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Abstract: Bounded distributions are important in statistical studies especially when investigations involve rates, proportions or
experimental outcomes such as success/failure, defective/non-defectives etc. The literature on bounded or unit family of distributions is
scanty. Therefore, in this study, we develop a new unit family of distributions called Dhillon-G family of distributions. The Dhillon-G
family is parsimonious given that it does not introduce additional parameter. Further, the Kumaraswamy distribution was modified
using the Dhillon-G family with the modified distribution offering a better flexibility in application, mathematical tractability and
better goodness of fit. We studied the structural behaviour/properties of the new distribution and the studies reveal that the distribution
can model both skewed, unimodal, bimodal, bath-tub shape and bounded data. We estimated its parameters using non-Bayesian and
Bayesian methods and a comprehensive simulation study is implemented to determine the behaviour of the estimators using maximum
likelihood, maximum product of spacing, least squares and weighted least squares at different parameter settings and sample sizes.
The results reveal consistent asymptotic behaviour for the parameters in the presence of small and large sample sizes. The Dhillon-
Kumaraswamy distribution and its chosen competing distributions which included (Kumaraswamy, Beta, Gumbel, Gamma, Burr XII
and Weibull) were fitted to data on mortality of COVID-19 patients in Dominica, Vinyl chloride from clean upgradient ground-water
monitoring wells in (g/L), weekly volume of traded Bitcoin in USD, and infant mortality rate per 1000 live-births in selected countries.
All four datasets are positively skewed and the Dhillon-Kumaraswamy distribution outperformed all competing models in fitting those
datasets and in parameter estimation. These demonstrate that the new distribution is useful in modeling short interval dataset namely
x ∈ (0,1) as well as asymmetric data.

Keywords: Dhillon distribution, Dhillon-G family, Estimation, Kumaraswamy distribution, Parsimony

1 Introduction

From economics to environmental science, researchers
frequently encounter variables that are naturally
constrained within a specific range, typically (0,1).
Whether it’s calculating a success rate or understanding
population proportions, analyzing this double-bounded
data is critical. The primary reason for utilizing the unit

interval to launch a new family of distributions is to
obtain greater flexibility and control of the ensuing
statistical model. This is beneficial as it allows one to map
existing distributions, which may have limited supports
like the real line or non-negative real line, to a
standardized bounded interval. These render them
suitable for modeling data that are naturally bounded,

∗ Corresponding author e-mail: jt.mendy83@gmail.com
© 2025 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/190617


1438 O. J. Obulezi et al.: A New Unit Family of Distributions...

e.g., proportions, percentages, or rates. Working on the
unit interval, new distributions with a wider variety of
shapes can be devised, including complex features like
bimodal or J-shaped curves, which were not accessible
from the original parent distribution. This is typically
accomplished by mapping the cumulative distribution
function or a similar function of a parent distribution with
the desired known properties to the unit interval, thereby
introducing additional shape parameters. Not only does
this method enhance the distribution’s flexibility, but also
links the distribution to an existing theoretical basis, e.g.,
the Beta distribution, so that the new family of
distributions is more interpretable and handy for
modeling a variety of real data more accurately.

However, using common statistical models such as the
normal or exponential distributions presents a significant
challenge. Their unbounded nature can lead to estimates
that fall outside the physically possible range. To
overcome this, a class of specialized probability models
has emerged. The Beta distribution is a seminal example,
offering a robust and generic framework for modeling
data within the (0,1) interval, ([10]). This was followed
by other notable models, such as the Kumaraswamy
([12]) and Johnson SB distributions ([11]), logit-normal
distribution ([22]), Beta-Cauchy distribution ([23]),
Dagum distribution ([24]), generalized Beta distribution
of the first kind ([25]), inverse-Weibull distribution ([26]),
Mustapha ([16]), unit-Weibull ([27]), unit log-log ([28]),
unit-inverse Gaussian ([29]), unit-Gompertz ([30]), power
new power function ([31]), unit Teissier ([32]),
unit-Birnbaum-Saunders ([33]), Gumbel–Logistic Unit
([34]), unit-Chen ([35]), unit Burr-XII ([36]),
unit-Lindley ([37]), each bringing its own strengths to the
field. Distributions have helped in understanding human
activities and therefore present models that aid decision
making, especially in health, environment, engineering,
and finance. These include reduced type-I heavy-tailed
Weibull ([40]), new family of generalized distributions
based on logistic-x transformation ([50]), two-parameter
Chris-Jerry distribution ([51]), type-I heavy-tailed
exponential distribution ([52]), type-I heavy-tailed
Rayleigh distribution ([53]), type-II heavy-tailed family
([54]), kumaraswamy bell-Rayleigh distribution ([55])
and Weibull sine generalized family ([56]), new truncated
Lindley-generated family ([57]), bounded sine hyperbolic
distribution ([58]), new flexible power-X family ([59]),
new Lomax-G family ([60]) and new hyperbolic tangent
family ([61]). For more details see [41,42,43,44,46,47,
48,49].

The complexity of emerging data, often characterized
by highly skewed, heavy-tailed, multimodal patterns, or
(0,1) interval exceeds the capabilities of existing
distributions. This clear gap in the literature drives the
search for more flexible and powerful models. In this
paper, we introduce a new family of double bounded
continuous distributions with the view to providing more
flexibility for the description of proportions and related
data. The family is parameter parsimonious (no additional

parameter to the baseline model), better goodness of fit to
varying datasets and mathematically tractable.

This manuscript is organized into a logical flow,
beginning with the Dhillon-G family of distributions
(Section 2) and then focusing on a specific member, the
Dhillon-Kumaraswamy distribution (Section 3). The
article then delves into the distribution’s structural
properties (Section 4) before moving on to parameter
estimation (Section 5) and Monte Carlo simulation
(Section 6). These foundational sections lead to the
practical applications of the distribution (Section 7). The
manuscript concludes with final comments in (Section 8).

2 Dhillon-G family of distributions

[1] proposed a distribution of a non-negative random
variable T , that is capable of describing decreasing and
inverted bathtub hazard rates. For a special condition
when θ = β = 1, a reduced Dhillon distribution will be a
probability density function (pdf) and cumulative
distribution function (cdf) given as

r(t) =
1

(t +1)2 ; t > 0, (1)

and

R(t) = 1− e− ln(t+1) = 1− 1
t +1

, (2)

respectively. Following the definition provided by [2], let
r(t) be the PDF of a random variable T ∈ [a,b], for
−∞ ≤ a < b ≤ ∞ and W [G(x;ζ )] be a function of the
CDF G(x;ζ ) of any random variable X so that W [FG]
satisfies the following conditions;

1.W [G(x;ζ )] ∈ [a,b].
2.W is differentiable and monotonically nondecreasing.
3.W [G(x;ζ )]→ a as x→ −∞ and W [G(x;ζ )]→ b as

x→ ∞,

where [a,b] is the domain of the random variable T such
that −∞≤ a < b≤ ∞.

Therefore, utilizing the T −X generator, the cdf of the
family of distributions is

F(x;ζ ) =

W [G(x;ζ )]∫
a

r(t) dt = R{W [G(x;ζ )]} . (3)

The associated pdf is

f (x;ζ ) =
dW [G(x;ζ )]

dx
r{W [G(x;ζ )]} ; x > a, (4)

where ζ is the vector of parameters for any parent
distribution with cdf G(.). Next, we provide some choices
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Table 1: W [G(x;ζ )] with associated domains, CDF and PDF of the generated family

Range of x W [G(x)] F(x) f (x) Remark
x ∈ support of G G(x) 1− 1

G(x)+1
g(x)

(G(x)+1)2 canonical case

x ∈ support of G 1−G(x) 1− 1
2−G(x)

g(x)
(2−G(x))2 tail-reverse or increasing tail

weights
x : G(x) ∈ (0,1) − log(1−G(x)) 1− 1

1−log(1−G(x))
g(x)

(1−log(1−G(x)))2(1−G(x)) exponentiated-related families

x : G(x) ∈ (0,1) − log(G(x)) 1− 1
1−log(G(x))

g(x)
(1−log(G(x)))2G(x) reversed hazard frameworks

x ∈ support of G\{0,1} G(x)
1−G(x) G(x) g(x) odd transformation

x ∈ support of G\{0,1}
(

G(x)
1−G(x)

)δ

1− 1

1+
(

G(x)
1−G(x)

)δ

δg(x)Gδ−1(x)

(1−G(x))δ+1

(
1+
(

G(x)
1−G(x)

)δ
)2 generalized odds transformation

x ∈ support of G Gk(x) 1− 1
1+Gk(x)

kGk−1(x)g(x)
(1+Gk(x))2 shape-controlling power

transformation
x ∈ support of G log(1+G(x)) 1− 1

1+log(1+G(x))
g(x)

(1+log(1+G(x)))2(1+G(x)) light-tail modeling

x ∈ support of G exp(G(x))−1 1− 1
exp(G(x))

g(x)
exp(G(x)) stretches tail moderately

x ∈ support of G tan
(

π

2 G(x)
)

1− 1
1+tan( π

2 G(x))
πg(x)

2(1+tan( π

2 G(x)))2 cos2( π

2 G(x)) maps G(x) ∈ (0,1) to t ∈ (0,∞)

x ∈ support of G\{0} 1
G(x) −1 G(x) g(x) inverse function to slow

convergence
x ∈ support of G\{1} 1

1−G(x) −1 G(x) g(x) inverse tail probability

x ∈ support of G arctan(G(x)) 1− 1
1+arctan(G(x))

g(x)
(1+arctan(G(x)))2(1+G(x)2)

periodic functions

x : G(x) ∈ (0,1) log
(

1
1−G(x)

)
1− 1

1+log
(

1
1−G(x)

) g(x)(
1+log

(
1

1−G(x)

))2
(1−G(x))

log-survival transformation

of W [G(x;ζ )] with their resulting family CDF and PDF
in Table (1).

From Table (1), our interest is on bounded random
variable X , basically utilizing W [G(x)] = log

(
1

1−G(x)

)
, in

equations (3) and (4), the cdf of the Dhillon-G family is

F(x) = 1− 1

1+ log
(

1
1−G(x)

) ; x ∈ (0,1). (5)

The corresponding pdf is

f (x) =
g(x)[

1+ log
(

1
1−G(x)

)]2
(1−G(x))

. (6)

The hazard function which is generally given as h(x) =
f (x)

1−F(x) is

h(x) =
g(x)[

1+ log
(

1
1−G(x)

)]
(1−G(x))

. (7)

A significant disadvantage of using the unit interval to
propose new families of distributions is the lack of
intuitive interpretability of the new parameters. Unlike
simple distributions for which the parameters can clearly
represent location or scale, the parameters of such newly
transformed distributions can often represent a complex
combination of shape, skewness, and kurtosis that can be
hard for practitioners to understand and deal with. This
lack of interpretability is compounded by the fact that
such models are computationally intensive; the PDF and
CDF functions generally have no closed-form

representation, making parameter estimation by
maximum likelihood estimation numerically unstable and
computationally intensive. Further, the method can lead to
over-parameterization, where model complexity outstrips
the data, with the risk of a bad generalization to new data
and the model not being reliable for prediction. So,
offering more flexibility, this method trades simplicity
and ease of calculation for this flexibility.

3 Dhillon-Kumaraswamy distribution

The Kumaraswamy distribution by [12], originally
referred to as the double-bounded distribution is one of
the earliest truncated distributions for modeling rates,
percentages, ratios and related lifetime occurrences which
the standard models failed to handle. Due to its structural
properties and computational efficiency, it has attracted
much attention among researchers. In this paper, the
kumaraswamy distribution is used as a baseline, with
W [G(x)] = log

(
1

1−G(x)

)
to formulate what is now known

as the Dhillon-Kumaraswamy (DK) distribution. The
resulting distribution is also double-bounded at (0,1). Let
X be a continuous random variable in the interval
0 < x < 1, the pdf and cdf of the Kumaraswamy
distribution are respectively

g(x;a,b) = abxa−1 (1− xa)b−1 ; 0 < x < 1, a,b > 0,
(8)

and

G(x;a,b) = 1− (1− xa)b . (9)
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Substituting equation (9) into (5), the cdf of the DK
distribution is realized as

F(x;a,b) = 1− 1
1−b log(1− xa)

; x ∈ (0,1), a,b > 0.

(10)
Similarly, plug in equation (8) and (9) into (6), the
corresponding pdf of the DK distribution is obtained as

f (x;a,b)=
abxa−1

(1− xa) [1−b log(1− xa)]2
; x∈ (0,1), a,b> 0.

(11)

Remark.The advantage of this DK model is that it does
include any additional parameters however alters the
functional form of the baseline distribution
(Kumaraswamy). Skewness depends on a: If a < 1, peak
near 0 — right-skewed. If a = 1, shape depends mainly
on b. If a > 1, peak shifts toward middle or right —
possibly left-skewed.

The hazard rate function or force of mortality is
expressed as

h(x;a,b)=
abxa−1

(1− xa) [1−b log(1− xa)]
, x∈ (0,1), a,b> 0.

(12)

3.1 Unimodality of the DK distribution

To ascertain the unimodality conditions, we must analyze
the first derivative of the pdf with respect to x, f ′(x), and
identify its critical points by setting f ′(x) = 0. Using
logarithmic differentiation, we consider
L(x) = ln f (x;a,b):

L(x)= ln(ab)+(a−1) lnx−ln(1−xa)−2ln[1−b ln(1−xa)]

Differentiating L(x) with respect to x yields:

f ′(x)
f (x)

=
a−1

x
+

axa−1

1− xa −
2abxa−1

(1− xa)[1−b ln(1− xa)]

Setting f ′(x)
f (x) = 0 leads to the following equation for critical

points:

(a−1)(1− xa)[1−b ln(1− xa)]

+axa[1−b ln(1− xa)]−2abxa = 0
(13)

This is a complex implicit equation involving xa and
ln(1− xa). Obtaining an explicit analytical condition for
unimodality (i.e., a simple closed-form expression for a
and b defining the unimodal region) from this equation is
generally not feasible. Understanding the behavior of the

pdf at the boundaries of its support, x→ 0+ and x→ 1−,
provides insight into its shape:

f (x)→ ∞ as x→ 0+ if a < 1
f (x)→ b as x→ 0+ if a = 1
f (x)→ 0 as x→ 0+ if a > 1
f (x)→ ∞ as x→ 1−

.

The tendency of f (x) to ∞ as x → 1− (for all a,b > 0)
implies that the DK distribution is unlikely to exhibit a
classic bell-shaped unimodality with tails approaching
zero at both ends. Instead, it typically presents as
J-shaped or L-shaped, with a potential mode at or very
near x = 1.

For the special case when a0 = 1, the derivative
equation simplifies to:

1− 2b
1−b ln(1− x)

= 0

This yields a critical point at x = 1− exp
( 1−2b

b

)
. For this

mode to be valid within (0,1), we require b > 0.5. Due to
the inherent complexity of Eq. (13) and the boundary
behavior of the pdf, the unimodality of the DK
distribution for general a,b pairs often necessitates
numerical analysis. This involves numerically solving
f ′(x) = 0 for x and examining the second derivative f ′′(x)
to determine the nature of the critical points (maximum,
minimum, or inflection). Graphically, we present the area
plot of the pdf for various parameter combinations in
Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

De
ns

ity

DK Distribution Simulation (a=2.0, b=3.0)

Fig. 1: Area plot of the DK pdfs for selected parameter
pairs (a,b).

Figure 2 plots are polar plots that play a crucial role in
understanding the behavior of the DK distribution. The
plots provide a graphical representation of the pairs of
two parameters that determine if the distribution is
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Fig. 2: Polar plots of parameter dependences yielding a unimodal DK distribution, with some fixed values of a0 ∈ (0,1)
and two different angular intervals: (a) b ∈ [0,8π]; (b) b ∈ [0,80π].

unimodal with one peak or multimodal with many peaks.
The blue regions represent parameter combinations that
give a unimodal distribution, a characteristic that many
statistical uses prefer, and the gray regions represent
parameter values that give a multimodal shape. These
types of plots are important because they lead researchers
to select ranges for parameters carefully so that the
behavior of their model aligns with the characteristics of
the data that they are modeling. They also provide us with
information regarding the sensitivity of the modality to
changes in parameters of the distribution, revealing
complex mathematical dependencies that would be
difficult to determine from equations alone. The
difference between the two plots, driven by the change in
the range of the angular parameter, demonstrates how
even a seemingly slight change can have a profound
impact on the overall shape of the distribution.

The plots in Figure 3 illustrate the properties of the
DK distribution. Figure (a) shows the PDF for various
parameter values of a and b. The curves exhibit a wide
range of shapes, including J-shapes, reverse J-shapes, and
skewed unimodal forms. This versatility demonstrates the
distribution’s ability to model different types of bounded
data. Figure (b) displays the corresponding hazard
functions. These functions show increasing, decreasing,
and bathtub-shaped patterns, highlighting the flexibility
of the DK distribution in modeling phenomena with
varying hazard rates over time or a specific interval.

4 Structural Properties

In this section, we discuss some properties of the DK
model which include quantile function, moment, order

statistics, moment generating function, and mean residual
life function.

4.1 Quantile Function

Let F(x;a,b) be the cdf defined on x ∈ (0,1). Then the
quantile function F−1 is a mapping: F−1 : (0,1)−→ (0,1)
such that for each u ∈ (0,1), the quantile function is given
by:

F−1(u;a,b) =
(

1− exp
(
− u

b(1−u)

))1/a

,

a > 0, b > 0.

(14)

4.2 Random Variate Generation (Inverse
Transform)

Let F denote the DK cdf and Q(u) = F−1(u) its quantile
(14). For U ∼ Unif(0,1), define

X = Q(U) =

(
1− exp

(
− U

b(1−U)

))1/a

.

Proposition 1.X has cdf F, hence the map U 7→ Q(U)
yields i.i.d. DK samples.

Proof.Since F is continuous and strictly increasing on
(0,1), for any x ∈ (0,1),

P(X ≤ x) = P(Q(U)≤ x) = P(U ≤ F(x)) = F(x).
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Fig. 3: Plots of (a) pdf (b) hazard function for DK distribution

Remark.To avoid catastrophic cancellation near U ≈ 1,
compute t = U/(b(1 − U)) and use
1 − e−t = −expm1(−t). This handles endpoints by
clipping U to (ε,1− ε) with ε ∈ [10−16,10−12] in double
precision.

Input: a > 0, b > 0, sample size n
for i = 1 to n do

Draw Ui ∼ Unif(0,1);
Set ti←Ui/

(
b(1−Ui)

)
;

Set Xi←
(
− expm1(−ti)

)1/a;
end
Output: X1, . . . ,Xn

Algorithm 1: Inverse-Transform Sampling for
DK(a,b)

4.3 Moment

The rth crude moment, denoted as µ ′r or E(X r), of a
continuous random variable X is defined by the integral of
xr multiplied by the pdf f (x) over the support of the
distribution. First, we write the formal definition for the
rth moment using the DK distribution (10) alongside it’s
supported interval (0,1).

µ
′
r = E(X r) =

∫ 1

0
xr f (x)dx

= ab
∫ 1

0

xr+a−1

(1− xa) [1−b log(1− xa)]2
dx.

Using integration by parts

u = xr; dv =
abxa−1

(1− xa) [1−b log(1− xa)]2
dx.

The final form of the rth moment is given as

µ
′
r =

r
ab

∞

∑
j=0

(−1) j
(

r/a−1
j

)
e( j+1)/bE1

(
j+1

b

)
,

E1(z) =
∫

∞

z

e−t

t
dt.

(15)

This equation expresses the rth moment of the DK
distribution as an infinite series involving the exponential
integral special function E1(z). The first moment, which
corresponds to the mean, is derived by replacing r with 1
in the Eq. (15).

µ
′
1 = µ =

1
ab

∞

∑
j=0

(−1) j
(

1/a−1
j

)
e( j+1)/bE1

(
j+1

b

)
.

The second, third, and fourth crude moments can be
derived by substituting r = 2,r = 3, and r = 4 into
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Eq. (15).

µ
′
2 =

2
ab

∞

∑
j=0

(−1) j
(

2/a−1
j

)
e( j+1)/bE1

(
j+1

b

)
,

µ
′
3 =

3
ab

∞

∑
j=0

(−1) j
(

3/a−1
j

)
e( j+1)/bE1

(
j+1

b

)
,

and

µ
′
4 =

4
ab

∞

∑
j=0

(−1) j
(

4/a−1
j

)
e( j+1)/bE1

(
j+1

b

)
.

We now demonstrate the numerical computation and
simulation of raw moments for the DK distribution,
leveraging the explicit quantile function derived in
Eq. (14). This allows us to simulate DK random variables
efficiently (see Algorithm 1), and empirically study the
behavior of moments as functions of the order r and
parameters a,b. Finally, we compare the series-based
analytical formula in Eq. (15) to a quantile-based
numerical integral.

Remark.We use the closed form quantile (15) to compute

µ
′
r = E[X r] =

∫ 1

0
F−1(u;a,b)r du (16)

via the trapezoidal rule; this is equivalent to
∫ r

0 xr f (x)dx
by the change of variables u = F(x).

We now establish the dependence of µ ′r on the
parameters a and b. Recalling Eq. (14), set

s(u,b) := 1− exp
(
− u

b(1−u)

)
∈ (0,1),

Q(u;a,b) = F−1(u;a,b) = s(u,b)1/a.

Then for a fixed b and u ∈ (0,1),

∂Q
∂a

=− 1
a2 lns(u,b) · s(u,b)1/a > 0,

since lns(u,b) < 0. Therefore Q(u;a,b) is pointwise
increasing in a, and by monotone dominance we have
from Eq. (16) that µ ′r(a,b) is strictly increasing in a, for
every r > 0.

Next, differentiating s(u,b) w.r.t b yields

∂ s
∂b

=−exp
(
− u

b(1−u)

) u
b2(1−u)

< 0.

Since Q is increasing in s, we have ∂Q/∂b < 0 pointwise,
hence µ ′r(a,b) is strictly decreasing in b.

Figure 4 is visual comparison of moments µ ′r
computed by the quantile-integral method in Eq. (16) and
the series formula in Eq. (15) for the DK distribution with
a = 2, b = 3 (a). Moments µ ′r of the DK distribution with
a = 50, b = 3, computed using the series-integral method

in Eq. (15) (b). The plot in panel 4a compares two
different methods of calculating the raw moments of the
DK distribution for specified values of the parameters
(a = 2 and b = 3). The blue line with circles indicates the
moments calculated via the quantile function, a generally
powerful and easy method of calculating moments,
especially for complex distributions. The orange line with
squares represents the moments calculated using the
series expansion method, involving the approximation of
the moment integral by an infinite series. That both lines
are very close to and decline in a similar fashion as the
moment order (r) rises provides a significant observation.
This near perfect alignment validates the theoretical
accuracy of both the quantile and series forms of the
moments of the DK distribution. It proves the
mathematical expressions derived for the moments to be
correct and consistent, which is of utmost importance to
the credibility of the new distribution. Panel 4b shows a
graph of the raw moments of the DK distribution as a
function of the order of the moment (r), for another
choice of parameters (a = 50 and b = 3). The curve
increases. This is exactly the expectation for any
distribution for which, say, fourth-order moments exist: as
the order of the moment increases, so does the value of
the moment. The plot provides a clear graphical
representation of the behavior of the moments and can be
used to interpret the characteristics of the distribution for
higher-order statistics (e.g., higher-order kurtosis), which
usually are of interest in more specialized applications
like risk analysis.

The plots in Figure 5 illustrate the behavior of the key
moments of the DK distribution as a function of its
parameters a and b. Panel (a) shows that the mean is an
increasing function of both parameters, indicating that
higher values of a and b shift the central tendency of the
distribution to the right. The variance, as depicted in panel
(b), also increases with a and b but exhibits a more
complex, non-monotonic behavior with a distinct peak,
suggesting that the dispersion of the distribution is highly
sensitive to the interplay between the two parameters.
Similarly, the plots for skewness and kurtosis, in panels
(c) and (d) respectively, reveal that both are increasing
functions of a and b, which implies that the distribution
becomes more positively skewed and leptokurtic
(heavy-tailed) as the parameter values increase.

4.4 Distribution of Order Statistics

Order statistics are essential for addressing complex
challenges in statistical analysis. Suppose we have a
random sample X1,X2, . . . ,Xn taken from a population.
The rth order statistic, denoted as X(r) (where
r = 1,2, . . . ,n), is obtained by arranging the sample
values in increasing order. These statistics prove
especially valuable when analyzing data following the
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Fig. 4: Comparison of moments µ ′r

DK distribution.

yr:n (x,a,b) =
(

n
r

)
f (x){F(x)}r−1 [1−F(x)]n−r .

yr:n (x,a,b) =
(

n
r

)(
abxa−1

(1− xa) [1−b log(1− xa)]2

)

×
{

1− 1
1−b log(1− xa)

}r−1 [ 1
1−b log(1− xa)

]n−r

.

The PDF for the largest order statistic is derived by setting
r = n, yielding:

yn:n (x,a,b) =

(
abxa−1

(1− xa) [1−b log(1− xa)]2

)

×
{

1− 1
1−b log(1− xa)

}n−1

.

For the case where r = 1, the PDF of the first-order
statistic is given by:

y1:n (x,a,b) =

(
nabxa−1

(1− xa) [1−b log(1− xa)]2

)

×
[

1
1−b log(1− xa)

]n−1

.

4.5 Moment Generating Function (MGF)

The moment generating function (MGF), where it exists is
defined as

MX (t) = E[etX ] =
∫

∞

−∞

etx f (x)dx

=
∫ 1

0
etx abxa−1

(1− xa) [1−b log(1− xa)]2
dx.

By change of variable transformation, the integral
becomes:

MX (t) =
∫

∞

0
et(1−e−y)1/a b

(1+by)2 dy. (17)

The definition of the MGF as a power series is:

MX (t) =
∞

∑
k=0

tk

k!
E[Xk],

where E[Xk] is the k-th moment of the distribution. The
k-th moment is given by:

E[Xk] =
∫ 1

0
xk f (x)dx =

∫ 1

0
xk abxa−1

(1− xa)[1−b log(1− xa)]2
dx

=
∫

∞

0
(1− e−y)k/a b

(1+by)2 dy.

MX (t)

= 1+
∞

∑
k=1

tk

k!

[
k

ab

∞

∑
j=0

(−1) jΓ (k/a)
j!Γ (k/a− j)

e( j+1)/bE1

(
j+1

b

)]

E1(x) =
∫

∞

x

e−t

t
dt.

(18)

The MGF MX (t) for the randomly distributed DK
model satisfies MX (0) = 1 and M′X (0) = µ ′1 = E[X ]. Since
0 < X < 1 a.s., MX (t) is strictly increasing and convex in
t; as t → +∞ it grows exponentially (dominated by mass
near x = 1), while as t → −∞ it decays to 0. Near t = 0
we have the usual expansion
MX (t) = 1 + µ ′1t + 1

2 µ ′2t2 + · · ·, so the curve is almost
linear with slope equal to the mean. Parameter effects are
intuitive: smaller a concentrates mass near 0, reducing µ ′1
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Fig. 5: Plots of (a) Mean, (b) Variance, (c) Skewness and (d) Kurtosis of DK distribution

and flattening the rise for t > 0; larger b concentrates
mass near 1, increasing µ ′1, steepening the growth for
t > 0, and slowing the decay for t < 0. Because DK has
an endpoint singularity at x = 1, the positive-t growth is
especially pronounced. We now validate computation by
overlaying the single-integral in Eq. (17) and series-based
in Eq. (18) evaluations of MX (t), then we plot MX (t) for
several b values (holding a fixed) to illustrate the

influence of b (Figure 6). On the same grid {tℓ}L
ℓ=1 we

report pointwise errors defined by the absolute error
EA(tℓ) =

∣∣Mseries(tℓ)−Mintegral(tℓ)
∣∣ and the relative error

ER(tℓ) =
∣∣∣(Mseries(tℓ)−Mintegral(tℓ)

)
/Mseries(tℓ)

∣∣∣ (depicted
in Figure 7).
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4.6 Mean Residual Life Function

The Mean Residual Life (MRL) function, denoted by m(t),
represents the expected additional lifetime of an item given
that it has already survived up to time t. Mathematically, it
is defined as:

m(t) = E[X− t|X > t] =
1

S(t)

∫
∞

t
S(x)dx,

where S(x) is the survival function S(t) = 1−F(x;a,b)
in Eq. 10.

∴ the final form of the MRL function is

m(t) =
1−b log(1− ta)

ab

∞

∑
n=0

(−1)n
(
(1−a)/a

n

)
e(n+1)/b

×E1

(
n+1

b
[1−b log(1− ta)]

)
.

(19)

For the DK law, the mean residual life m(t) in Eq. (19)
lives on t ∈ [0,1), starts at m(0) = E[X ], and vanishes as
t → 1−. Using m′(t) = h(t)m(t)− 1 with the DK hazard,
we get the universal right–endpoint behavior m(t) ∼ 1− t
(slope −1) and the bound 0≤m(t)≤ 1− t. In practice the
curve is decreasing for most parameter settings (DMRL),
though when a < 1 a small initial uptick can occur before
the descent to zero. Parameter effects are monotone:
increasing a shifts mass to the right and raises m(t)
pointwise, whereas increasing b shifts mass to the left and
lowers m(t) across t.

In Figure 8, for the Top-left, varying b∈ {3,10,25,50}
at a = 2.0; m(t) decreases pointwise as b increases. Top-
right: varying a at fixed b = 3.0; m(t) increases pointwise
with a. Bottom-right (zoom near t = 1): all curves meet at
0 and are tangent to the reference line 1− t, confirming a
common slope−1. Bottom-left: cases with a < 1 (e.g., a∈
{0.4,0.6,0.8,0.95} at b = 3.0) display the predicted initial

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 6, 1437-1461 (2025) / www.naturalspublishing.com/Journals.asp 1447

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

m
(t)

DK MRL (a=2.0, b)
b=3
b=10
b=25
b=50
1 - t

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

m
(t)

DK MRL (a, b=3.0)
a=3
a=10
a=25
a=50
1 - t

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

m
(t)

DK MRL (a < 1, b=3.0)
a=0.4
a=0.6
a=0.8
a=0.95
a=1
1 - t 

0.90 0.92 0.94 0.96 0.98 1.00
t

0.00

0.02

0.04

0.06

0.08

0.10

m
(t)

Zoom near t=1 for (a=2.0, b)
b=3
b=10
b=25
b=50
1 - t

Fig. 8: Mean residual life m(t) for the DK distribution.

uptick before decreasing, while remaining below 1− t for
all t.

5 Parameter Estimation

In section, we derive the estimators of the parameters of
the DK distribution using both non-bayesian and bayesian
techniques.

5.1 Maximum Likelihood Estimation (MLE)

The method of MLE, first proposed by [62,63,64,?],
consider a random sample of size n, denoted by
x1,x2, . . . ,xn, where each observation is independently
and identically distributed (i.i.d.) following an DK
distribution with unspecified parameters a and b. The

log-likelihood function can be derived as

ℓ(a,b) = log [L(a,b)] = n loga+n logb+(a−1)
n

∑
i=1

logxi

−
n

∑
i=1

log(1− xa
i )−2

n

∑
i=1

log[1−b log(1− xa
i )].

Take partial derivative with respect to a yields;

∂ℓ

∂a
=

n
a
+

n

∑
i=1

logxi +
n

∑
i=1

xa
i logxi

1− xa
i

−2b
n

∑
i=1

xa
i logxi

(1− xa
i )[1−b log(1− xa

i )]
.

Equating this expression to zero yields the MLE condition
for the parameter a:
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n
a
+

n

∑
i=1

logxi +
n

∑
i=1

xa
i logxi

1− xa
i

−2b
n

∑
i=1

xa
i logxi

(1− xa
i )[1−b log(1− xa

i )]
= 0.

(20)

Similarly, take partial derivative with respect to b
gives;

∂ℓ

∂b
=

n
b
−2

n

∑
i=1

− log(1− xa
i )

1−b log(1− xa
i )

∂ℓ

∂b
=

n
b
+2

n

∑
i=1

log(1− xa
i )

1−b log(1− xa
i )
.

Equating this expression to zero yields the MLE condition
for the parameter b:

n
b
+2

n

∑
i=1

log(1− xa
i )

1−b log(1− xa
i )

= 0. (21)

The MLEs of the parameters a and b are obtained by
numerically solving the coupled equations specified in
Eqs. (20) and (21).

5.2 Least Squares Estimation (LSE)

The method of LSE, first proposed by [4], offers an
approach for determining parameters of the Beta
distribution. Building upon the foundational concepts
presented in their work, we develop an estimation
technique that minimizes the sum of squared differences
between empirical observations and theoretical
predictions. This approach, which focuses on optimizing
the fit of the Beta distribution model, continues to be a
crucial tool for deriving accurate parameter estimates.

E [F (xk:n|a,b)] =
k

n+1
and

V [F (xk:n|a,b)] =
k (n− k+1)

(n+1)2 (n+2)
.

The estimates of the parameters a and b are derived
through the least squares method, yielding the estimators
âLSE and b̂LSE . These estimators are computed by
minimizing the objective function L(a,b) with respect to
a and b.

L(a,b) = argmin
(a,b)

n

∑
k=1

[
F (xk:n|a,b)−

k
n+1

]2

. (22)

The estimates are derived by solving the following set of
non-linear equations:

n

∑
k=1

[
F (xk:n|a,b)−

k
n+1

]2

∆1 (xk:n|a,b) = 0 (23)

n

∑
k=1

[
F (xk:n|a,b)−

k
n+1

]2

∆2 (xk:n|a,b) = 0. (24)

Where

∆1 (xk:n|a,b) =
bxa log(x)

(1− xa)(1−b log(1− xa))2 . (25)

∆2 (xk:n|a,b) =−
log(1− xa)

(1−b log(1− xa))2 . (26)

The expressions given in Eqs. (25) and (26) are
obtained by computing the first-order partial derivatives
of the DK distribution’s CDF, shown in Eq. (10), with
respect to the parameters a and b, respectively.

5.3 Weighted Least Squares Estimation (WLSE)

The parameters a and b of the DK distribution are
estimated using the weighted least squares approach. The
resulting estimators, denoted by âWLSE and b̂WLSE , are
derived by minimizing the objective function W (a,b)
with respect to these parameters.

W (a,b) = argmin
(a,b)

n

∑
k=1

wk

[
F (xk:n|a,b)−

k
n+1

]2

, (27)

where

wk =
(n+1)2 (n+2)

k (n− k+1)
.

n

∑
k=1

wk

[
G(xk:n|a,b)−

k
n+1

]2

∆1 (xk:n|a,b) = 0. (28)

n

∑
k=1

wk

[
G(xk:n|a,b)−

k
n+1

]2

∆2 (xk:n|a,b) = 0. (29)

The estimators ∆1(xk:n|a,b) and ∆2(xk:n|a,b) are as
given in Eqs. (25)) and (26), respectively.

5.4 Maximum Product of Spacing Estimation
(MPS)

The MPS method was proposed by [5] as a different
approach compared to traditional maximum likelihood
estimation. This technique provides an approximation of
the Kullback-Leibler information criterion while
employing a unique methodology independent of
maximum likelihood principles. When working with
ordered data in ascending sequence, this method proves
particularly suitable for implementation.

Is (X |a,b) =

[
n+1

∏
k=1

D j (xk:n|a,b)

] 1
n+1

, (30)
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Where D j (xk:n|a,b) = F (xk|a,b) - F (xk−1|a,b);
k = 1,2,3, . . . ,n. In a similar way, it is possible to opt for
maximizing the function.

N (a,b) =
1

n+1

n+1

∑
k=1

ln(D j (xk:n|a,b)). (31)

To obtain the parameter estimates, we compute the partial
derivatives of the function N(a,b) with respect to a and b.
By setting these derivatives to zero, ∂N(a,b)

∂a = 0 and
∂N(a,b)

∂b = 0, and solving the resulting nonlinear system of
equations, we can determine the optimal values for the
parameters.

5.5 Bayesian Inference

The objective of this study is to obtain Bayesian
estimators (BEs) for the unknown parameters of the DK
distribution. Within the Bayesian inference framework,
various loss functions such as quadratic (squared error),
LINEX (linear-exponential), and generalized entropy loss
functions will be utilized for parameter estimation.
Assuming independence between the parameters, we
adopt gamma-distributed priors for both a and b, which
are subsequently integrated into the joint prior
distribution of the DK model.

φ1(a) ∝ aθ1−1e−(1−θ)1a, a > 0,θ1 > 0, (1−θ)1 > 0
φ2(b) ∝ bθ2−1e−(1−θ)2b, b > 0,θ2 > 0,(1−θ)2 > 0.

}
(32)

The specification of the hyperparameters θk and (1− θ)k
for k = 1,2 is informed by prior beliefs about the unknown
parameters. The joint prior distribution for the parameter
vector π = (a,b) is consequently defined as:

φ1(π) = φ1(a)φ2(b)
φ1(π) ∝ aθ1−1bθ2−1e−((1−θ)1a+(1−θ)2b).

}
(33)

The posterior distribution, after observing the data
X = (x1,x2, . . . ,xn), is proportional to:

φ(π | X) =
φ(π)ι(π)∫

π
φ(π)ι(π)dπ

.

Consequently, the form of the posterior distribution is
given by:

φ(π | X) ∝
b2n+θ2−1aθ1−1

(ab+2)2

× e−b∑
n
k=1(xk−(1−θ)1a−(1−θ)2b)

n

∏
k=1

(
a+bx2) . (34)

Bayesian parameter estimates are derived under
various loss functions. For the squared error loss (SEL),
the Bayes estimator is given by:

φ̂BE_SEL = E[φ | X ] =
∫

φπ(φ | X)dφ . (35)

Alternative loss functions, such as LINEX and
generalized entropy loss (GEL), address asymmetric
estimation scenarios. The Bayes estimator under LINEX
loss is defined as:

φ̂LINEX =− 1
η

log
(∫

e−ηφ
π(φ | X)dφ

)
, (36)

where η ̸= 0 reflects the asymmetry in estimation. For
GEL, the Bayes estimator becomes:

φ̂GEL =

(∫
φ
−l

π(φ | X)dφ

)−1/l

, (37)

where l ̸= 0 is the asymmetry parameter.
Since these estimators often lack closed-form

solutions, numerical methods like Markov chain Monte
Carlo (MCMC) are employed. The MCMC procedure for
approximating Bayesian estimates involves the following
steps:

1.Initialize the parameters φ (0) and set the number of
iterations M.

2.Generate samples φ ( j) from the posterior distribution
π(φ |X) using algorithms like the Metropolis-Hastings
or Gibbs sampler.

3.Discard the initial τD samples as the burn-in period to
ensure convergence.

4.Use the remaining M − τD samples to compute
Bayesian estimates as follows:

φ̂SEL =
1

M− τD

M

∑
j=τD+1

φ
( j),

φ̂LINEX =− 1
η

log

(
1

M− τD

M

∑
j=τD+1

e−ηφ ( j)

)
,

φ̂GEL =

(
1

M− τD

M

∑
j=τD+1

(φ ( j))−l

)−1/l

.

This algorithm enables the computation of Bayesian
estimates under SEL, LINEX, and GEL loss functions,
providing robust parameter estimates tailored to specific
applications. For further reading, refer to [38] and [39].

6 Monte Carlo Simulation

The aim of this simulation study is to compare the
performance of non-Bayesian (MLE, MPS, LS and WLS)
and Bayesian estimation methods for the parameters of
the DK distribution. The study employs a
1,0000-replication design for each sample size considered
(n = 15, 25, 50, 75). Estimator accuracy and reliability are
assessed using the averaged bias and root mean square
error (RMSE) across replications. For the Bayesian
context, the study considered squared error loss function
(SEL) and the asymmetry in loss functions is explored
using:
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iLINEX function: η = −0.5 (LINEX1) and η = 0.5
(LINEX2).

iiGEL loss function: l = −0.5 (GEL1) and l = 0.5
(GEL2).

The study also examines different scenarios by varying the
initial parameter values, which includes;

Case Ia = 0.5 and b = 1.75
Case IIa = 1.75 and b = 1.95

Case IIIa = 1.5 and b = 1.55
Case IVa = 1.25 and b = 1.70

The simulation results presented in Tables 2, 3, 4, and
5 consistently show that the performance of all estimators
improves as the sample size (n) increases. Across all four
cases, both the bias and the RMSE for both parameters (â
and b̂) decrease significantly with larger n. Comparing the
non-Bayesian methods, the MPS method generally
provides the lowest bias and RMSE for both estimators
across all sample sizes. For the non-Bayesian estimators,
the LS and WLS methods often show higher variability,
particularly for the b̂ estimator at smaller sample sizes.
Among the Bayesian estimators, which are presented
under various loss functions (SEL, LINEX, and GEL),
their performance is generally inferior to the
non-Bayesian methods in terms of bias and RMSE for
both parameters, especially at smaller sample sizes. For
example, in Table 2, the Bayesian estimators for â and b̂
have much larger biases and RMSEs than the
non-Bayesian estimators, a trend that is consistently
observed in Tables 3, 4, and 5. The Bayesian estimators
with the GEL2 loss function consistently show the worst
performance with very high bias and RMSE values.

The plots in Figure 9 illustrate the performance of
different non-Bayesian estimation methods for
parameters â and b̂ across four distinct simulation cases.
A consistent trend observed across all panels (a), (b), (c),
and (d) is that both the Bias and the RMSE decrease as
the sample size (n) increases, which is a desirable
property for any estimator. For the parameter â, the MPS
and MLE methods generally show the lowest bias and
RMSE, particularly as the sample size grows. In contrast,
the LS and WLS methods tend to exhibit higher bias and
RMSE for â. For the parameter b̂, the MPS estimator
consistently outperforms the others by having the lowest
bias and RMSE across all cases and sample sizes. The
performance of the MLE and LS/WLS estimators for b̂ is
more variable, with their biases and RMSEs often being
considerably higher than those of the MPS estimator,
especially at smaller sample sizes.

The plots in Figure 10 illustrate the performance of
various Bayesian estimators under different loss functions
across four simulation cases. A clear trend across all
panels (a), (b), (c), and (d) is that both the bias and the
Root Mean Square Error (RMSE) for parameters â and b̂
decrease as the sample size (n) increases, confirming the
asymptotic properties of these estimators. For the

parameter â, the SEL, LINEX1, LINEX2, and GEL1
estimators show very similar performance, with their bias
and RMSE values being closely clustered together. The
GEL2 estimator consistently performs worse than the
others for â, exhibiting a significantly higher bias and
RMSE across all cases and sample sizes. For the
parameter b̂, the SEL, LINEX1, LINEX2, and GEL1
estimators also have similar performance, though the
differences between them are slightly more pronounced
compared to â. The GEL2 estimator for b̂ again shows the
worst performance, with markedly higher bias and RMSE
values.

7 Applications

The Dhillon-G distribution family is well equipped to
model bounded data in the unit interval with complex
shapes like bimodality and bathtub curves, which extends
its application far beyond the examples shown in this
paper. In reliability and engineering, it can be used to
estimate the percentage of system operating time or
percentage of defective items in a batch manufactured, its
ability to fit a bathtub curve being particularly useful in
failure analysis. In biology and medicine, the model can
be used to examine the disease prevalence, effectiveness
rate of treatment, or percentage of gene expression among
members of a population. Its usage in economics and
finance is in the model’s capacity to accommodate
bounded variables such as asset return or unemployment,
which have bimodal or skewed distributions. Secondly, in
social science and ecology, the model is a good statistical
tool for analysis of data with survey data being given as
proportions or tracking the population proportion of the
species in question with room for several different
analytical ends.

The first data (Data I) is the Dominica Weekly death
rate due to COVID-19 from 22/3/2020 to 20/12/2020
assessed from
https://data.who.int/dashboards/covid19/data?n=c and
presented in Table 6.

The second data (Data II) is the Vinyl chloride data
from clean upgradient ground-water monitoring wells in
(g/L) first studied by [7] and later investigated by others
including [8] [52]. The data is presented in Table 7 below.

The third data (Data III) is the weekly volume of
traded Bitcoin-USD (′000,000,000) from 17/09/2023 to
15/9/2024, assessed from
https://finance.yahoo.com/quote/BTC-
USD/history/?frequency=1d and reported in
Table 8.

The fourth data (Data IV) is the infant mortality rate
per 1000 live-births for a few chosen nations in 2021, as
reported by a
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN ,
(accessed on August 9, 2025). This data has been studied
by [51] and it is presented in Table 9.
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Table 2: Simulation for Case I

Type Method Estimator n = 15 n = 25 n = 50 n = 75
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE â 0.08539 0.03543 0.04332 0.01252 0.01254 0.00230 0.00517 0.00070
b̂ 0.79883 4.50797 0.38646 1.45428 0.09763 0.16832 0.03202 0.03489

MPS â 0.01019 0.01556 0.00977 0.00625 0.00552 0.00128 0.00313 0.00040
b̂ 0.27028 1.38653 0.17359 0.64233 0.05822 0.09812 0.02135 0.02221

LS â 0.00094 0.05244 0.00086 0.02837 0.00228 0.01233 0.00033 0.00796
b̂ 0.38828 5.02942 0.31708 13.41343 0.11083 0.52009 0.06652 0.29475

WLS â 0.01227 0.05208 0.01073 0.02475 0.01300 0.01072 0.00902 0.00690
b̂ 0.50928 9.92605 0.32621 7.19041 0.15906 0.50660 0.10843 0.28568

Bayesian

SEL â 0.25501 0.11042 0.23612 0.08056 0.20963 0.05425 0.19703 0.04633
b̂ 2.02396 12.51036 1.70880 5.95677 1.27155 2.76905 1.18662 2.29889

LINEX1 â 0.25574 0.11093 0.23677 0.08094 0.21016 0.05451 0.19748 0.04653
b̂ 2.08418 13.66924 1.73368 6.14611 1.28726 2.83796 1.19886 2.34560

LINEX2 â 0.25427 0.10991 0.23548 0.08018 0.20911 0.05400 0.19659 0.04613
b̂ 1.97015 11.61668 1.68337 5.76414 1.25584 2.70131 1.17419 2.25144

GEL1 â 0.25407 0.10988 0.23527 0.08012 0.20891 0.05393 0.19640 0.04607
b̂ 2.01608 12.41940 1.70320 5.92530 1.26710 2.75300 1.18286 2.28714

GEL2 â 2.85939 11.74827 2.86761 10.75902 2.50817 7.42885 2.42530 6.76427
b̂ 2.00035 12.24002 1.69195 5.86205 1.25817 2.72092 1.17530 2.26351

Table 3: Simulation for Case II

Type Method Estimator n = 15 n = 25 n = 50 n = 75
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE â 0.24754 0.44077 0.12071 0.14032 0.03657 0.03413 0.02767 0.01704
b̂ 1.02620 18.67731 0.45648 1.46033 0.13246 0.22683 0.07606 0.11155

MPS â 0.02593 0.23602 0.01446 0.08860 0.00004 0.02500 0.01394 0.01127
b̂ 0.30689 4.11485 0.17670 0.63538 0.06540 0.12892 0.05037 0.07118

LS â 0.02903 0.61595 0.00949 0.28822 0.01281 0.13974 0.00156 0.09992
b̂ 0.60871 30.99072 0.23479 1.83133 0.12371 0.66018 0.06093 0.40186

WLS â 0.01029 0.53885 0.03411 0.26847 0.02068 0.12425 0.03323 0.08720
b̂ 0.59157 19.78864 0.29978 1.85343 0.16987 0.62285 0.10834 0.38348

Bayesian

SEL â 0.76220 1.01732 0.71875 0.76299 0.66666 0.55457 0.62948 0.48036
b̂ 2.30912 16.71031 1.92376 7.67530 1.43977 3.55824 1.33550 2.99522

LINEX1 â 0.77077 1.03516 0.72620 0.77657 0.67274 0.56375 0.63480 0.48784
b̂ 2.39928 18.84873 1.95784 7.98171 1.45978 3.65913 1.35122 3.06557

LINEX2 â 0.75373 0.99993 0.71139 0.74973 0.66064 0.54563 0.62422 0.47308
b̂ 2.23185 15.18872 1.88903 7.36670 1.41982 3.45972 1.31948 2.92352

GEL1 â 0.75893 1.01174 0.71585 0.75837 0.66420 0.55111 0.62729 0.47749
b̂ 2.29929 16.57082 1.91708 7.63137 1.43475 3.53757 1.33124 2.97975

GEL2 â 2.47968 17.24881 2.10369 8.34461 1.62470 4.10618 1.52268 3.51768
b̂ 2.27968 16.29694 1.90369 7.54313 1.42470 3.49630 1.32268 2.94861

Table 10 provides a summary of the basic descriptive
statistics for four datasets. A key observation is the
variation in sample size (n), which ranges from 27 to 53.
The central tendency, as measured by the mean and
median, is similar for Data II, III, and IV, all falling
around 0.1 to 0.2, while Data I has a considerably smaller
mean and median, suggesting its values are concentrated
at the lower end of the scale. The dispersion of the data,
indicated by the variance, standard deviation, and range,
is notably low for Data I compared to the other datasets.
The presence of outliers is common across all datasets,
although the number and magnitude of these outliers vary.

A consistent finding is that all four datasets exhibit
positive skewness, with values greater than zero,
indicating a tail on the right side of the distribution.
Similarly, the kurtosis values, all greater than 3, suggest
that each distribution is leptokurtic, meaning they have
heavier tails and a sharper peak than a normal
distribution.

The results in Table 11 summarize the performance of
several distributions ([12], Beta [10], Gumbel [15],
Gamma, Burr XII [13] and [14]) fitted to four different
datasets, based on information criteria and goodness-of-fit
tests. A consistent pattern emerges where the newly
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Table 4: Simulation for Case III

Type Method Estimator n = 15 n = 25 n = 50 n = 75
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE â 0.23049 0.35180 0.11755 0.13087 0.03194 0.02219 0.01489 0.00645
b̂ 0.72284 4.07025 0.35299 1.03608 0.08598 0.13230 0.04319 0.04902

MPS â 0.00322 0.18308 0.01073 0.07785 0.00915 0.01431 0.00605 0.00390
b̂ 0.25695 1.29985 0.16087 0.46941 0.05017 0.07867 0.02939 0.03182

LS â 0.01070 0.46698 0.00899 0.25878 0.00358 0.12065 0.00528 0.07450
b̂ 0.41194 8.46459 0.25404 1.60182 0.08730 0.43912 0.06173 0.21818

WLS â 0.04619 0.41554 0.04940 0.23254 0.02977 0.10456 0.03423 0.06471
b̂ 0.41051 4.97288 0.29771 1.42628 0.12508 0.41255 0.10574 0.22477

Bayesian

SEL â 0.77967 1.02222 0.74236 0.76232 0.66281 0.50072 0.64855 0.47371
b̂ 1.98717 11.31740 1.72694 5.49966 1.32062 2.43042 1.25119 2.35232

LINEX1 â 0.78640 1.03702 0.74838 0.77410 0.66812 0.50850 0.65252 0.47931
b̂ 2.03761 12.14097 1.74641 5.63570 1.33337 2.47750 1.26171 2.39103

LINEX2 â 0.77301 1.00782 0.73640 0.75080 0.65758 0.49315 0.64461 0.46824
b̂ 1.94026 10.63161 1.70720 5.36153 1.30808 2.38481 1.24055 2.31333

GEL1 â 0.77687 1.01725 0.73983 0.75797 0.66044 0.49737 0.64673 0.47126
b̂ 1.97969 11.23966 1.72221 5.47478 1.31664 2.41751 1.24775 2.34165

GEL2 â 2.01472 11.28472 1.76275 5.59862 1.35871 2.52527 1.29084 2.44674
b̂ 1.96472 11.08575 1.71275 5.42485 1.30871 2.39190 1.24084 2.32016

Table 5: Simulation for Case IV

Type Method Estimator n = 15 n = 25 n = 50 n = 75
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE â 0.18962 0.23923 0.09552 0.08463 0.02465 0.01673 0.01342 0.00595
b̂ 0.78850 4.67055 0.37047 1.13767 0.10433 0.16848 0.04770 0.05765

MPS â 0.01704 0.12614 0.00241 0.04967 0.00122 0.01240 0.00496 0.00393
b̂ 0.23678 1.41910 0.15170 0.50849 0.05103 0.10032 0.03018 0.03674

LS â 0.01464 0.36134 0.00951 0.18852 0.00547 0.07736 0.00916 0.05268
b̂ 0.41692 4.26303 0.22948 1.68815 0.08651 0.46534 0.06368 0.35310

WLS â 0.04559 0.33982 0.02050 0.17353 0.02185 0.06715 0.03112 0.04625
b̂ 0.47397 4.44364 0.26931 1.50162 0.13633 0.44526 0.10210 0.33008

Bayesian

SEL â 0.59274 0.62438 0.55598 0.45995 0.52376 0.32511 0.50449 0.28572
b̂ 2.07026 12.78619 1.73611 5.89750 1.40135 2.95545 1.20286 2.20698

LINEX1 â 0.59724 0.63194 0.55983 0.46575 0.52699 0.32883 0.50716 0.28870
b̂ 2.13177 13.92612 1.75949 6.07042 1.41712 3.02250 1.21376 2.24600

LINEX2 â 0.58830 0.61700 0.55217 0.45426 0.52056 0.32146 0.50184 0.28279
b̂ 2.01494 11.89443 1.71255 5.72387 1.38584 2.89085 1.19181 2.16748

GEL1 â 0.59043 0.62126 0.55398 0.45734 0.52198 0.32315 0.50301 0.28413
b̂ 2.06210 12.69266 1.73074 5.86845 1.39685 2.93946 1.19933 2.19682

GEL2 â 2.49582 14.55190 2.16999 7.56074 1.83787 4.35932 1.64224 3.45189
b̂ 2.04582 12.50816 1.71999 5.81025 1.38787 2.90774 1.19224 2.17637

proposed DK distribution provides the best fit across all
four datasets. This is evidenced by its lowest values for
the AIC, CAIC, BIC, and HQIC information criteria,
which penalize models with more parameters while
rewarding a better log-likelihood (LL). For example, in
Data I, the DK distribution has a higher log-likelihood
than Gumbel, and better information criteria values than
all other distributions. Furthermore, the goodness-of-fit
tests, specifically the Anderson-Darling (A) and
Cramér-von Mises (W ) statistics, are consistently at their
minimum for the DK distribution in all four cases. Most
notably, the Kolmogorov-Smirnov (KS) test for the DK

distribution consistently yields the highest p-values across
all datasets (0.9984 for Data I, 0.9873 for Data II, 0.7851
for Data III, and 0.9837 for Data IV), confirming that it
provides the most plausible fit to the observed data. The
other distributions, such as Kumaraswamy, Beta, and
Gamma, generally perform similarly to each other but are
outperformed by the DK distribution.

Table 12 provides the Maximum Likelihood Estimates
(MLEs) and their corresponding standard errors for the
parameters of various distributions fitted to four datasets.
The standard error, which indicates the precision of the
estimates, generally appears to be relatively small for the
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Fig. 9: Plots of (a) Case I, (b) II, (c) III and (d) IV for Non-Bayesian Simulation Results

DK distribution, especially in comparison to some of the
other models. For instance, in Data I, the standard error
for b̂ of the DK distribution is 1.2620, which is
considerably lower than the large standard errors
observed for the BurrXII distribution at 201.5043, Beta at
24.4471, and Gamma at 25.3974. This trend suggests that
the parameters of the DK distribution are estimated with a
higher degree of precision and stability. The
Kumaraswamy distribution also shows relatively small

standard errors, indicating good precision. The Gumbel
distribution’s parameter estimates are small in magnitude,
which is consistent with its very low standard errors.
Overall, the consistently low standard errors for the DK
distribution across all datasets further support its superior
performance and reliability as a suitable model for the
analyzed data.

The following inferences are drawn from Figures 11-
19.
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Fig. 10: Plots of (a) Case I, (b) II, (c) III and (d) IV for Bayesian Simulation Results

iFigure 11 (Box Plot & Violin Plot): Most notably, the
violin plot for Data-III reveals a bimodal distribution
that the box plot completely obscures.

iiFigure 12 (TTT Plots): These plots effectively
differentiate underlying failure rates, showing Data-I
with a constant rate, Data-II with an increasing rate,
Data-III with a bathtub-shaped rate, and Data-IV with
an upside-down bathtub-shaped rate.

iiiFigure 13 (Histograms with Density Plots): All four
datasets consistently exhibit right-skewness, with
most data concentrated at lower values and a longer
tail extending to higher values.

ivFigure 14 (ecdf vs. Theoretical cdf Plots): For all
datasets, the empirical cdf closely follows the DK cdf,
strongly indicating a good fit of the DK model.

vFigure 15 (Empirical vs. Theoretical Survival
Function Plots): The empirical survival function
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Table 6: Dominica Weekly death rate due to COVID-19

0.029850746 0.035363458 0.05292172 0.051236749 0.053061224 0.035197989
0.032082324 0.025607639 0.01929982 0.012975779 0.016090105 0.016615654
0.012140954 0.024329382 0.01301384 0.012219227 0.013564214 0.010826889
0.008958089 0.010932598 0.016161891 0.02201862 0.023125997 0.037598736
0.033069307 0.02618165 0.019748264 0.015044519 0.011788481 0.009540117
0.009618688 0.008082768 0.008333333 0.006851922 0.005307263 0.005720572
0.004095843 0.003398641 0.002529511 0.004015331

Table 7: Vinyl chloride data

5.1 1.2 1.3 0.6 0.5 2.4 0.5 1.1 8.0 0.8 0.4 0.6 0.9 0.4 2.0 0.5 5.3
3.2 2.7 2.9 2.5 2.3 1.0 0.2 0.1 0.1 1.8 0.9 2.0 4.0 6.8 1.2 0.4 0.2

Table 8: Weekly volume of traded bitcoin-usd

0.256559779 0.822519052 0.730122407 0.821837757 0.726736545 1.134023831 1.65718773
1.155200566 1.347674948 1.435353611 1.30439894 1.34360108 1.885036149 1.68493482
1.520841715 1.578071262 2.02311774 2.599718197 1.391358248 1.553146029 1.351841874
1.578263954 2.135600415 1.607691456 3.228956661 4.057096933 4.059577506 3.280971217
2.163246258 2.294272601 2.882436754 2.578895559 1.760310882 2.177170118 1.616178571
1.91456349 2.25779718 1.709494099 1.875695007 1.759732716 1.634490154 1.710300939
2.131075314 1.8740702 2.221618762 2.27265185 2.510023388 3.171587346 1.937313931
2.006702741 2.085891553 2.070528442 1.832794312

Data−I Data−II Data−III Data−IV

Fig. 11: Boxplot superimposed on Violin plot for the Datasets
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Fig. 12: TTT plots for the Datasets

consistently aligns very closely with the DK model’s
curve, confirming the model’s suitability for
describing survival patterns.

viFigure 16 (P-P Plots): The close alignment of
empirical probabilities to the diagonal reference line

across all datasets strongly indicates a good fit of the
DK distribution to the data.

viiFigure 17 (Q-Q Plots): While generally showing a
good fit, Data-IV exhibits noticeable deviations at
both tails, suggesting the DK model may not fully
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Table 9: Infant mortality rate per 1000 live-births

56 10 22 3 69 6 7 11 4 4 19 13 7 27
12 3 4 11 84 27 25 6 35 14 11 12 6

Table 10: Summary of basic statistics

Statistic Data I Data II Data III Data IV
n 40 34 53 27
Q1 0.00939461 0.05 0.1520842 0.06
Q3 0.02575114 0.2475 0.217717 0.235
IQR 0.01635653 0.1975 0.06563284 0.175

Outlier
0.05292172,
0.05123675,
0.05306122

0.8, 0.68

0.02565598,
0.3228957,
0.4057097,
0.4059578,
0.3280971,
0.3171587

0.56, 0.69, 0.84

Mean 0.018963 0.1879412 0.1900383 0.1881481
Median 0.01430437 0.115 0.1832794 0.11
Variance 0.0001862517 0.03812594 0.005644836 0.04206182
Std. dev. 0.01364741 0.1952586 0.07513212 0.2050898
Range 0.050531709 0.79 0.38030182 0.81
Skewness 1.077715 1.603688 0.7768817 1.953977
Kurtosis 3.416908 5.005408 4.267464 6.050707

Data−I

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Data−II
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Fig. 13: Density plot superimposed on Histogram for the Datasets
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Fig. 14: Empirical versus theoretical CDF plots for the Datasets

capture its extreme values as accurately as for other
datasets.

viiiFigures 18 and 19 (Likelihood Profile Plots): For both
parameters (â and b̂), the plots show well-defined
unimodal curves, indicating that the maximum

likelihood estimates are unique and globally
identifiable, suggesting the stability of the parameters.
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Table 11: Model performance indicators and goodness of fit tests

Data Distribution LL AIC CAIC BIC HQIC W A KS p-value

Data I

DK 122.48 -240.9605 -240.6361 -237.5827 -239.7392 0.0291 0.2410 0.0575 0.9984
Kumaraswamy 122.97 -241.9391 -241.6148 -238.5614 -240.7178 0.0546 0.3521 0.0958 0.8224
Beta 123.49 -242.9882 -242.6638 -239.6104 -241.7669 0.0358 0.2399 0.0858 0.9059
Gumbel 121.26 -238.5247 -238.2004 -235.1470 -237.3034 0.0752 0.4787 0.1110 0.6664
Gamma 123.51 -243.0156 -242.6913 -239.6378 -241.7943 0.0346 0.2328 0.0843 0.9157
BurrXII 122.98 -241.9562 -241.6319 -238.5785 -240.7349 0.0540 0.3482 0.0951 0.8286
Weibull 122.97 -241.9478 -241.6235 -238.5701 -240.7266 0.0543 0.3501 0.0955 0.8257

Data II

DK 23.3 -42.6009 -42.2138 -39.5482 -41.5598 0.0316 0.2131 0.0772 0.9873
Kumaraswamy 22.00 -39.9997 -39.6126 -36.9470 -38.9587 0.0794 0.5235 0.1208 0.7037
Beta 21.80 -39.6043 -39.2172 -36.5516 -38.5632 0.0848 0.5580 0.1317 0.5974
Gumbel 16.06 -28.1201 -27.7330 -25.0673 -27.0790 0.1633 1.0409 0.1569 0.3724
Gamma 22.87 -41.7495 -41.3624 -38.6967 -40.7084 0.0459 0.2975 0.0973 0.9041
BurrXII 22.94 -41.8900 -41.5029 -38.8372 -40.8489 0.0399 0.2570 0.0843 0.9690
Weibull 22.84 -41.6766 -41.2895 -38.6238 -40.6355 0.0463 0.3000 0.0918 0.9366

Data III

DK 63.47 -122.9477 -122.7077 -119.0071 -121.4323 0.1040 0.6588 0.0870 0.7851
Kumaraswamy 62.81 -121.6122 -121.3722 -117.6716 -120.0968 0.1609 0.9613 0.1294 0.3099
Beta 63.20 -122.3951 -122.1551 -118.4545 -120.8798 0.1381 0.8216 0.1097 0.5110
Gumbel 63.30 -122.5983 -122.3583 -118.6577 -121.0829 0.1210 0.7350 0.1062 0.5527
Gamma 62.83 -121.6676 -121.4276 -117.7271 -120.1523 0.1416 0.8399 0.1068 0.5457
BurrXII 63.07 -122.1426 -121.9026 -118.2020 -120.6272 0.1501 0.8996 0.1248 0.3520
Weibull 62.95 -121.9010 -121.6610 -117.9604 -120.3857 0.1550 0.9276 0.1269 0.3325

Data IV

DK 21.02 -38.0379 -37.5379 -35.4462 -37.2673 0.0549 0.3725 0.0887 0.9837
Kumaraswamy 16.33 -28.6582 -28.1582 -26.0665 -27.8876 0.2081 1.3004 0.1991 0.2349
Beta 16.15 -28.2971 -27.7971 -25.7055 -27.5265 0.2145 1.3361 0.2136 0.1703
Gumbel 13.76 -23.5159 -23.0159 -20.9242 -22.7452 0.2218 1.3703 0.2015 0.2228
Gamma 18.58 -33.1615 -32.6615 -30.5698 -32.3908 0.1239 0.8064 0.1726 0.3974
BurrXII 18.77 -33.5420 -33.0420 -30.9504 -32.7714 0.1110 0.7247 0.1501 0.5775
Weibull 18.23 -32.4575 -31.9575 -29.8658 -31.6869 0.1306 0.8475 0.1615 0.4817
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Fig. 15: Empirical versus theoretical survival function plots for the Datasets
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Fig. 16: P-P plots for the Datasets

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1458 O. J. Obulezi et al.: A New Unit Family of Distributions...

Table 12: MLEs and standard errors for the parameters

Data Distribution â(standard error) b̂(standard error)

Data I

DK 2.2573(0.2949) 9.4967(1.2620)
Kumaraswamy 1.4807(0.1809) 5.7113(0.6640)
Beta 2.0099(0.4175) 103.9624(24.4471)
Gumbel 0.0130(0.0016) 0.0095(0.0012)
Gamma 2.0449(0.4252) 107.8358(25.3974)
BurrXII 1.4854(0.1782) 309.4328(201.5043)
Weibull 0.0211(0.0024) 1.4830(0.7971)

Data II

DK 1.4394(0.2290) 3.0880(0.5884)
Kumaraswamy 0.8366(0.1407) 1.1464(0.2708)
Beta 0.82363(0.1742) 3.3498(0.8692)
Gumbel 0.1092(0.0209) 0.1170(0.0174)
Gamma 1.0627(0.2281) 5.6543(1.5357)
BurrXII 1.0932(0.1325) 6.9315(1.5800)
Weibull 0.1888(0.0339) 1.0102(0.1327)

Data III

DK 4.3998(0.5220) 7.5392(0.9176)
Kumaraswamy 2.6413(0.2771) 4.0658(0.4098)
Beta 4.8456(0.9114) 20.6689(4.0457)
Gumbel 0.1553(0.0095) 0.0656(0.0066)
Gamma 5.8668(1.1088) 30.8720(6.0916)
BurrXII 2.6900(0.2634) 64.7313(24.7615)
Weibull 0.2133(0.0116) 2.6660(0.2697)

Data IV

DK 1.8118(0.3110) 3.8780(0.7728)
Kumaraswamy 0.8748(0.1596) 1.1614(0.2957)
Beta 0.8941(0.2131) 3.4259(0.9879)
Gumbel 0.1110(0.0216) 0.1086(0.0186)
Gamma 1.2802(0.3133) 6.8041(2.0278)
BurrXII 1.1685(0.1503) 7.5892(1.9310)
Weibull 0.1943(0.0370) 1.0739(0.1504)
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Fig. 17: Q-Q plots for the Datasets
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Fig. 18: Likelihood Profile for â for Data I, II, II and IV respectively
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Fig. 19: Likelihood Profile for b̂ for Data I, II, II and IV respectively

8 Final Comments and Future Work

This study introduced a new unit family of distributions
called the Dhillon-G family that uses a reduced Dhillon
distribution as a transformer in the T-X generator.
Different generalizers were suggested in Table 1 for
future studies. The Kumaraswamy distribution was
further used as a parent distribution to determine the
usefulness of the new family in enhancing bounded
distributions, leading to a new distribution referred to DK.
The structural properties of the Dk distribution were
studied with evidence of DK distribution capable of
modeling both unimodal and bimodal data. The
parameters of the DK model were estimated using MLE,
MPS, LS and WLS methods as well as Bayesian
estimation under SEL, LINEX and GEL functions. A
comprehensive simulation studies were carried out at
different parameter settings and sample sizes, and results
reveal consistent asymptotic behavior for small and large
sample sizes. Four real data sets were deployed to
demonstrate the applicability.

Future research can pursue this work along many
different directions. A promising direction is to compare
the performance of other generalizers found in Table 1.
By employing a different parent distribution, such as the
Beta or Topp-Leone distribution, from the Dhillon-G
family may yield new, highly flexible models targeted for
specific kinds of data. Furthermore, an analysis of the
stress-strength reliability of the DK distribution would be
useful, particularly for engineering and quality control
applications where the stress and strength of components
are significant. Another future research area is to extend
the current model to a multivariate or bivariate model.
Construction of a bivariate Dhillon-G family would allow
researchers to represent the relationship between two or
more bounded variables that are correlated with each
other, which is crucial in finance and medicine. The DK
distribution parameters may even serve as regressors in a
regression model so that the model can receive covariate
information. This would render the DK distribution no
longer an independent model but a general regression
tool.

Lastly, although in this research we worked with
complete data, subsequent studies can benefit from

generalizing the DK distribution to other censoring
schemes, such as Type I or progressive censoring. This is
very important in the case of reliability and life time data
when complete observations are not possible.
Implementing these ideas will not only add depth to the
theoretical structure of the Dhillon-G family but also
significantly increase its applicability in many fields of
science.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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