877 2.2730 -0.1542 2.9512
HIV/AIDs Death Rate 21 0.4530 0.6119 0.1590 - 0.5203 0.5395 0.0119 0.1090 0.3786 0.1590 2.1101

COVID-19 Death Rate 40 0.0094 0.0258 0.0164
0.0529
0.0512
0.0531

0.0190 0.0143 0.0002 0.0136 0.0505 1.0777 3.4169

COVID-19 Survival Rate 66 0.6474 0.7976 0.1502 - 0.7240 0.7533 0.0118 0.1086 0.4342 -0.7049 2.6021

Ground Water Gauge Measurement HIV/AIDS Mortality

COVID−19 Mortality COVID−19 Survival

Fig. 8: Boxplot superimposed on Violin Plots

Other related distributions are juxtaposed to with the
proposed B-SIOR-R model. The models are
Kumaraswamy bell-rayleigh (KwBR) distribution by [7],
Rayleigh distribution by [2], type-I heavy-tailed rayleigh
(TIHTR) distribution by [8], gamma distribution by [9],
Weibull distribution by [10], Gumbel distribution by [11],
and log-normal (Lnorm) distribution by [12].

Based on Table (10), the performance of certain
statistical distributions was compared across five datasets:
Groundwater Measurement, Gauge Length Measurement,
HIV/AIDS Mortality, COVID-19 Mortality, and
COVID-19 Survival. The metrics used for evaluation are
log-likelihood (LL), Akaike Information Criterion (AIC),
Corrected Akaike Information Criterion (CAIC),
Bayesian Information Criterion (BIC), Hannan–Quinn
Information Criterion (HQIC), Anderson–Darling (A),
Cramér–von Mises (W ), Kolmogorov–Smirnov (KS)
statistic, and the corresponding p-value.

In most data sets, KwBR possessed the greatest
log-likelihood and lowest information criteria values,
which is very good goodness of fit. However, it always
produced extremely low p-values (often 2.2 × 10−16),
which is indicative of overfitting or poor fit based on the
KS test. For instance, with the Groundwater Measurement
data, KwBR possessed the best AIC value of −199.92,
yet its KS p-value of 2.2 × 10−16 is statistically
negligible.

In contrast, the B-SIOR-R distribution yielded
alternative information criteria values along with
consistently high p-values across all datasets—0.9900,
0.9543, 0.9965, 0.9966, and 0.3105—displayed its
statistical sufficiency and reliability both on
likelihood-based and non-parametric criteria. To be
precise, in the COVID-19 Mortality and HIV/AIDS
Mortality datasets, not only did B-SIOR-R yield low AIC
values (−240.94 and −27.45, respectively), but it also
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Fig. 9: Density superimposed on Histogram
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Fig. 10: Empirical with B-SIOR-R CDF
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Fig. 11: Empirical with B-SIOR-R Survival Functions
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Fig. 12: TTT plots
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Fig. 13: PP plots

outperformed most of its competitors in goodness-of-fit
tests.

Old-fashioned distributions like Weibull, Gamma, and
Log-normal generally worked quite well with a
reasonable balance between interpretability and quality of
fit. For example, on the Gauge Length Measurement
dataset, the Weibull distribution had an AIC of 107.07
and KS p-value of 0.8888, which indicates a reasonable
fit.

Briefly, while the best likelihood-based measures are
provided by KwBR, its worst KS test is a sign of a poorer
practical fit. B-SIOR-R is a close rival with low
information criteria combined with high performance on
tests of distributions, thereby being statistical precise and
practically relevant across different data contexts.

The results in Table (11) are the maximum likelihood
estimates and standard errors of the models fitted to five
datasets. For Groundwater and Gauge Length
measurements, both B-SIOR-R and KwBR models
produced unstable and extreme parameter estimates with
huge standard errors, which may suggest issues of
overparameterization or identifiability. In contrast, the
older models like Weibull and Lognormal produced more
stable estimates with relatively lower standard errors,
reflecting better model goodness of fit. Similarly, for the
HIV/AIDS Mortality and COVID-19 Mortality data sets,
the B-SIOR-R and KwBR models again recorded either
extreme values or undefined standard errors, while the

Weibull, Gumbel, and Lognormal models were more
reliable. Surprisingly, in certain cases, the Lognormal
model had negative scale estimates, which might be
indicative of transformation or estimation issues. In the
case of the COVID-19 Survival data, this pattern existed,
with B-SIOR-R and KwBR having very high uncertainty,
and the Weibull and Lognormal models having more
reasonable estimates. Overall, while B-SIOR-R and
KwBR are flexible, estimation problems limit practical
application, especially compared to the consistency and
stability of the standard distributions.

8 Final Remarks and Future Work

The distribution of B-SIOR-R, as conceived in this
research study, adequately extends the Rayleigh model by
including Burr III scaling and inverse odds ratio
transformation. Together, they offer an extremely elastic
distribution with improved tail flexibility and hazard rate
performance, rectifying some of the weaknesses observed
in conventional Rayleigh-based models. Analytical
derivations of its statistical attributes, such as entropy,
extropy, and mean residual life, reaffirm it as
mathematically tractable. The simulation experiment
confirms the accuracy and consistency of the MLEs,
particularly when the sample size increases. The
B-SIOR-R model under the GASP design also enhances
its usability in quality control and reliability tests. Its
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Table 10: Metrics for Model Performance and Goodness of Fit

Data Distribution LL AIC CAIC BIC HQIC W A KS p-value

Groundwater
Measurement

B-SIOR-R -54.18 116.3569 117.7362 122.4624 118.4391 0.0230 0.1727 0.0756 0.9900
KwBR 85.81 -199.9203 -198.5409 -193.8148 -197.8381 0.2814 1.9492 0.9319 2.2×10−16

R -74.59 151.1833 151.3083 152.7097 151.7038 0.1011 0.6556 0.3799 0.0001
TIHTR -68.13 140.2667 140.6538 143.3194 141.3078 0.0717 0.4647 0.3996 3.848×10−5

Gamma -55.41 114.8263 115.2134 117.8790 115.8674 0.0459 0.2975 0.0973 0.9044
Weibull -55.45 114.8992 115.2863 117.9520 115.9403 0.0463 0.3001 0.0918 0.9366
Gumbel -62.23 128.4557 128.8428 131.5085 129.4968 0.1633 1.0407 0.1569 0.3724
Lnorm -55.20 114.4088 114.7959 117.4615 115.4498 0.0311 0.2361 0.0868 0.9598

Gauge Length
Measurement

B-SIOR-R -52.17 111.8586 112.4383 121.0749 115.5351 0.0403 0.2526 0.0597 0.9543
KwBR 457.16 -986.0855 -985.5058 -976.8692 -982.4090 - - 1.0000 2.2×10−16

R -94.15 190.3016 190.3571 192.6056 191.2207 0.0578 0.3868 0.3393 7.946×10−8

TIHTR -76.51 157.0217 157.1907 161.6299 158.8600 - - 1.3425 2.2×10−16

Gamma -53.17 110.3300 110.4990 114.9381 112.1683 0.0871 0.5718 0.0681 0.8825
Weibull -51.53 107.0681 107.2371 111.6763 108.9064 0.0272 0.2425 0.0675 0.8888
Gumbel -58.59 121.1722 121.3412 125.7803 123.0105 0.2110 1.3639 0.0956 0.5083
Lnorm -54.87 113.7451 113.9141 118.3532 115.5834 0.1297 0.8464 0.0808 0.7196

HIV/AIDs
Mortality

B-SIOR-R 17.7 -27.4517 -24.9517 -23.2736 -26.5449 0.0229 0.1964 0.0823 0.9965
KwBR 161.51 -467.435 -464.935 -463.2569 -466.5283 1.6286 7.8780 1.0000 2.2×10−16

R 5.94 -9.8740 -9.6635 -8.8295 -9.6474 0.0676 0.4480 0.3157 0.0233
TIHTR 10.76 -17.5284 -16.8618 -15.4394 -17.0751 - - 1.6794 2.2×10−16

Gamma 16.69 -29.3856 -28.7189 -27.2965 -28.9322 0.0826 0.5336 0.1280 0.8391
Weibull 17.79 -31.5739 -30.9073 -29.4849 -31.1206 0.0326 0.2473 0.1000 0.9710
Gumbel 15.4 -26.8009 -26.1342 -24.7118 -26.3475 0.1297 0.7978 0.1441 0.7232
Lnorm 16.25 -28.4934 -27.8268 -26.4044 -28.0401 0.1008 0.6366 0.1357 0.7855

COVID-19
Mortality

B-SIOR-R 123.18 -240.9420 -239.7992 -234.1865 -238.4995 0.0226 0.1753 0.0606 0.9966
KwBR 122.92 -235.9403 -236.7974 -231.1847 -235.4977 0.0543 0.3507 0.0958 0.8225
R 119.42 -236.8491 -236.7438 -235.1602 -236.2384 0.0799 0.5112 0.2118 0.0472
TIHTR 121.88 -239.7591 -239.4348 -236.3813 -238.5378 0.0557 0.3589 0.2561 0.0084
Gamma 123.51 -243.0156 -242.6913 -239..6378 -241.7943 0.0346 0.2328 0.0843 0.9157
Weibull 122.97 -241.9478 -241.6235 -238.5701 -240.7266 0.0543 0.3501 0.0955 0.8257
Gumbel 121.26 -238.5247 -238.2004 -235.1470 -237.3034 0.0752 0.4787 0.1110 0.6664
Lnorm 123.32 -242.6429 -242.3185 -239.2651 -241.4216 0.0247 0.2097 0.0565 0.9988

COVID-19
Survival

B-SIOR-R 64.23 -122.3444 -121.6886 -113.5858 -118.8834 0.0809 0.5317 0.1187 0.3105
KwBR 501.73 -1152.3670 -1151.712 -1143.609 -1148.906 4.7935 22.3633 0.9849 2.2×10−16

R -1.19 4.3839 4.4464 6.5735 5.2491 0.2948 1.7345 0.3742 1.883×10−8

TIHTR 16.09 -28.1725 -27.9820 -23.7932 -26.4420 - - 1.2252 2.2×10−16

Gamma 50.68 -97.3529 -97.1624 -92.9736 -95.6224 0.3262 1.9182 0.1554 0.0824
Weibull 57.60 -111.1991 -111.0086 -106.8198 -109.4686 0.1594 0.9663 0.1069 0.4379
Gumbel 43.29 -82.5715 -82.3811 -78.1922 -80.8411 0.4755 2.7832 0.1718 0.0407
Lnorm 49.01 -94.0277 -93.8372 -89.6484 -92.2972 0.3627 2.1315 0.1617 0.0634

good fit for a large number of real data covering
environmental monitoring to epidemiological mortality
and survival data is a confirmation of its generality.

Despite its good performance in some areas, the
B-SIOR-R model and the KwBR model yielded unstable
and outlier parameter estimates with large standard errors
in some datasets like Groundwater and COVID-19
Survival. This instability, as pointed out as potential
issues of overparameterization or identifiability, is
contrary to the stable and more robust estimates of
previous models like Weibull and Lognormal. Generally,
while the B-SIOR-R model is statistically resilient and
flexible, it is limited in application by such estimation
challenges, particularly when compared to the stability of
standard distributions.

This research not only contributes a robust statistical
model to the literature, but also sets the stage for future
research in flexible parametric modeling for censored and
asymmetric data structures.
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