

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/190618

Structural Equation Modeling and Machine Learning Models for Modeling Consumers' Adoption of Cryptocurrencies

Ala'aldin Alrowwad^{1,*}, Evon Abu-Taieh², Suha Afaneh³, Rami S. Alkhawaldeh^{2,4}, Thurasamy Ramayah⁵, Omar Jawabrah⁶, Ra'ed Masa'deh⁷, Hamed S. Albdour⁸, Issam AlHadid⁹, and Sufian Khwaldeh⁹

Received: 12 May 2025, Revised: 16 Aug. 2025, Accepted: 6 Oct. 2025

Published online: 1 Nov. 2025

Abstract: This study examines the adoption of cryptocurrencies in restrictive regulatory environments, focusing on Jordan, and explores the factors influencing adoption using the model evaluates the effects of performance expectancy, effort expectancy, social influence, and facilitating conditions on behavioral intention, alongside trust and multiple risk dimensions (financial, performance, privacy, and security). Data from 395 respondents were evaluated with structural equation modeling (SEM) and seven machine learning models to evaluate proposed hypotheses. The findings reveal that trust significantly drives behavioral intentions, while perceived risks, despite being acknowledged, do not deter adoption. Younger, tech-savvy users were less influenced by effort expectancy, highlighting demographic differences in adoption behavior. The integration of SEM and ML provides both theory-driven insights and predictive accuracy, revealing complementary perspectives on adoption dynamics. The study concludes that building trust, enhancing security and leveraging social influence are critical for wider cryptocurrency adoption, with implications for service providers and policymakers.

Keywords: Cryptocurrency, UTAUT, Trust, Risk, Machine Learning, Structural Equation Modeling

1 Introduction

Cryptocurrencies are a model of P2P electronic cash system suggested in 2008 by Nakamoto [1]. The system depended on both cryptography and blockchain technology to be independent from central banks hence the currency is digital. Such system saves money of banks overhead and time. The system utilizes the backbone of technology today which is the internet. The acceptance of the system was studied by many in different cultures and countries [2], [3], [4], [5], [6], [7], [8], [9], [10]. Still in

Jordan the stance of the Central Bank of Jordan (CBJ) on cryptocurrencies and blockchain technology is not clear. Only one research paper [11] studied the adoption of cryptocurrency by Jordanians which was published in 2022. The global crypto adoption index ranks [12] Jordan 84th globally with index score 0.017 (out of 1) while the same index ranks India as number 1, and USA as number 4 and Nigeria at number 2. Other neighboring countries like the Kingdom of Saudi Arabia ranked 41, UAE ranked 56, Yemen 45 and Egypt 44 all ranked much higher than Jordan. Thus, this research aims to investigate the factors

¹Department of Public Administration, School of Business, The University of Jordan, Amman, Jordan

²Department of Computer Information Systems, Faculty of Information Technology and Systems, The University of Jordan, Agaba,77110, Jordan

³Department of Cybersecurity, Zarqa University, Zarqa, Jordan

⁴Information Systems Department, Sultan Qaboos University, Muscat 123, Oman

⁵School of Management, Universiti Sains Malaysia, Minden, Malaysia

⁶Department of Hotel Management, Faculty of Tourism and Hospitality, The University of Jordan, Aqaba, Jordan

⁷Department of Management Information Systems, School of Business, The University of Jordan, Amman, Jordan

⁸Department of Information Technology, Faculty of King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan

⁹Department of Information Technology, Faculty of Information Technology and Systems, The University of Jordan, Aqaba, Jordan

^{*} Corresponding author e-mail: a.alrowwad@ju.edu.jo

influencing individuals' adoption of cryptocurrencies among the residents of Jordan. Drawing on the Unified Theory of Acceptance and Use of Technology (UTAUT), trust, and perceived risk frameworks, the main objective of this study was to identify and analyze major factors that influence consumers' adoption of cryptocurrencies. This study will examine the influence of performance expectancy, effort expectancy, social influence, and facilitating conditions from the UTAUT model on consumer behavior towards using cryptocurrencies according to trust, in the form of industry trust, vendor trust, and perceived risk, in the form of financial risk, performance risk, privacy risk, and security risk.

2 Literature Review

Nakamoto [1] Introduced a Peer-to-Peer electronic cash system in 2008 and presented the new concept of cryptocurrency. The key characteristics of cryptocurrency include decentralization, digital, cryptography, and blockchain. Hence, cryptocurrency exists in electronic form and operates independently of central banks and governments. Cryptography techniques are used to secure transactions and control the creation of new units in cryptocurrency. Transactions using cryptocurrency is recorded on a public, distributed ledger called blockchain [5], [13], [14], [15]. There are several reasons why people use cryptocurrency: Decentralization and autonomy, hence giving users more control over their financial transactions. Cryptocurrency provides Security by using different Cryptographic techniques to secure transactions and control the creation of new units, making it difficult for hackers to manipulate transactions [9], [13], [16], Further, some cryptocurrencies offer a level of anonymity. allowing users to make transactions without revealing their identities [14]. Also, cryptocurrencies enable fast and borderless transactions, making it easier to send and receive money globally [10]. In addition, most cryptocurrencies have a limited supply, which can help prevent inflation and maintain the value of each unit [17]. Moreover, cryptocurrencies can be highly volatile, which means their value can fluctuate rapidly, potentially leading to high returns [14]. Then cryptocurrencies can provide a diversification opportunity for investors, allowing them to spread their risk across different asset classes. On the other hand, cryptocurrency investments also come with risks, such as volatility, regulatory uncertainty, and security risks [6], [18]. The Technology Acceptance Model (TAM) is considered one of the most frequently implemented frameworks for understanding cryptocurrency adoption. Several studies have confirmed the strong influence of perceived usefulness and ease of use on adoption intentions across different contexts. TAM has been applied to examine the intention to adopt cryptocurrency among Generation Z females in India [19], UAE residents [20], and citizens in Bangladesh [21]. Other TAM-based studies have investigated the intention

to pay with cryptocurrency for tourism services by residents of Lithuania, Latvia, and Estonia [22] and explored Chinese and South Korean travelers' readiness to adopt cryptocurrency payments [23]. Namahoot et al. examined consumers' intention to cryptocurrency platforms in Thailand using TAM, while Shahzad et al. [25] conducted an extensive investigation into the adoption of cryptocurrency among a diverse population in Pakistan, including students, government employees, private sector employees, and business owners.

The Unified Theory of Acceptance and Use of Technology (UTAUT) model [26] has been widely employed to capture the role of performance expectancy, effort expectancy, social influence, and facilitating conditions in cryptocurrency adoption. García-Monleón et al. [27] studied the factors driving the use of cryptocurrencies for value exchange among students and professors in Spain. Bozkurt and Akgül [28] investigated the role of social influence, perceived benefits, and facilitating conditions in shaping the intentions of individual investors in Turkey to adopt cryptocurrencies. Alomari and Abdullah [29] explored the predictors of cryptocurrency adoption among Saudi Arabian public university students. Researchers [30] also examined players' acceptance of cryptocurrency as a payment method in NFT games in Indonesia, while Facebook users' acceptance of cryptocurrency was studied in Hungary [31]. Furthermore, scholars investigated the factors influencing the adoption of cryptocurrencies for financial transactions among residents of Lebanon [32], Malaysia [33] and Spain [34].

The use of UTAUT to study behavioral intention (BI) in the arena of cryptocurrency is seen in the following: In Hungry [35] investigate individuals' behavioral intentions to use cryptocurrencies and identify factors influencing technology adoption cryptocurrency in TAM, UTAUT, and IDT theories. Furthermore [36] studied the same among business travelers in Thailand using TAM, UTAUT. Again [37] studied the same in tourism in South Korea and China using TAM, UTAUT. [38] studied cryptocurrency adoption among tourism in Jeju Island, Korea using UTAUT. Additionally [39] studied metaverse commerce using UTAUT 2 and dual-factor theory. Also [40] studied performance expectancy, social influence, facilitating condition and price value of cryptocurrency in Malaysian. Moreover [41] studied social influence (SI), transparency (TR), price value (PV), traceability (TRA), and attitude (AT) was examined to identify customer satisfaction of cryptocurrency in Malaysian digital market. Similarly [42] studied Blockchain acceptance in the banking and finance sector using UTAUT and Trust. Likewise [43] studied blockchain-based sharing economy systems in Decentralising Airbnb using multigroup analysis (MGA). Researches [18], [44] contributed valuable insights into the complex landscape of cryptocurrency adoption, particularly in Spain. By applying the UTAUT framework and emphasizing the

roles of performance expectancy and facilitating conditions, the authors provide understanding of consumer behavior towards cryptocurrencies. As for the trust and risk constructs many studies integrated trust and risk with UTAUT framework like [2], [3], [4], [5], [6], [7], [8], [9] and [10]. As explained next, Rahardja et al. [6] prove that trust significantly mediates the relationship between perceived benefits and BI, on the other hand, researchers found that perceived risk moderates this relationship negatively. Apaua and Lallie [4] also highlights the significance of trust in online transactions, resonates with the broader context cryptocurrency adoption. Understanding user perceptions of risk and trust is essential for fostering wider acceptance of digital currencies. McKnight and Chervany [7] argue that trust becomes especially critical in high-risk environments. Bulut [2] underscores the importance of consumer confidence in Bitcoin, linking trust to user participation and speculative opportunities. Campino and Yang [5] study the factors influencing the adoption of cryptocurrencies, focusing on perceived risk, trust, and user experience. The researchers argue that perceived risk is a significant barrier to cryptocurrency adoption, as consumers often associate cryptocurrencies with security risks. Financial literacy is also crucial for enhancing users' confidence and decision-making in cryptocurrency. Trust in blockchain-based applications significantly influences consumer intentions to engage cryptocurrencies, aligning with the UTAUT framework. Perceived ease of use is a critical determinant of technology acceptance, and improving user experience through simplified interfaces and better educational resources can significantly enhance the likelihood of cryptocurrency adoption. Social factors also play a significant role in shaping consumer attitudes toward cryptocurrencies, suggesting that social networks can be leveraged to promote cryptocurrency usage. Also Walch [10] stated that Operational risks, including protocol vulnerabilities and scalability issues, further exacerbate perceived risks. On the other hand, users often become desensitized to perceived risks, focusing instead on the potential benefits of cryptocurrency adoption [3]. Huang et al. [44] stated that market volatility and frequent cyberattacks heighten financial risk, potentially deterring users. Legal risks, particularly in countries with restrictive regulatory frameworks like Jordan, amplify concerns about compliance and the absence of investor protections. Yu et al. [8] and Huang et al. [9] claimed that concerns about the security of personal information increased users' security risk, leading to increased apprehension. The only study conducted pertaining to Jordan with cryptocurrency was Almajali et al. [11]. The research examined the factors affecting the adoption of cryptocurrency in Jordan using the extended Theory of Reasoned Action (TRA) model. The research found that the intention to use cryptocurrency adoption in Jordan is positively influenced by several factors, including trust, perceived usefulness, perceived ease of use, and social

influence, along with perceived risk and enjoyment. The literature highlights the importance of trust, perceived risk, and contextual variables in consumer behavior toward cryptocurrencies and provides valuable insights, but several gaps remain. First, limited studies focus on cryptocurrency adoption in countries like Jordan with restrictive regulatory environments. Second, the role of financial literacy in shaping adoption decisions remains underexplored. Also, service providers should foster trust and address perceived risks to enhance user engagement and adoption rates. This study addresses these gaps by applying the UTAUT framework alongside trust and perceived risk constructs to examine cryptocurrency adoption in Jordan. By incorporating structural equation modeling (SEM) and machine learning techniques, this research provides a comprehensive analysis of the factors influencing adoption, offering both theoretical and practical contributions. In this research, the unified theory of acceptance and use of technology (UTAUT) is used as a base theory and extended with perceived trust and perceived risk. Venkatesh et al. [26] identified four primary UTAUT constructs—performance expectancy (PE), effort expectancy (EE), social influence (SI), and facilitating conditions (FC)—as critical predictors of behavioral intention (BI). Performance expectancy, or the perceived benefits of using technology, consistently emerges as a strong determinant of adoption.

3 Theoretical Framework: Model and Hypothesis Development

The UTAUT model depends on the Technology Acceptance Model (TAM) to describe users' interests and attitudes toward technology [45]. The suggested model shown in Figure 1 is based on the UTAUT model in addition to financial risk, legal risk, security risk, operational risk, perceived risk, and perceived trust, as well as four regulating factors including response's Age, Gender, Internet Experience, and Education. The suggested model's hypotheses were developed based on several studies: [1], [2], [4], [6], [7], [8], [8], [9], [11], [12], [14], [16], [18], [19], [20], [21], [22], [23], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39]. In the next section, the hypothesis about UTAUT will be examined and reinforced with literature. Next, the risk and trust, and the related hypothesis will be presented. Finally, the moderating hypothesis will be discussed and reinforced by related research. This section may be divided by subheadings. It should provide a concise and precise description of the experimental results, interpretation, as well as the experimental conclusions that can be drawn.

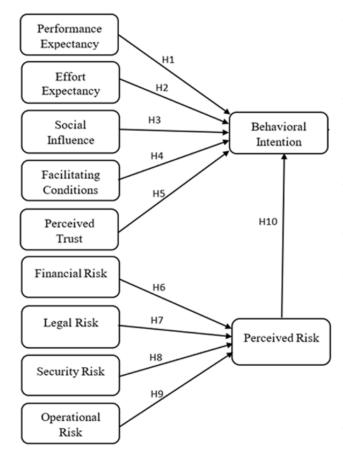


Fig. 1: The suggested research model

3.1 Unified Theory of Acceptance and Use of Technology (UTAUT)

UTAUT was developed and presented by Venkatesh et al. [26]. The UTAUT model has four main ideas used in this research: PE, EE, SI, and FC. The four constructs influence BI, which is a measure of the strength of one's intention to perform a specified behavior as stated by Davis et al. [66]. Venkatesh et al. [26] defined Performance Expectancy (PE) as "the extent to which using a technology will provide benefits in performing certain activities.", researchers [3], [49], [50], [67], [68], [69] investigated the influence of the PE on the BI to invest in the cryptocurrency and found that higher PE leads to a stronger BI to adopt the cryptocurrency. on the other hand, Mahomed [67] claim that Performance expectancy has no significant effect on the behavioral intention to invest in cryptocurrency. Thus, the following hypothesis was developed: H1: Performance Expectancy positively influences Jordanians' Behavioral Intention (BI) to adopt cryptocurrency. According to Venkatesh et al. [26] Effort expectancy (EE) is "the degree of ease associated with the use of the system.", Several research

projects investigated the relation between EE and the adoption of cryptocurrency [3], [49], [50], [67], [68], [69], Gupta et al. [49] stated that "Effort Expectancy is the least influencing factor considered by investors", on the other hand, Other studies have demonstrated that Higher effort expectancy will lead to a stronger behavioral intention to adopt and invest in cryptocurrency [3], [39], [51], [70]. On the other hand, Mahomed [67] claim that Performance expectancy has no significant effect on the behavioral intention to invest in cryptocurrency. Therefore, the following hypothesis was proposed: H2: Effort expectancy (EE) positively influences Jordanians' behavioral intention (BI) to adopt cryptocurrency. Mohd Thas Thaker et al. [52] defined that social influence (SI) as "the extent to which an individual believes that important others believe he or she should use the system.". Mahomed [67] stated that SI is the "Social pressure to use technology". Camilleri [71] and Venkatesh et al. [53] argue that SI is an important factor affecting an individual's decision to use technology where individuals are influenced by relatives, friends, and other important people in society. several scholars have examined the role of Social Influence in increasing individual behavioral intention to invest in cryptocurrency [49], [67], [72]. Gupta et al. [49] and Mahomed [67] argues that Social Influence is the most important factor encouraging investors to invest in cryptocurrency. while Kabir et al. [69] claim that the social influence on the behavioral intention to use blockchain technologies, such as cryptocurrency, is insignificant, which introduces the next hypothesis: H3: Social Influence (SI) positively influences Jordanians' Behavioral Intention (BI) to adopt cryptocurrency. Facilitating conditions (FC) are the extent to which an individual feels that the technological and organizational infrastructure exists to support system utilization [26]. Mahomed [67] stated that (FC) is the "Perception of resources and support available for the usage of the technology". Furthermore, studies have researched this factor, where researchers [3], [49], [50], [67], [68], [69] conclude that better-facilitating conditions will lead to a stronger behavioral intention to adopt cryptocurrency H4: Facilitating Conditions positively influence Jordanians' Behavioral Intention (BI) to adopt cryptocurrency." McKnight and Chervany [7] argue that trust is crucial in situations characterized by risk, uncertainty, and interdependence. Arli et al. [73] stated that the main factors contributing to consumers' cryptocurrencies are knowledge cryptocurrencies, trust in government, and the speed of transactions. researchers [6], [74], [75], [76], [77] provided insights on trust in Cryptocurrency technology, highlighting the importance of technological, social, interpersonal, and institutional trust. Based on the aforementioned, the researchers found that higher perceived trust will result in a higher behavioral intention to use cryptocurrencies. Accordingly, the following hypothesis was suggested: H5: Perceived Trust (PT) positively influences Jordanians' Behavioral Intention

(BI) to adopt cryptocurrency. Cox [54] Stated that "financial risk refers to the extent to which the product value cannot match the cost of payment", Huang et al. [9] and Chen [13] argue that cryptocurrency's value and transaction prices fluctuate significantly, constituting investment and exchange risks. In addition to the possible financial risk related to the repeated attacks on the cryptocurrency by hackers, where over 1.7 billion US Dollar in cryptocurrency was stolen in 2023 [78]. Hence, cryptocurrency investment involves financial risk and potential financial losses for cryptocurrency users [9], [13], [78], [80]. Therefore, the following hypothesis was proposed: H6: Financial risk (FR) positively influences Jordanians' perceived risk of cryptocurrency. Huang et al. [9] defined the Legal risk as "the imperfect legislation and regulations related the cryptocurrency". to Cryptocurrencies are legal and acknowledged in different countries, where they are treated as assets, like in the USA [81], [82], [83]. On the other hand, in many countries such as China, Egypt, Iraq, Bolivia, and Jordan, cryptocurrencies have been banned, and the mining and exchange of cryptocurrencies are prohibited, where it is either illegal or lacks official regulation [9], [81], [83], [84]. moreover, because Cryptocurrencies are digital virtual assets, and currently, no central authority or government agency regulates them, this may involve different risks such as price volatility, trading platform shutdowns, and money laundering [83], [85], [86]. Accordingly, Cryptocurrencies do not provide any exclusive legal protection or compensation, and any investments or transactions are less protected by financial supervisory legislation and rules [9], [87], [88], In cases of loss or fraud, the investor may not be compensated [89], [90]. Hence, stating the following hypothesis: H7: Legal risk (LR) positively influences Jordanians' perceived risk of cryptocurrency. Security risk refers to "the exposure of the personal information of a cryptocurrency user." [9], Liebermann and Stashevsky [55] investigated the security issues related to online virtual transactions, and the researchers found that concerns about the security of personal information increased users' perceived risk and reduced their willingness to use online e-commerce systems. Scholars [9], [15], [56], [91] stated that the confidentiality of using cryptocurrency can't be guaranteed due to several serious security risks, for instance, the wallets' safety, and cyberattacks. These risks also make users perceive greater risk when trading cryptocurrency. Therefore, security risks may lead cryptocurrency adopters to stop using it [8], [17], [91]. Hence, the following hypothesis was proposed: H8: Security risk (SR) positively influences Jordanians' perceived risk of cryptocurrency Huang et al. [9] characterized the operational risk as "the potential vulnerabilities in the protocol and mechanical design of the cryptocurrency". scholars [14], [92], [93] investigated the characteristics of risk management in cryptocurrency operations, researchers stated that "the cryptocurrency system's processes are still under construction", and

claimed its resilience is lacking in long-term assessment and validity, where operator infractions, losses, and failures can increase operational risks. control Operational include cryptocurrency's risks may technological infrastructure failures, scalability challenges, private key management, data and transaction integrity, human operational mistakes, and dependence on third-party services. [9], [44], [56], [57], [94], [95]. Walch [10] found that the operational risks of cryptocurrency governance decentralization challenges, include complexities, software vulnerabilities, and the need for skilled and expert developers to manage the evolving financial market infrastructure. According to the studies mentioned, researchers concluded that higher operational risk increases the perceived risk related to cryptocurrency adoption. Thus, the following hypothesis was anticipated: H9: Operational risk (OR) positively influences Jordanians' perceived risk of cryptocurrency Scholars [18], [96], [97] concluded that perceived risk negatively influences the intention to adopt information technology and systems. Huang et al. [9] stated that "perceived risk can increase users' discontinuance usage intention to cryptocurrency". Huang et al. [9] suggested that perceived risk represents "an individual's belief that using cryptocurrencies might result in unknown, negative, and undesirable results". Where higher perceived risk adversely influences behavioral intention to invest in cryptocurrencies, researchers [9] investigated the four potential risks that affect perceived risk, and found that legal, operational, and financial risks are critical to increase users' perceived risk. Accordingly, hypotheses H6-H9 were suggested, and propose the following hypothesis: H10: Perceived Risk (PR) negatively influences Jordanians' behavioral intention (BI) to adopt cryptocurrency.

4 Data Analysis and Results

In this study, we combined Structural Equation Modeling (SEM) and Machine Learning (ML) to capture both the theoretical and predictive dimensions of cryptocurrency adoption [48], [61], [98]. SEM was selected because it allows us to test complex relationships between constructs, such as Effort expectancy, Perceived trust, and Perceived Risk, while also accounting for measurement errors [99], [100], [101]. These constructs are not directly measurable, so SEM's ability to handle latent variables makes it well suited for validating our conceptual model, which is grounded in established adoption theories. This ensures that our results are both statistically sound and theoretically meaningful. At the same time, we recognized that SEM, while powerful for theory testing, is not primarily designed for high predictive accuracy, especially when the data may involve nonlinear relationships or subtle interactions between variables. This is where ML adds value [102], [103], [104], [105], [106]. By applying ML models, we can uncover hidden

patterns in the data and improve our ability to predict user adoption behavior beyond what the theoretical model specifies. By bringing these two approaches together, we benefit from the strengths of each: SEM provides robust, theory-driven insights, and ML offers flexible, data-driven predictions. This combination reflects a growing trend in information systems research, where blending explanatory and predictive methods produces richer, more actionable findings. This section will present research demography analysis, descriptive statistics, measurement model, and structural model.

4.1 Participants and Procedure

A web-based survey questionnaire was developed in Google Docs in both Arabic and English, a five-point Likert scale employed ranging from strongly disagree (1) to strongly agree (5). The questionnaire was reviewed by a panel of 10 academicians, and their feedback was incorporated to refine the survey's content. The survey link was distributed through groups and pages targeting university students, researchers, and Jordanian residents on the most popular social networking platforms in Jordan; Facebook, LinkedIn, and WhatsApp. Participation was voluntary, with no financial incentives offered. A convenience sampling method was employed in this study. Data from 395 respondents were evaluated with structural equation modeling (SEM) and seven machine learning models to evaluate proposed hypotheses.

4.2 Demographic Analysis

According to Backhaus et al. data table [107], a minimum of 384 application users was required to achieve the optimum statistical sample size for this research. The survey was conducted from 6 February 2025 to 12 April 2025, and after removing the deficient surveys, 395 applications remained. The respondents' demographic data are presented in Table 1. Four variables were included: age, gender, educational level, and internet experience. Age was categorized into five groups, gender into two groups, educational level into five groups, and internet experience into three groups.

As shown, the respondents' demographic data showed that the participants almost equal regarding relatives (i.e., "males and females"), the age of most of them lays between 18 and 28, and the education level of most of them is bachelor's degree, they had good and excellent knowledge of using the internet.

4.3 Descriptive Analysis

To analyze the respondents' answers in the survey, the mean and standard deviation were calculated. The mean

Table 1. Respondents' Demographic Profiles.

Category	Category	Frequency	Percentage
Gender	Male	198	50.1
	Female	197	49.9
Age (Year)	18 to less than 28	367	92.9
	28 to less than 38	13	3.3
	38 to less than 48	12	3.0
	48 to less than 58	3	0.8
	58 and over	0	0.0
Educational level	High school and	17	4.3
	less		
	Diploma	4	1.0
	Bachelor	363	91.9
	Master	11	2.8
	PhD	0	0.0
Internet Experience	Low	17	4.3
	Good	224	56.7
	Excellent	154	39.0

indicates the central tendency of the data, while the standard deviation measures the dispersion, showing the variability in the data [108], [109]. A small standard deviation means values are close to the mean; a large one indicates greater spread. Each item's level was determined using the formula: (5-1)/5 = 0.80, where 1-1.80 = very low, 1.81-2.60 = low, 2.61-3.40 = moderate, 3.41-4.20 = high, and 4.21-5 = very high. The items were then ordered by their means. Table 2 presents the results.

Table 2. Descriptive Statistics

Variable	Mean	Std. Dev.	Kurtosis	Skewness
Behavioral Intention (BI)	3.101	0.919	0.086	-0.326
Effort Expectancy (EE)	3.249	0.882	0.030	-0.420
Facilitating Condition (FC)	3.123	0.820	0.185	-0.407
Financial Risk (FR)	3.493	0.867	0.575	-0.480
Legal Risk (LR)	3.247	0.845	0.213	-0.192
Operational Risk (OR)	3.418	0.840	0.234	-0.377
Performance Expectancy (PE)	3.125	0.933	0.244	-0.349
Perceived Risk (PR)	3.312	0.822	0.212	-0.241
Perceived Trust (PT)	3.002	0.879	-0.091	-0.289
Subjective Influence (SI)	2.776	0.833	-0.177	-0.096
Security Risk (SR)	3.317	0.88.0	0.134	-0.427

4.4 Measurement Model

This research followed the suggestions of Hair et al. [110], Kock [101] and Kock et al. [100] to test the validity using the loadings and the average variance extracted (AVE) and composite reliability for testing the consistency or reliability of the answers. As suggested by Becker et al. [99] the loadings should be greater than 0.7, the AVE should be greater than 0.5 and the CR should be greater than 0.7. As shown in Table 3, all the loadings are greater than 0.7 except for UB4, all the AVE were greater than 0.5 and the CR were all higher than 0.7 thus confirming the items are valid and reliable [111] The discriminant validity was assessed using the HTMT ratio developed by Henseler et al. [112]. Franke and Sarstedt [113] suggested that if the HTMT ratios are lower than 0.85 then the discriminant validity was established. As presented in Table 4, all the HTMT ratios were lower than 0.85, thus confirming that the respondents that they were distinct constructs.

Table 3. Measurement Model

Variable	Items	Loadings	CR	AVE
Behavioral Intention	BI1	0.921	0.953	0.834
	BI2	0.890		
	BI3	0.929		
	BI4	0.913		
Effort Expectancy	EE1	0.828	0.928	0.763
	EE2	0.883		
	EE3	0.883		
	EE4	0.897		
Facilitating Condition	FC1	0.823	0.872	0.631
	FC2	0.780		
	FC3	0.794		
	FC4	0.779		
Financial Risk	FR1	0.887	0.929	0.813
	FR2	0.906		
	FR3	0.911		
Legal Risk	LR1	0.872	0.931	0.772
_	LR2	0.887		
	LR3	0.860		
	LR4	0.894		
Operational Risk	OP1	0.902	0.918	0.788
	OP2	0.892		
	OP3	0.869		
Performance	PE1	0.932	0.944	0.848
Expectancy	PE2	0.928		
	PE3	0.902		
Perceived Risk	PR1	0.920	0.890	0.732
	PR2	0.908		
	PR3	0.725	1	
Perceived Trust	PT1	0.866	0.929	0.767
	PT2	0.874		
	PT3	0.872	7	
	PT4	0.891	7	
Subjective Influence	SI1	0.868	0.923	0.751
_	SI2	0.860		
	SI3	0.870		
	SI4	0.868		
Security Risk	SR1	0.883	0.920	0.794
1	SR2	0.890		
	SR3	0.899	1	

Table 4. Discriminant Validity (HTMT ratio)

Variable	BI	EE	FC	FR	LR	OP	PE	PR	PT	SI	SR
Behavioral Intention (BI)											
Effort Expectancy (EE)	0.511										
Facilitating Condition (FC)	0.628	0.796									
Financial Risk (FR)	0.142	0.280	0.357								
Legal Risk (LR)	0.204	0.204	0.316	0.595							
Operational Risk (OR)	0.246	0.267	0.393	0.690	0.712						
Performance Expectancy (PE)	0.596	0.571	0.609	0.236	0.223	0.237					
Perceived Risk (PR)	0.146	0.218	0.327	0.786	0.600	0.830	0.189				
Perceived Trust (PT)	0.672	0.560	0.674	0.075	0.203	0.124	0.638	0.042			
Subjective Influence (SI)	0.516	0.510	0.645	0.165	0.312	0.238	0.560	0.210	0.549		
Security Risk (SR)	0.103	0.192	0.278	0.652	0.567	0.651	0.131	0.779	0.064	0.196	

Table 5. Hypotheses Testing

Hypothesis	Relationship	Std. Beta	Std. Dev.	t- value	p-value	BCI LL	BCI UL	f2
H1	PE → BI	0.196	0.067	2.921	0.002	0.083	0.303	0.04
H2	EE → BI	0.031	0.062	0.502	0.308	-0.067	0.137	0.00
H3	SI → BI	0.106	0.054	1.980	0.024	0.014	0.192	0.02
H4	FC → BI	0.170	0.063	2.677	0.004	0.061	0.268	0.02
H5	PT → BI	0.342	0.066	5.142	p< .001	0.229	0.449	0.12
H6	FR → PR	0.283	0.051	5.527	p< .001	0.200	0.367	0.12
H7	LR → PR	-0.016	0.050	0.322	0.374	-0.100	0.063	0.00
H8	OP → PR	0.376	0.052	7.280	p< .001	0.292	0.462	0.18
H9	SR → PR	0.288	0.057	5.083	p< .001	0.192	0.379	0.13
H10	PR → BI	0.021	0.056	0.376	0.353	-0.065	0.118	0.00

4.5 Structural Model

The research assessed multivariate skewness and kurtosis, following Cain et al. [114]. The results indicated the data was not multivariate normal, with Mardia's multivariate skewness $\beta = 18.523$, p <.01) and kurtosis ($\beta = 235.215$, p <0.01). As suggested by Becker et al. [99], path quantities were calculated, standard errors, t-values, and p-values for the structural model using a 10,000-sample bias-corrected bootstrapping. Table 5 summarizes the criteria used to test the hypotheses. The \mathbb{R}^2 for Perceived Risk was 0.633, for Intention was 0.482 which indicates that all the predictors together can explain 63.3% of the Perceived Risk, 48.2% of Behavioral Intention. As presented in Table 5, PE ($\beta = 0.196$, p <0.01), SI ($\beta = 0.106$, p <0.05), FC ($\beta = 0.170$, p<0.01) and PT ($\beta =$

Table 6. PLS-Predict

MV	Q ² predict	PLS-SEM_RMSE	IA_RMSE	PLS-IA_RMSE
BI1	0.344	0.823	1.016	-0.193
BI2	0.341	0.779	0.960	-0.181
BI3	0.358	0.857	1.070	-0.213
BI4	0.421	0.751	0.987	-0.236

0.342, p <0.01) were positively related to Behavioral Intention while PR ($\beta = 0.021$, p >0.05) was not significant. Thus, H1, H3, H4, H5 were supported while H2 and H6 were not supported. As for the predictors of PR it shows that FR ($\beta = 0.283$, p < 0.01), OP ($\beta = 0.376$, p <0.01) and SR (β = 0.288, p <0.01) were all positively related to PR while LR ($\beta = -0.016$, p >0.05) was not significant. Thus, H8, H9, and H10 were supported while H7 was not supported.

Finally, predictive power was tested using the PLS-Predict [115] with a 10-fold procedure and as shown in Table 6, all the errors of the PLS model were lower than the benchmark models of AI model thus, one may conclude that the suggested model has a strong predictive power.

5 Machine Learning Analysis

Model 1 is designed to study and investigate the factors the Behavioral Intention cryptocurrency, incorporating six independent features derived from the Unified Theory of Acceptance and Use of Technology (UTAUT) framework, with additional constructs for trust and risk perceptions. The features include Performance Expectancy (PE), which reflects the belief that using cryptocurrency will enhance transactional efficiency and outcomes, and Effort Expectancy (EE), that evaluates the seeming comfort of using cryptocurrency platforms. Social Influence (SI) captures the degree to which individuals believe that significant others expect them to adopt and use cryptocurrency, while Facilitating Conditions (FC) measure the availability of support systems and resources necessary for effective use, such as access to devices and customer service. Perceived Trust (PT) evaluates confidence in the security, transparency, and reliability of cryptocurrency systems, while Perceived Risk (PR) considers the potential for negative outcomes, such as financial loss, privacy breaches, or market volatility. The target variable, Behavioral Intention (BI), represents an individual's willingness or likelihood to adopt cryptocurrency for transactions. By analyzing these features, Model 1 aims to identify the key determinants of BI, providing insights into the drivers and barriers of cryptocurrency adoption. However, the Table 1 presents a comparative analysis of the performance metrics of seven different machine learning models-Linear Regression, k-Nearest Neighbors (kNN), Support Vector Machines (SVM), AdaBoost, Neural Network, Gradient Boosting, Random Forest, and Decision Tree-evaluated using MSE, RMSE, MAE, MAPE, and \mathbb{R}^2 [101], [102], [103], [104], [105]. Among these, Linear Regression emerges as the best-performing model, achieving the lowest error metrics (MSE: 0.472, RMSE: 0.687, MAE: 0.483, and MAPE: 0.196) and the highest \mathbb{R}^2 (0.444), indicating its effectiveness in explaining 44.4% of the variance in the target variable. Both kNN and SVM display comparable performance, with slightly higher error values and an \mathbb{R}^2 of 0.403, making them competitive alternatives. On the other hand, AdaBoost performs moderately well (\mathbb{R}^2 : 0.367), while Gradient Boosting (\mathbb{R}^2 : 0.329) and Neural Networks (\mathbb{R}^2 : 0.360) underperform, potentially due to overfitting or dataset limitations. Random Forest (\mathbb{R}^2 : 0.282) and Decision Tree (\mathbb{R}^2 : 0.003) show poor performance, with Decision Tree demonstrating particularly high error metrics. These results suggest that simpler models like Linear Regression are better suited for this dataset, likely due to the linear relationships between features and the target variable. The relatively low \mathbb{R}^2 values across all models highlight the need for additional features or alternative approaches to improve predictive accuracy. This analysis underscores the importance of balancing model complexity performance when predicting Behavioral Intention.

Table 7. Model- 1 results

Model	MSE	RMSE	MAE	MAPE	R²
Linear Regression	0.472	0.687	0.483	0.196	0.444
kNN	0.507	0.712	0.514	0.207	0.403
SVM	0.507	0.712	0.512	0.224	0.402
AdaBoost	0.537	0.733	0.479	0.203	0.367
Neural Network	0.543	0.737	0.537	0.219	0.360
Gradient Boosting	0.569	0.754	0.499	0.200	0.329
Random Forest	0.609	0.781	0.581	0.259	0.282
Tree	0.845	0.919	0.634	0.244	0.003

Model 2 is designed to predict Perceived Risk (PR) as the target variable by analyzing four key features that

capture the multidimensional nature of risk associated with cryptocurrency usage. Financial Risk represents the potential for monetary loss due to market volatility, investment fluctuations, or value depreciation of cryptocurrencies. Legal Risk reflects uncertainties related to the regulatory and legal status of digital currencies, including concerns about compliance, legal disputes, or potential regulatory changes. Security Risk encompasses fears of cybersecurity threats such as hacking, data breaches, theft of private keys, and other vulnerabilities in cryptocurrency platforms. Operational Risk focuses on the risk of system failures, transaction errors, technical glitches, or delays in processing payments, all of which could disrupt the user experience. Together, these features provide a comprehensive framework for understanding the factors that shape users' perceptions of risk, enabling Model 2 to offer insights into how such concerns influence the adoption of cryptocurrencies and highlight areas where improvements can build user trust. However, Table 2 compares the performance of several machine learning models in predicting the target variable (Perceived Risk) using five evaluation metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the coefficient of determination (\mathbb{R}^2). Among the models, Linear Regression outperforms others, achieving the lowest error values (MSE: 0.254, RMSE: 0.504, MAE: 0.365, and MAPE: 0.123) and the highest \mathbb{R}^2 (0.617), that it explains 61.7% of the difference in Perceived Risk. Support Vector Machines (SVM) also performs well, with slightly higher error metrics (MSE: 0.282, RMSE: 0.531, MAE: 0.388, and MAPE: 0.137) and an \mathbb{R}^2 of 0.576, suggesting it is a competitive alternative. Other models, such as k-Nearest Neighbors (kNN) and Neural Networks, demonstrate moderate performance, with kNN achieving an \mathbb{R}^2 of 0.515 and Neural Networks an \mathbb{R}^2 of 0.495, though both exhibit higher error metrics compared to Linear Regression and SVM. Ensemble models like AdaBoost and Gradient Boosting, along with Random Forest and Decision Tree, perform comparatively poorly, indicated by \mathbb{R}^2 values that are ranging from 0.402 to 0.388 and higher error metrics, likely due to overfitting or the inability to effectively capture the underlying relationships in the data. These results suggest that simpler models, particularly Linear Regression, are more effective for this task, highlighting the importance of model selection in relation to the complexity of the data and the nature of the target variable.

While a variety of machine learning models were implemented to validate and complement our SEM findings, our analysis revealed that Linear Regression outperformed Neural Networks or Gradient Boosting, which are considered more complex alternatives. This result can be attributed to several factors. First, the modest sample size may have constrained the training capacity of high-dimensional models, making them more prone to overfitting. Second, the relationships between

Table 8. Model- 2 results

MSE	RMSE	MAE	MAPE	R²
0.254	0.504	0.365	0.123	0.617
0.282	0.531	0.388	0.137	0.576
0.322	0.567	0.407	0.133	0.515
0.335	0.579	0.433	0.143	0.495
0.394	0.628	0.484	0.157	0.406
0.397	0.630	0.436	0.144	0.402
0.403	0.635	0.472	0.178	0.392
0.406	0.637	0.452	0.147	0.388
	0.254 0.282 0.322 0.335 0.394 0.397 0.403	0.254 0.504 0.282 0.531 0.322 0.567 0.335 0.579 0.394 0.628 0.397 0.630 0.403 0.635	0.254 0.504 0.365 0.282 0.531 0.388 0.322 0.567 0.407 0.335 0.579 0.433 0.394 0.628 0.484 0.397 0.630 0.436 0.403 0.635 0.472	0.254 0.504 0.365 0.123 0.282 0.531 0.388 0.137 0.322 0.567 0.407 0.133 0.335 0.579 0.433 0.143 0.394 0.628 0.484 0.157 0.397 0.630 0.436 0.144 0.403 0.635 0.472 0.178

features and the target variable (Behavioral Intention and Perceived Risk) appear to be largely linear, as evidenced by the superior \mathbb{R}^2 performance of the Linear Regression model (0.444 for BI, 0.617 for PR). Additionally, Linear Regression offers higher interpretability, allowing a clearer understanding of feature contributions. These findings underscore the importance of matching model complexity to the data structure and highlight that advanced models do not always yield better predictive performance, especially when data is limited or linear patterns dominate.

6 Discussion

This section explores the study's findings using the UTAUT model, perceived risk, and trust frameworks. The section highlights theoretical contributions, practical implications, limitations, and recommendations for future research.

6.1 Theoretical Contributions

The results confirm that performance expectancy (PE), social influence (SI), facilitating conditions (FC), and perceived trust (PT) are all highly affect the behavioral intention (BI) to adopt cryptocurrencies. Among these, PT had the highest impact ($\beta = 0.342$, p <0.01), underlining the crucial role of trust, this aligns with prior studies emphasizing that trust is essential in environments involving risk and uncertainty, such as cryptocurrency adoption, where trust serves as a mechanism to counteract users' concerns about fraud, security, and system reliability. Similarly, the results show that the significance of SI ($\beta = 0.106$, p < 0.05) approves the role of social approval in determining user behavior, which agrees with Gupta et al. [49] findings that recommendations from peers and family members influence the adoption of new technologies. Interestingly, effort expectancy (EE) did not significantly affect BI ($\beta = 0.031$, p >0.05), where the

lack of significance might reflect the demographic characteristics of the respondents' sample, which was overwhelmingly young (over 90% under 28) and highly educated. This group is generally more digitally fluent and familiar with navigating technology platforms, including cryptocurrency applications. For these users, ease of use may not represent a barrier to adoption, as they are already comfortable with similar technologies. Thus, effort expectancy loses predictive value when digital comfort is assumed. The findings for perceived risk (PR) are particularly useful. While financial risk (FR), security risk (SR), and operational risk (OR) significantly contributed to PR, legal risk (LR) did not. The insignificant effect of LR (β = -0.016, p >0.05) could be due to the Jordanian's laws and regulations that banned the cryptocurrency where cryptocurrency trading is prohibited under the laws of Jordan. Moreover, PR did not significantly influence BI ($\beta = 0.021$, p >0.05). This suggests that while users recognize the risks associated with cryptocurrencies, these concerns are not enough to deter their intention to adopt. This finding aligns with Arias-Oliva et al. [3] who claimed that users may become desensitized to perceived risks over time. According to SEM and ML results, we found that the two approaches complemented each other well. SEM confirmed our hypothesized relationships, showing which factors in the model had significant effects and in what direction. ML, on the other hand, was less about testing theory and more about making accurate predictions. It not only achieved higher predictive accuracy but also uncovered some nonlinear interactions between predictors that the SEM framework did not explicitly capture. In short, SEM gave us a clear, theory-based picture of how the variables are connected, while ML added a predictive edge and revealed patterns that might otherwise have gone unnoticed. Using both methods together gave us a richer and more well-rounded understanding of cryptocurrency adoption than either could have provided on its own.

6.2 Practical Implications

The study provides several actionable insights for service providers, policymakers, and other stakeholders. The strong influence of PT on BI underscores the importance of building trust in cryptocurrency platforms. Service providers should prioritize transparency, security, and reliability to address user concerns. Measures such as guaranteeing secure transactions, offering fraud prevention mechanisms, and maintaining robust privacy policies can strengthen user trust. Security improvements are especially critical given the significant contribution of SR to PR. Users are concerned about possible breaches or unauthorized access to their personal and financial information, which may reduce their willingness to adopt cryptocurrencies. Companies can alleviate these concerns by investing in advanced encryption technologies and educating users about safe practices. Also, the insignificance of legal risk may be attributed to cryptocurrency's outright ban in Jordan; this regulatory rigidity might desensitize users or exclude them from considering legal concerns in their risk assessment altogether, aligning with the notion of ʻrisk normalization' in forbidden markets. The significant role of SI highlights the value of leveraging social networks and communities. Awareness campaigns can focus on social network influencers and peer recommendations to the perceived social endorsement enhance cryptocurrencies. Additionally, promoting success stories or testimonials from satisfied users can help create a positive social image. While EE was not significant in this study, simplifying the user experience is still essential for reaching less tech-savvy demographics in Jordan. Although legal risk (LR) is considered conceptually critical in restrictive environments like Jordan, LR did not show a significant influence on perceived risk or behavioral intention in our model. This counterintuitive result may reflect the psychological normalization of legal ambiguity, where consumers, aware of the prohibition, mentally discount legal consequences or avoid legal reflection altogether due to the absence of regulatory enforcement. According to the practical implications mentioned, policymakers and other stakeholders should consider controlled regulatory sandboxes to experiment with crypto applications in a legally safe environment. Simultaneously, public campaigns focusing on trust and safety may ease public skepticism without breaching legal constraints.

6.3 Limitations

This study has several limitations. First, the sample is predominantly young and educated, with 92.9% of respondents aged under 28 and 91.9% holding at least a bachelor's degree. These demographics may not represent the broader population, particularly older or less educated individuals who may face different barriers to cryptocurrency adoption. Future studies should consider more diverse samples to provide a holistic understanding. Second, because the cryptocurrencies are prohibited in Jordan, this may have caused respondents, particularly those involved in cryptocurrency transactions, to experience some apprehension and reserved when answering the questionnaire. Third, the study focused on the Jordanian context. While the findings offer valuable insights, they may not be generalizable to countries with different regulatory environments, cultural attitudes, or levels of technological infrastructure. Comparative studies across regions would provide a more comprehensive perspective.

6.4 Future Directions

Based on the findings, several areas for future research emerge. First, exploring the role of financial knowledge in cryptocurrency adoption could provide deeper insights. Users with higher financial knowledge may perceive risks differently or trust cryptocurrencies more readily. Incorporating financial knowledge as a variable in future models could yield valuable results. Second, further investigation into the effects of legal frameworks is needed. While LR was insignificant in this study, its impact might be more pronounced in countries with different regulations. Researchers could explore how varying regulatory environments influence adoption across regions. Lastly, future studies should investigate other potential moderators, such as income levels, cultural differences, or technological infrastructure. Also, the study's sample was skewed toward younger and highly educated individuals (over 90% under 28 years and with a bachelor's degree or higher), which may generalizability to older or less-educated populations. However, this sample profile aligns with national demographics, as about 60% of Jordan's population is under the age of 30 (Jordan Department of Statistics, 2024). Future studies should adopt stratified sampling approaches to ensure the inclusion of older age groups and individuals with more diverse educational and socioeconomic backgrounds. Also, the modest R2 values indicate the need to incorporate variables like financial literacy, income level, and cultural dimensions to better model cryptocurrency adoption behavior. Moreover, due to the legal prohibition of cryptocurrencies in Jordan, participants may have underreported usage or intent, introducing social desirability bias, accordingly, future research could adopt anonymous qualitative methods or indirect questioning to mitigate such effects. Also, future research should examine EE in populations with lower digital literacy, such as older adults or individuals with limited access to technology, to explore whether EE becomes a more salient predictor in those contexts. Furthermore, future research should conduct cross-country comparisons to examine how varying environments influence cryptocurrency adoption. Such comparisons can provide valuable insights into how legal, cultural, and institutional factors interact with individual-level determinants of adoption, thereby enriching the theoretical generalizability and policy relevance of cryptocurrency adoption models. Also, Future research should explore trust multidimensional construct by distinguishing between institutional and interpersonal trust, which can offer deeper insights into how different forms of trust influence adoption under varying regulatory conditions. These factors may provide a richer understanding of how and contextual demographic variables influence cryptocurrency adoption.

7 Conclusions

This study examined the factors influencing the adoption of cryptocurrencies among Jordanians using the UTAUT framework, perceived trust, and perceived risk. The findings reveal several important insights that contribute to both theory and practice. Key predictors of behavioral intention (BI) include performance expectancy (PE), social influence (SI), facilitating conditions (FC), and perceived trust (PT). Among these, PT arose as the most significant factor, highlighting the vital role of trust in driving cryptocurrency adoption. These results align with existing literature, emphasizing that fostering trust in technology is essential, especially in environments characterized by uncertainty. Perceived risk (PR) presented mixed results. While financial, security, and operational risks significantly influenced PR, legal risk did not. Additionally, PR itself did not significantly affect BI, suggesting that users recognize the risks but continue to use cryptocurrencies. This finding contributes to the ongoing debate on how perceived risk shapes technology adoption, particularly in emerging markets. The insignificant effect of effort expectancy (EE) highlights the readiness of the younger, tech-savvy population in Jordan to adopt digital technologies. However, this result may not generalize to older or less experienced groups, underscoring the need for further investigation. The study highlights the importance of building trust, improving security, and leveraging social influence to promote cryptocurrency adoption. Furthermore, legal issues and enhanced user experiences can further address barriers and foster wider acceptance. Despite its contributions, the study has limitations. It focuses on a specific demographic and geographic context, which may limit the generalizability of its findings. Future research should explore diverse populations, regulatory environments, and long-term adoption patterns to build a more cryptocurrency comprehensive understanding of adoption. Also, future research could extend this work by applying the combined SEM-ML approach in different contexts using larger and more diverse samples. This would help validate the generalizability of the findings and explore whether similar patterns hold across cultures, industries, and emerging markets.

Acknowledgement

This research is part of the work conducted by the E-Government Services and UX research group at The University of Jordan. It is a collaborative effort by several group members, whose contributions have been instrumental in the successful completion of this study. Also, We confirm that this research was conducted without any financial support from funding agencies, grants, or institutional sponsorships.

References

- [1] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System." 2008. Accessed: Jun. 14, 2025. Available: https://www.zouantcha.com/blog/bitcoin-whitepaper
- [2] A. BULUT, "Cryptocurrencies in the New Economy," Journal of International Trade, Logistics and Law, vol. 2, no. 4, pp. 45-52, (2018).
- [3] M. Arias-Oliva, J. Pelegrín-Borondo, and G. Matías-Clavero, "Variables Influencing Cryptocurrency Use: A Technology Acceptance Model in Spain," Front. Psychol., vol. 10, p. 475, Mar. 2019, doi: 10.3389/fpsyg.2019.00475.
- [4] R. Apaua and H. S. Lallie, "Measuring User Perceived Security of Mobile Banking Applications," 2022, arXiv. doi: 10.48550/ARXIV.2201.03052.
- [5] J. Campino and S. Yang, "Decoding the cryptocurrency user: An analysis of demographics and sentiments," Heliyon, vol. 10, no. 5, p. e26671, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26671.
- [6] U. Rahardja et al., "Evaluating the Mediating Mechanism of Perceived Trust and Risk toward Cryptocurrency: An Empirical Research," SAGE Open, vol. 13, no. 4, p. 21582440231217854, Oct. 2023, 10.1177/21582440231217854.
- [7] D. Harrison McKnight and N. L. Chervany, "Trust and Distrust Definitions: One Bite at a Time," in Trust in Cyber societies, vol. 2246, R. Falcone, M. Singh, and Y.H. Tan, Eds., in Lecture Notes in Computer Science, vol. 2246., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 27–54.
- [8] Y. Yu, T. Sharma, S. Das, and Y. Wang, "Don't put all your eggs in one basket: How Cryptocurrency Users Choose and Secure Their Wallets," in Proceedings of the CHI Conference on Human Factors in Computing Systems, Honolulu HI USA: ACM, May 2024, pp. 1–17. doi: 10.1145/3613904.3642534.
- [9] C.-K. Huang, N. C.-A. Lee, and W.-C. Chen, "Dilemmatic dual-factor determinants of discontinuous intention in cryptocurrency usage," ITP, vol. 36, no. 2, pp. 564-594, Mar. 2023, doi: 10.1108/ITP-11-2020-0778.
- [10] A. Walch, "The Bitcoin Blockchain as Financial Market Infrastructure: A Consideration of Operational Risk," Legislation and Public Policy, vol. 18, pp. 837-893, 2015.
- [11] D. A. Almajali, R. Masa'Deh, and Z. M. d. Dahalin, "Factors influencing the adoption of Cryptocurrency in Jordan: An application of the extended TRA model," Cogent Social Sciences, vol. 8, no. 1, p. 2103901, Dec. 2022, doi: 10.1080/23311886.2022.2103901.
- [12] Chainalysis Team, "Central and Southern Asia and Oceania (CSAO) Region Leads the World in Terms of Global Cryptocurrency Adoption." chainalysis, Nov. 09, 2024. Accessed: Jun. 14, 2025. Available: https://www.chainalysis.com/blog/2024-global-cryptoadoption-index.
- [13] S. Chen, "Cryptocurrency Financial Risk Analysis Based on Deep Machine Learning," Complexity, vol. 2022, no. 1, p. 2611063, Jan. 2022, doi: 10.1155/2022/2611063.
- [14] I. Sherifi, O. Lebid, O. Goncharova, S. Drobyazko, and I. Sidko, "Financial Risks of Business Management of Cryptocurrency Operations," TEM Journal, pp. 355-364, Feb. 2024, doi: 10.18421/TEM131-37.
- [15] S. Houy, P. Schmid, and A. Bartel, "Security Aspects of Cryptocurrency Wallets—A Systematic Literature Review,"

- ACM Comput. Surv., vol. 56, no. 1, pp. 1-31, Jan. 2024, doi: 10.1145/3596906.
- [16] M. Taheri tolu, N. Yazdanian, H. Hemmati, and H. Kordlouoie, "Accepting Financial Transactions using Blockchain Technology and Cryptocurrency based on the TAMmodel: A case study of Iranian users," IJAAF, no. Online First, Feb. 2022, doi: 10.22067/ijaaf.2022.41763.
- [17] G. Thakre, S. Saratkar, R. Raut, A. Chaudhari, T. Thute, and P. Verma, "Blockchain-based Cryptocurrency Security Analysis Technology - A Review," in 2024 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal: IEEE, Apr. 2024, pp. 1536-1542. doi: 10.1109/ICICT60155.2024.10544557.
- [18] S. Abramova and R. Böhme, "Perceived Benefit and Risk as Multidimensional Determinants of Bitcoin Use: A Quantitative Exploratory Study," in ICIS 2016 Proceedings, 2016.
- [19] G. Joshi, P. N. Gour, P. Soti, A. Aggarwal, H. Singh, and S. K. Gupta, "Factors Influencing Behavioural Intentions Towards Investment in Cryptocurrency: A Study on Generation Z Female of India," in Intelligent Systems and Applications, vol. 959, A. J. Kulkarni, S. Mirjalili, and S. K. Udgata, Eds., in Lecture Notes in Electrical Engineering, vol. 959., Singapore: Springer Nature Singapore, 2023, pp.
- [20] D. Jegerson, C. Mertzanis, and M. Khan, "Investigating the unexpected determinants of cryptocurrency adoption in the UAE," IJOEM, vol. 20, no. 6, pp. 2524–2544, May 2025, doi: 10.1108/IJOEM-06-2023-0924.
- [21] H. Islam, M. Rana, S. Saha, T. Khatun, M. R. Ritu, and Md. R. Islam, "Factors influencing the adoption of cryptocurrency in Bangladesh: an investigation using the technology acceptance model (TAM)," TECHS, vol. 2, no. 4, pp. 423-443, Oct. 2023, doi: 10.1108/TECHS-07-2023-0025.
- [22] R. Andrulienė, A. Mačerinskienė, A. Šapkauskienė, S. Masteika, and K. Driaunys, "The Impact of Technology Awareness, Motivation and Attitude on Intention to Pay with Cryptocurrency for Tourism Services," OMEE, vol. 14, no. 3, pp. 721-742, Dec. 2023, doi: 10.15388/omee.2023.14.12.
- [23] W. Quan, S. (Sam) Kim, T. B. Hailu, W. Ahmad, and H. Han, "Exploring travelers' readiness to adopt cryptocurrency payment (vs mobile payment)," Current Issues in Tourism, vol. 27, no. 17, pp. 2797–2814, Sep. 2024, doi: 10.1080/13683500.2023.2240474.
- [24] K. S. Namahoot and V. Rattanawiboonsom, "Integration of TAM Model of Consumers' Intention to Adopt Cryptocurrency Platform in Thailand: The Mediating Role of Attitude and Perceived Risk," Human Behavior and Emerging Technologies, vol. 2022, pp. 1–12, Aug. 2022, doi: 10.1155/2022/9642998.
- [25] M. F. Shahzad, S. Xu, W. M. Lim, M. F. Hasnain, and S. Nusrat, "Cryptocurrency awareness, acceptance, and adoption: the role of trust as a cornerstone," Humanit Soc Sci Commun, vol. 11, no. 1, p. 4, Jan. 2024, doi: 10.1057/s41599-023-02528-7.
- [26] Venkatesh, Morris, Davis, and Davis, "User Acceptance of Information Technology: Toward a Unified View," MIS Quarterly, vol. 27, no. 3, p. 425, 2003, doi: 10.2307/30036540.

- [27] F. García-Monleón, A. Erdmann, and R. Arilla, "A value-based approach to the adoption of cryptocurrencies," Journal of Innovation and Knowledge, vol. 8, no. 2, p. 100342, Apr. 2023
- [28] G. Bozkurt and I. Akgül, "Is cryptocurrency technology adoption effective in individuals; investment behavior?," Iran J Manag Stud, no. Online First, Jun. 2022, doi: 10.22059/ijms.2022.337741.674917.
- [29] A. S. A. Alomari and N. L. Abdullah, "Cryptocurrency Adoption among Saudi Arabian Public University Students: Dual Structural Equation Modelling and Artificial Neural Network Approach," Human Behavior and Emerging Technologies, vol. 2023, pp. 1–13, Sep. 2023, doi: 10.1155/2023/9116006.
- [30] Information System Department School of Information Systems, Bina Nusantara University Jakarta, Indonesia 11480, K. W. Hartono, and T. Oktavia, "The Influence of Cryptocurrency Transaction as a Currency in NFT-Based Game Transactions," IJETAE, vol. 12, no. 8, pp. 167–179, Aug. 2022.
- [31] M. Recskó and M. Aranyossy, "User acceptance of social network-backed cryptocurrency: a unified theory of acceptance and use of technology (UTAUT)-based analysis," Financ Innov, vol. 10, no. 1, p. 57, Feb. 2024, doi: 10.1186/s40854-023-00511-4.
- [32] A. Dabbous, M. Merhej Sayegh, and K. Aoun Barakat, "Understanding the adoption of cryptocurrencies for financial transactions within a high-risk context," JRF, vol. 23, no. 4, pp. 349–367, Jul. 2022, doi: 10.1108/JRF-10-2021-0169.
- [33] E. Gil-Cordero, J. P. Cabrera-Sánchez, and M. J. Arrás-Cortés, "Cryptocurrencies as a Financial Tool: Acceptance Factors," Mathematics, vol. 8, no. 11, p. 1974, Nov. 2020, doi: 10.3390/math8111974.
- [34] M. Hidegföldi, G. L. Csizmazia, and J. Karpavičé, "Understanding the Drivers of Cryptocurrency Acceptance: An Empirical Study of Individual Adoption," Procedia Computer Science, vol. 256, pp. 547–556, 2025, doi: 10.1016/j.procs.2025.02.151.
- [35] M. Mareh, L. Subphonkulanan, W. Bostan Ali, M. M. Alam, and L. Kim, "The impact of perceived benefits on cryptocurrency adoption among business travelers: Evidence from MICE tourists in Thailand," Social Sciences and Humanities Open, vol. 11, p. 101377, 2025.
- [36] A. Radic, W. Quan, A. Ariza-Montes, J.-S. Lee, and H. Han, "You can't hold the tide with a broom: Cryptocurrency payments and tourism in South Korea and China," Tourism Management Perspectives, vol. 43, p. 101000, Jul. 2022, doi: 10.1016/j.tmp.2022.101000.
- [37] M. Chang, A. C. S. M. Walimuni, M. Kim, and H. Lim, "Acceptance of tourism blockchain based on UTAUT and connectivism theory," Technology in Society, vol. 71, p. 102027, Nov. 2022, doi: 10.1016/j.techsoc.2022.102027.
- [38] A. S. Al-Adwan, R. M. S. Jafar, and D.-A. Sitar-Tăut, "Breaking into the black box of consumers' perceptions on metaverse commerce: An integrated model of UTAUT 2 and dual-factor theory," Asia Pacific Management Review, vol. 29, no. 4, pp. 477–498, Dec. 2024, doi: 10.1016/j.apmrv.2024.09.004.
- [39] Y.-C. Yeong, K. S. Kalid, K. S. Savita, M. N. Ahmad, and M. Zaffar, "Sustainable cryptocurrency adoption assessment among IT enthusiasts and cryptocurrency

- social communities," Sustainable Energy Technologies and Assessments, vol. 52, p. 102085, Aug. 2022, doi: 10.1016/j.seta.2022.102085.
- [40] X. Chen, M. H. Miraz, Md. A. I. Gazi, Md. A. Rahaman, Md. M. Habib, and A. I. Hossain, "Factors affecting cryptocurrency adoption in digital business transactions: The mediating role of customer satisfaction," Technology in Society, vol. 70, p. 102059, Aug. 2022, doi: 10.1016/j.techsoc.2022.102059.
- [41] Q. Gan and R. Y. K. Lau, "Trust in a 'trust-free' system: Blockchain acceptance in the banking and finance sector," Technological Forecasting and Social Change, vol. 199, p. 123050, Feb. 2024, doi: 10.1016/j.techfore.2023.123050.
- [42] I. N. Muharam, I. P. Tussyadiah, and A. N. Kimbu, "Decentralising Airbnb: Testing the acceptability of blockchain-based sharing economy systems," Tourism Management, vol. 102, p. 104871, Jun. 2024, doi: 10.1016/j.tourman.2023.104871.
- [43] I. Ajzen, "The theory of planned behavior," Organizational Behavior and Human Decision Processes, vol. 50, no. 2, pp. 179–211, Dec. 1991, doi: 10.1016/0749-5978(91)90020-T.
- [44] X. Huang, W. Han, D. Newton, E. Platanakis, D. Stafylas, and C. Sutcliffe, "The diversification benefits of cryptocurrency asset categories and estimation risk: pre and post Covid-19," The European Journal of Finance, vol. 29, no. 7, pp. 800–825, May 2023, doi: 10.1080/1351847X.2022.2033806.
- [45] H. P. Ramiaji and R. Sanjaya, "Analysis of Acceptance of E-Wallet Technology using UTAUT 2," Journal of Information Systems, vol. 11, no. 1, pp. 28–35, Jun. 2024, doi: 10.24167/sisforma.v11i1.10667.
- [46] N. Jain and T. V. Raman, "A partial least squares approach to digital finance adoption," J Financ Serv Mark, vol. 27, no. 4, pp. 308–321, Dec. 2022, doi: 10.1057/s41264-021-00127-8.
- [47] Î. H. Efendioğlu et al., "The Mediating Effect of Blockchain Technology on the Cryptocurrency Purchase Intention," 2023, arXiv. doi: 10.48550/ARXIV.2310.05970.
- [48] E. M. Abu-Taieh et al., "Continued Intention to Use of M-Banking in Jordan by Integrating UTAUT, TPB, TAM and Service Quality with ML," Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, no. 3, p. 120, Sep. 2022, doi: 10.3390/joitmc8030120.
- [49] S. Gupta, S. Gupta, M. Mathew, and H. R. Sama, "Prioritizing intentions behind investment in cryptocurrency: a fuzzy analytical framework," JES, vol. 48, no. 8, pp. 1442–1459, Oct. 2021, doi: 10.1108/JES-06-2020-0285.
- [50] J. Ter Ji-Xi, Y. Salamzadeh, and A. P. Teoh, "Behavioral intention to use cryptocurrency in Malaysia: an empirical study," BL, vol. 34, no. 2, pp. 170–197, Sep. 2021, doi: 10.1108/BL-08-2020-0053.
- [51] A. Kumpajaya and W. Dhewanto, "The acceptance of Bitcoin in Indonesia: extending TAM with IDT," Journal of Business and Management, vol. 4, no. 1, pp. 28–38, 2015.
- [52] H. Mohd Thas Thaker, M. A. Mohd Thas Thaker, A. Khaliq, A. Allah Pitchay, and H. Iqbal Hussain, "Behavioural intention and adoption of internet banking among clients' of Islamic banks in Malaysia: an analysis using UTAUT2," JIMA, vol. 13, no. 5, pp. 1171–1197, Mar. 2022, doi: 10.1108/JIMA-11-2019-0228.
- [53] Venkatesh, Thong, and Xu, "Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of

- Acceptance and Use of Technology," MIS Quarterly, vol. 36, no. 1, p. 157, 2012, doi: 10.2307/41410412.
- [54] D. F. Cox, "Risk handling in consumer behavior: An intensive study of two cases," in Risk taking and information handling in consumer behavior, 1967, pp. 34-81.
- [55] Y. Liebermann and S. Stashevsky, "Perceived risks as barriers to Internet and e-commerce usage," Qualitative Market Research: An International Journal, vol. 5, no. 4, pp. 291-300, Dec. 2002, doi: 10.1108/13522750210443245.
- [56] D. S. Kerr, K. A. Loveland, K. T. Smith, and L. M. Smith, "Cryptocurrency Risks, Fraud Cases, and Financial Performance," Risks, vol. 11, no. 3, p. 51, Feb. 2023, doi: 10.3390/risks11030051.
- [57] M. Elhoseny, A. Darwiesh, A. H. El-Baz, and J. J. P. C. Rodrigues, "Enhancing Cryptocurrency Security Using AI Risk Management Model," IEEE Consumer Electron. Mag., vol. 13, no. 1, pp. 48-53, Jan. 2024, doi: 10.1109/MCE.2023.3238848.
- [58] J. Wu and H. Du, "Toward a better understanding of behavioral intention and system usage constructs," European Journal of Information Systems, vol. 21, no. 6, pp. 680-698, Nov. 2012, doi: 10.1057/ejis.2012.15.
- [59] I. AlHadid et al., "Predictors for E-Government Adoption of SANAD App Services Integrating UTAUT, TPB, TAM, Trust, and Perceived Risk," IJERPH, vol. 19, no. 14, p. 8281, Jul. 2022, doi: 10.3390/ijerph19148281.
- [60] E. Abu-Taieh, I. AlHadid, R. Masa'deh, R. S. Alkhawaldeh, S. Khwaldeh, and A. Alrowwad, "Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study," Applied Sciences, vol. 12, no. 12, p. 5856, Jun. 2022, doi: 10.3390/app12125856.
- [61] R. Masa'deh, I. AlHadid, E. Abu-Taieh, S. Khwaldeh, A. Alrowwad, and R. S. Alkhawaldeh, "Factors Influencing Students' Intention to Use E-Textbooks and Their Impact on Academic Achievement in Bilingual Environment: An Empirical Study Jordan," Information, vol. 13, no. 5, p. 233, May 2022, doi: 10.3390/info13050233.
- [62] S. Khwaldeh, R. S. Alkhawaldeh, R. Masa'deh, I. AlHadid, and A. Alrowwad, "The impact of mobile hotel reservation system on continuous intention to use in Jordan," Tourism and Hospitality Research, vol. 20, no. 3, pp. 358-371, Jul. 2020, doi: 10.1177/1467358420907176.
- [63] S. Afaneh, I. AlHadid, and H. Al Malahmeh, "Relationship Between Organizational Factors, Technological Factors and Enterprise Resource Planning System Implementation," IJMIT, vol. 7, no. 1, pp. 01-16, Feb. 2015, doi: 10.5121/ijmit.2015.7101.
- [64] E. M. Abu-Taieh et al., "An Empirical Study of Factors Influencing the Perceived Usefulness and Effectiveness of Integrating E-Learning Systems during the COVID-19 Pandemic Using SEM and ML: A Case Study in Jordan," Sustainability, vol. 14, no. 20, p. 13432, Oct. 2022, doi: 10.3390/su142013432.
- [65] E. M. Abu-Taieh, I. AlHadid, R. Masa'deh, R. S. Alkhawaldeh, S. Khwaldeh, and A. Alrowwad, "Factors Affecting the Use of Social Networks and Its Effect on Anxiety and Depression among Parents and Their Children: Predictors Using ML, SEM and Extended TAM,'

- IJERPH, vol. 19, no. 21, p. 13764, Oct. 2022, doi: 10.3390/ijerph192113764.
- [66] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, "Extrinsic and Intrinsic Motivation to Use Computers in the Workplace 1," J Applied Social Pyschol, vol. 22, no. 14, pp. 1111–1132, Jul. 1992, doi: 10.1111/j.1559-1816.1992.tb00945.x.
- [67] N. Mahomed, "Understanding consumer adoption of cryptocurrencies," Master's Thesis, University of Pretoria, 2017.
- [68] J. J. Pieters, A. Kokkinou, and T. Van Kollenburg, "Understanding Blockchain Technology Adoption by Nonexperts: an Application of the Unified Theory of Acceptance and Use of Technology (UTAUT)," Oper. Res. Forum, vol. 3, no. 1, p. 1, Mar. 2022, doi: 10.1007/s43069-021-00113-9.
- [69] M. R. Kabir, Md. A. Islam, Marniati, and Herawati, "Application of Blockchain for Supply Chain Financing: Explaining the Drivers Using SEM," Journal of Open Innovation: Technology, Market, and Complexity, vol. 7, no. 3, p. 167, Sep. 2021, doi: 10.3390/joitmc7030167.
- [70] F. Shahzad, G. Xiu, J. Wang, and M. Shahbaz, "An empirical investigation on the adoption of cryptocurrencies among the people of mainland China," Technology in Society, vol. 55, pp. 33-40, Nov. 2018, doi: 10.1016/j.techsoc.2018.05.006.
- [71] M. A. Camilleri, "The online users' perceptions toward electronic government services," JICES, vol. 18, no. 2, pp. 221-235, Nov. 2019, doi: 10.1108/JICES-09-2019-0102.
- [72] L. C. Schaupp and M. Festa, "Cryptocurrency adoption and the road to regulation," in Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, Delft The Netherlands: ACM, May 2018, pp. 1-9. doi: 10.1145/3209281.3209336.
- [73] D. Arli, P. Van Esch, M. Bakpayev, and A. Laurence, "Do consumers really trust cryptocurrencies?," MIP, vol. 39, no. 1, pp. 74–90, Jun. 2020, doi: 10.1108/MIP-01-2020-0036.
- [74] C. Sas and I. E. Khairuddin, "Design for Trust: An Exploration of the Challenges and Opportunities of Bitcoin Users," in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver Colorado USA: ACM, May 2017, pp. 6499-6510. doi: 10.1145/3025453.3025886.
- [75] C. Sas and I. E. Khairuddin, "Exploring Trust in Bitcoin Technology: A Framework for HCI Research," in Proceedings of the Annual Meeting of the Australian Special Interest Group for Computer Human Interaction, Parkville VIC Australia: ACM, Dec. 2015, pp. 338-342. doi: 10.1145/2838739.2838821.
- [76] M. Humayun and B. Russell, "From nothingness into being: creation and resilience of a decentralized brand," in Advances in Consumer Research, 2016, pp. 495-496.
- [77] A. Jalan, R. Matkovskyy, A. Urquhart, and L. Yarovaya, "The role of interpersonal trust in cryptocurrency adoption," Journal of International Financial Markets, Institutions and Money, vol. 83, p. 101715, Mar. 2023, doi: 10.1016/j.intfin.2022.101715.
- [78] "The 2024 Crypto Crime Report," Chainalysis, 2024. Accessed: Aug. 14, 2024.
- [79]. Available: https://www.chainalysis.com/wpcontent/uploads/2024/06/the-2024-crypto-crime-reportrelease.pdf
- [80] Z. Shahbazi and Y.-C. Byun, "Machine Learning-Based Analysis of Cryptocurrency Market Financial Risk

- Management," IEEE Access, vol. 10, pp. 37848–37856, 2022, doi: 10.1109/ACCESS.2022.3162858.
- [81] P. C. Panda and N. Jani, "Growth of Cryptocurrency and Illegal Activities," presented at the 15th International Conference on Economic Growth and Sustainable Development: Emerging Trends, Mysuru, India, Nov. 2019.
- [82] V. Cherniei, S. Cherniavskyi, V. Babanina, and O. Tykho, "Criminal Liability for Cryptocurrency Transactions: Global Experience," EJSD, vol. 10, no. 4, p. 304, Oct. 2021.
- [83] S. M. A. Shdaifat, "The criminal confrontation of the cryptocurrency (Bitcoin) and its illegal use," IJESDF, vol. 15, no. 2, p. 114, 2023, doi: 10.1504/IJESDF.2023.129280.
- [84] "Guidance on work procedures, regulatory controls and warning indicators to monitor and prevent dealing in virtual currencies using electronic payment systems, tools and channels." Central Bank of Jordan, 2021. Accessed: Aug. 15, 2024.
- [85] H. Cheraghali, P. Molnár, M. Storsveen, and F. Veliqi, "The impact of cryptocurrency-related cyberattacks on return, volatility, and trading volume of cryptocurrencies and traditional financial assets," International Review of Financial Analysis, vol. 95, p. 103439, Oct. 2024.
- [86] S. D. Norton, "Free banking theory: literature review and relevance to the regulation of cryptocurrencies debate," JFRC, vol. 32, no. 2, pp. 250–265, Apr. 2024.
- [87] H. Manninen, "The Anti-Money Laundering Challenges of FinTech and Cryptocurrencies," Nordic Journal of Legal Studies, vol. 2, no. 1, pp. 7–19, Oct. 2023.
- [88] P. De Filippi, "Bitcoin: a regulatory nightmare to a libertarian dream," Internet Policy Review, vol. 3, no. 2, May 2014, doi: 10.14763/2014.2.286.
- [89] V. Sapovadia, "Legal Issues in Cryptocurrency," in Handbook of Digital Currency, Elsevier, 2024, pp. 245–258. doi: 10.1016/B978-0-323-98973-2.00007-1.
- [90] L. Cheng, F. Zhu, Y. Wang, R. Liang, and H. Liu, "From Asset Flow to Status, Action, and Intention Discovery: Early Malice Detection in Cryptocurrency," ACM Trans. Knowl. Discov. Data, vol. 18, no. 3, pp. 1–27, Apr. 2024, doi: 10.1145/3626102.
- [91] O. Kovalchuk, R. Shevchuk, and S. Banakh. "Cryptocurrency Crime Risks Modeling: Environment, Issue," E-Commerce, and Cybersecurity **IEEE** 50673-50688, Access, vol. 12, pp. 2024. doi: 10.1109/ACCESS.2024.3386428.
- [92] M. Ikenna, "Operational Risks Faced by Financial Institutions in the Digital Age: A Case of Nigeria," IJMRM, vol. 2, no. 1, pp. 34–43, Jun. 2024, doi: 10.47604/ijmrm.2642.
- [93] S. Gapurbaeva, S. Savina, L. Dzhalilova, T. Tadzhibaeva, and B. Tokoev, "International river and sea transportation: Specifics of risk management in cryptocurrency transactions," BIO Web Conf., vol. 107, p. 04006, 2024, doi: 10.1051/bioconf/202410704006.
- [94] R. Böhme, N. Christin, B. Edelman, and T. Moore, "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, vol. 29, no. 2, pp. 213–238, May 2015, doi: 10.1257/jep.29.2.213.
- [95] M. Rana, S. Bhardwaj, I. Dawar, V. Gupta, S. Layek, and M. Bhushan, "Risk Analysis for Cryptocurrency: Challenges and Future Scope," in 2023 3rd International Conference on Emerging Smart Technologies and Applications

- (eSmarTA), Taiz, Yemen: IEEE, Oct. 2023, pp. 1–7. doi: 10.1109/eSmarTA59349.2023.10293308.
- [96] A. Benlian and T. Hess, "Opportunities and risks of software-as-a-service: Findings from a survey of IT executives," Decision Support Systems, vol. 52, no. 1, pp. 232–246, Dec. 2011, doi: 10.1016/j.dss.2011.07.007.
- [97] S. Farivar and Y. Yuan, "The Dual Perspective of Social Commerce Adoption," presented at the Special Interest Group on Human-Computer Interaction (SIGHCI), 2014, pp. 1–6.
- [98] K. M. Zobair, L. Sanzogni, L. Houghton, and Md. Z. Islam, "Forecasting care seekers satisfaction with telemedicine using machine learning and structural equation modeling," PLoS ONE, vol. 16, no. 9, p. e0257300, Sep. 2021, doi: 10.1371/journal.pone.0257300.
- [99] J.-M. Becker, J.-H. Cheah, R. Gholamzade, C. M. Ringle, and M. Sarstedt, "PLS-SEM's most wanted guidance," IJCHM, vol. 35, no. 1, pp. 321–346, Jan. 2023, doi: 10.1108/IJCHM-04-2022-0474.
- [100] N. Kock, G. Lynn, and Stevens Institute of Technology, "Lateral Collinearity and Misleading Results in Variance-Based SEM: An Illustration and Recommendations," JAIS, vol. 13, no. 7, pp. 546–580, Jul. 2012, doi: 10.17705/1jais.00302.
- [101] N. Kock, "Common Method Bias in PLS-SEM: A Full Collinearity Assessment Approach," International Journal of e-Collaboration, vol. 11, no. 4, pp. 1–10, Oct. 2015, doi: 10.4018/ijec.2015100101.
- [102] I. H. Witten and E. Frank, "Data mining: practical machine learning tools and techniques with Java implementations," SIGMOD Rec., vol. 31, no. 1, pp. 76–77, Mar. 2002, doi: 10.1145/507338.507355.
- [103] I. N. Da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. Dos Reis Alves, "Artificial Neural Network Architectures and Training Processes," in Artificial Neural Networks, Cham: Springer International Publishing, 2017, pp. 21–28.
- [104] W. Yao and L. Li, "A New Regression Model: Modal Linear Regression," Scandinavian J Statistics, vol. 41, no. 3, pp. 656–671, Sep. 2014.
- [105] L. BBEIMAN, "Bagging Predictors," Machine Learning, vol. 24, pp. 123–140, 1996.
- [106] T. Tasin and M. A. Habib, "Computer-Aided Cataract Detection Using Random Forest Classifier," in Proceedings of the International Conference on Big Data, IoT, and Machine Learning, vol. 95, M. S. Arefin, M. S. Kaiser, A. Bandyopadhyay, Md. A. R. Ahad, and K. Ray, Eds., in Lecture Notes on Data Engineering and Communications Technologies, vol. 95., Singapore: Springer Singapore, 2022, pp. 27–38.
- [107] K. Backhaus, B. Erichson, S. Gensler, R. Weiber, and T. Weiber, Multivariate Analysis An Application-Oriented Introduction. Wiesbaden Springer Fachmedien Wiesbaden, 2023. doi: 10.1007/978-3-658-40411-6.
- [108] J. Pallant, SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS, 7th ed. Routledge, 2020. doi: 10.4324/9781003117452.
- [109] U. Sekaran and R. Bougie, Research methods for business: a skill-building approach, Seventh edition. Chichester, West Sussex, United Kingdom: John Wiley and Sons, 2016.

- [110] J. Hair and A. Alamer, "Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example," Research Methods in Applied Linguistics, vol. 1, no. 3, p. 100027, Dec. 2022, doi: 10.1016/j.rmal.2022.100027.
- [111] M. Sarstedt and J.-H. Cheah, "Partial least squares structural equation modeling using SmartPLS: a software review," J Market Anal, vol. 7, no. 3, pp. 196–202, Sep. 2019, doi: 10.1057/s41270-019-00058-3.
- [112] J. Henseler, C. M. Ringle, and M. Sarstedt, "A new criterion for assessing discriminant validity in variance-based structural equation modeling," J. of the Acad. Mark. Sci., vol. 43, no. 1, pp. 115–135, Jan. 2015, doi: 10.1007/s11747-014-0403-8.
- [113] G. Franke and M. Sarstedt, "Heuristics versus statistics in discriminant validity testing: a comparison of four procedures," INTR, vol. 29, no. 3, pp. 430–447, Jun. 2019, doi: 10.1108/IntR-12-2017-0515.
- [114] M. K. Cain, Z. Zhang, and K.-H. Yuan, "Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation," Behav Res, vol. 49, no. 5, pp. 1716–1735, Oct. 2017, doi: 10.3758/s13428-016-0814-1.
- [115] G. Shmueli et al., "Predictive model assessment in PLS-SEM: guidelines for using PLSpredict," EJM, vol. 53, no. 11, pp. 2322–2347, Nov. 2019, doi: 10.1108/EJM-02-2019-0189.

Ala'Aldin Al rowwad is an associate Professor with diverse research interests and a rich experience in higher education management. His research focuses on interdisciplinary fields, including Management and Organizational Behavior, Knowledge Management, and

Quantitative Methods. He applies these research areas to a variety of academic and professional contexts, contributing significantly to the understanding of management practices and business strategies.

Evon Abu-Taieh
is a Professor of Information
Systems and Computer
Science, with a distinguished
career in academia, research,
and professional service. She
earned her PhD in Computer
Information Systems
(Simulation) from the Arab
Academy for Banking and

Financial Sciences in Amman, Jordan, in 2005, and an MSc in Computer Science, specializing in Ciphering Systems and Genetic Algorithms, from Pacific Lutheran University in Washington State, USA, in 1994. Dr. Abu-Taieh also holds a BSc in Computer Science with a minor in Mathematics from Saint Martin's College,

Washington, USA, and a teaching certificate from the University of Cambridge, England.

Suha Afaneh is an Assistant Professor in the Department of Cybersecurity at Zarqa University, Jordan. She earned her Bachelor of Science degree in Computer Science from the University of Jordan in 1999, followed by a Master of Science in Information Technology in

2003. She completed her Ph.D. in Computer Science at Amman Arab University in 2010.

Rami S. Alkhawaldeh is Associate Professor with diverse research interests and a rich experience in AI and Machine Learning, Dr. Rami S. Alkhawaldeh received his B.S. degree in Computer Information Systems from Yarmouk University, Irbid, Jordan, in 2007. He continued

his education and obtained an MSc. degree in Computer Information Systems from the University of Jordan, Amman, Jordan, in 2010, and successfully completed his PhD degree in computing science from Glasgow University, the UK, in 2017.

Thurasamy Ramayah is a researcher whose work has been published in the journal Applied Mathematics and Information Sciences (AMIS). He is associated with Applied Mathematics and Information Sciences and is featured as a researcher there, although his primary

academic background appears to be in hospitality and tourism, and he holds affiliations with The University of Jordan and Al Balqa Applied University.

Omar Jawabrah a
Professor at the Departmentof
Hotel Management,Faculty
of Tourism andHospitality
Management, TheUniversity
of Jordan, AqabaBranch.
He got his PhDin hospitality
and tourismmanagement from
the Facultyof Economics
and Business(JNVU), India.

Fieldstudy and interests: Tourism Accounting, culture and sustainable tourism, marketing, Hospitality.

Ra'ed Masa'deh
is a Professor of Technology
Management at the
Department of Management
Information Systems, School
of Business, University
of Jordan. He previously
served as Dean of the School
of Business (Amman and
Aqaba), Assistant President

for Academic Affairs, and Honor Professor at the University of Warwick, UK. his research focuses on technology management, IT adoption, and knowledge economy, with publications in leading international journals.

Hamed S. Albdour is a professor in computer engineering and information technology. He earned his PhD from the National Technical University Ukraine (KPI), specializing in optimizing load in corporate computer networks. has held professorial roles at

Mu'tah University, the University of Jordan (Aqaba), and Umm Al-Qura University. His leadership experience includes serving as Dean of the Faculty of Information Technology and Systems and Assistant President at the University of Jordan, Aqaba. Additionally, he has held key administrative roles at Mu'tah University, including Vice Dean and Head of the Information Technology Department.

Issam H. Alhadid is a Professor currently serving as the Dean of the School of Information Technology and Systems at the University of Jordan, Aqaba. He earned his Ph.D. in Computer Information Systems from the Arab Academy for Banking and Financial Sciences in

Amman, Jordan, in 2010. He has authored over 70 research publications in areas such as Service Oriented Architecture (SOA), artificial intelligence, cloud computing, and E-government optimization.

Sufian Khwaldeh Associate Professor is experience with extensive academia in and research. His expertise spans E-Learning Systems, Experience User (UX) Design, IT Management, and innovative research projects leveraging technology

enhance services and quality. Over the years, he has demonstrated exceptional leadership in academic program development, faculty management, and fostering educational excellence.management.