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Abstract: In the theory of general relativity, the Einstein’s field equation is a tensor field equation which described the geometry of
space-time to the distribution of matter within it. These equations were constructed in a form of tensorial field which relate the local
space-time curvature with the energy, momentum and stress around that space. In this research work, the Riemannian geometry of
space-time was applied to obtain fourteen component of affine connection coefficients, Riemann Christofell tensor, Ricci tensor and
exterior Einstein’s field equation for spherical field and find solution in form of power series. The result obtained yields a function
f (t,r) to the order c0 reduces to Laplacian equation , implying that it agrees with the well-known equivalence principle in Physics and
to order of c−2 it contains post Newtonian additional correctional terms which are not found in Newton’s dynamical theory or Einstein’s
geometrical theory of gravitation. The consequence of the additional correctional terms is that it can be applied in the detection of the
existence of gravitational waves. The interior solution was obtained for a static homogeneous spherical bodies whose tensor field varies
with time and radial distance was constructed and solved. It was observed that within the interior field, the solution obtained converges
to Newton dynamical scalar potential which is thus an extremely discovery with the reliance on two arbitrary function. The result
obtained in the limit of weak field is equal to Laplacian equation which does not differ significantly from Newton dynamical theory of
gravitation. The solution further confirms the assumption that Newton dynamical theory of gravitation is a limiting case of Einstein’s
geometrical gravitational theory of gravitation.
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1 Introduction

Einstein’s theory of gravitation formulated in 1915/1916
unifies Special Relativity and Sir Isaac Newton’s law of
universal gravitation, which describe gravitation as a
dynamics of metric field of space-time and unifying
structure of geometry of the space-time with gravitation.
The curvature is being produced by mass-energy and
momentum content of the space-time. General Relativity
is the most widely accepted theory of gravitation [1]-[3].
After Einstein’s publication of geometrical gravitational
field equation in 1915, the search for their exact and
analytical solution began for all the gravitational field in

nature [2]-[8]. The first approach to construction of exact
analytical solution of the Einstein’s geometrical
gravitational field equations was to find a mapping under
which the tensor assumed a simple form, such as the
vanishing of the off-diagonal elements. This method led
to the first analytical solution, the famous Schwarzschild
solution. The second method was to assume that the
metric tensor assumed certain symmetries assumed forms
of the associated killing vector. The assumption of axially
symmetric metric tensor led to the solution found by
Weyl and Levi-Cevita. The third method of approach was
to require that the metric tensor leads to a particular type
of classification of Weyl and Riemann-Christoffell
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tensors. This led to plane fronted wave solution. The
fourth method was to seek Taylor series expansion of
some initial-value hypersurface, subject to consistent
initial value. This method has not proved successful in
generating the solution [2].
In this article, we show how exact analytical solution to
exterior and interior field equations can be constructed in
the limit of c−2 and c0 in a gravitational field for spherical
massive bodies using the Riemannian golden metric
tensor for a field that has a variation in radial length and
Time.

2 Formulation of Exterior Solution to
Einstein’s Geometrical Gravitational Field
Equation

To formulate the exterior field equation, we consider the
astrophysical body in spherical geometry in which the
tensor field varies with time and radial distance. The
covariant metric tensors for this distribution of mass or
pressure is given by [7]

g00 =−
[

1+
2
c2 f (t,r)

]
(1)

g11 =

[
1+

2
c2 f (t,r)

]−1

(2)

g22 = r2
[

1+
2
c2 f (t,r)

]−1

(3)

g33 = r2sin2
θ

[
1+

2
c2 f (t,r)

]−1

(4)

gµv = 0, Otherwise, (5)

where, f (t,r) is a gravitational scalar potential,
determined by the mass or pressure, and possesses the
symmetries of the latter. In approximate gravitational
field, it is equal to Newton’s gravitational scalar potential
exterior to the spherical mass distribution.

g00 =−
[

1+
2
c2 f (t,r)

]−1

(6)

g11 =

[
1+

2
c2 f (t,r)

]
(7)

g22 =
1
r2

[
1+

2
c2 f (t,r)

]
(8)

g33 =
1

r2sin2θ

[
1+

2
c2 f (t,r)

]
(9)

gµv = 0, Otherwise (10)

The affine connection coefficient defined by the metric
tensors of space and time are determined [1-9] using the
tensor equation.

Γ
µ

αβ
= 1

2 gµν
(
∂α gνβ +∂β gνα −∂ν gαβ

)
(11)

And they are found to be given explicitly as follow

Γ
0

00 =
1
c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ t

(12)

Γ
0

01 = Γ
0

10 =
1
c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ r

(13)

Γ
0

11 =− 1
c2

(
1+

2
c2 f (t,r)

)−3
∂ f
∂ t

(14)

Γ
0

22 =− r2

c2

(
1+

2
c2 f (t,r)

)−3
∂ f
∂ t

(15)

Γ
0

33 =− r2sin2θ

c2

(
1+

2
c2 f (t,r)

)−3
∂ f
∂ t

(16)

Γ
1

00 =
1
c2

(
1+

2
c2 f (t,r)

)
∂ f
∂ r

(17)

Γ
1

01 = Γ
1

10 =− 1
c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ t

(18)

Γ
1

11 =− 1
c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ r

(19)

Γ
1

22 =−r+
r2

c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ r

(20)

Γ
2

02 = Γ
2

20 =− 1
c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ t

(21)

Γ
2

12 = Γ
2

21 =
1
r
− 1

c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ r

(22)

Γ
3

03 = Γ
3

30 =− 1
c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ t

(23)

Γ
3

13 = Γ
3

31 =
1
r
− 1

c2

(
1+

2
c2 f (t,r)

)−1
∂ f
∂ r

(24)

Γ
µ

αβ
= 0; Otherwise (25)

The exterior field equation in this field is given as

G00 = R00 − 1
2 Rg00 = 0 (26)

The choice of this component is because it is observed that
all the solutions to the field equation towards the exterior
converge in the same way. The expressions for the Ricci
tensor R00 and the Riemann curvature R in this field are
given, respectively, as:
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R00 =
12
c4

[
1+

2 f (t,r)
c2

]−2 (
∂ f (t,r)

∂ t

)2

− 3
c2

[
1+

2 f (t,r)
c2

]−1
∂ 2 f (t,r)

∂ t2

− 1
c2

[
1+

2 f (t,r)
c2

]
∂ 2 f (t,r)

∂ r2 − 2
c2r

[
1+

2 f (t,r)
c2

]
∂ f (t,r)

∂ r
+

2
c4

(
∂ f (t,r)

∂ r

)2

(27)

R =
30
c4

[
1+

2 f (t,r)
c2

]−3 (
∂ f (t,r)

∂ t

)2

+
6
c2

[
1+

2 f (t,r)
c2

]−2
∂ 2 f (t,r)

∂ t2

+
4
c4

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ t

)2

− 2
c2

∂ 2 f (t,r)
∂ r2 − 4

c2r
∂ f (t,r)

∂ r

+
2
c4

[
1+

2 f (t,r)
c2

]−2 (
∂ f (t,r)

∂ t

)2

+
2
r2

[
1+

2 f (t,r)
c2

]

(28)

Substituting equations 1, 27 and 28 into 26 yields the following result;

G00 =
2
c2

[
1+

2 f (t,r)
c2

]
∂ 2 f (t,r)

∂ r2

− 4
c2r

[
1+

2 f (t,r)
c2

]
∂ f (t,r)

∂ r
+

2
c4

(
∂ f (t,r)

∂ r

)2

+
1
c4

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ r

)2

+
2
c4

(
∂ f (t,r)

∂ r

)2

− 3
c4

[
1+

2 f (t,r)
c2

]−2 (
∂ f (t,r)

∂ r

)2

+
1
c2

[
1+

2 f (t,r)
c2

]2

= 0

(29)

Multiplying 29 through by − 2
c2 and dividing through by

[
1+ 2 f (t,r)

c2

]
yields

∂ 2 f (t,r)
∂ r2 +

∂ f (t,r)
r∂ r

− 1
c2

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ r

)2

− 1
2c2

[
1+

2 f (t,r)
c2

]−2 (
∂ f (t,r)

∂ r

)2

1
c2

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ r

)2

+
3

2c2

[
1+

2 f (t,r)
c2

]−3 (
∂ f (t,r)

∂ t

)2

+
c2

2r2

[
1+

2 f (t,r)
c2

]2

= 0

(30)

Hence, equation 30 could be equivalently written as

∇
2 f (t,r)− 1

c2

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ r

)2

− 1
2c2

[
1+

2 f (t,r)
c2

]−2 (
∂ f (t,r)

∂ r

)2

− 1
c2

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ t

)2

+
3

2c2

[
1+

2 f (t,r)
c2

]−3 (
∂ f (t,r)

∂ t

)2

− c2

2r2

[
1+

2 f (t,r)
c2

]
= 0

(31)

In the weak field limit of the order c0, equation 31 reduces to

∇
2 f (t,r) = 0 (32)

Now considering limiting equation 31 to the order c−2, the field equation becomes

∇
2 f (t,r)− 1

c2

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ r

)2

− 1
2c2

[
1+

2 f (t,r)
c2

]−2 (
∂ f (t,r)

∂ r

)2

− 1
c2

[
1+

2 f (t,r)
c2

]−1 (
∂ f (t,r)

∂ t

)2

+
3

2c2

[
1+

2 f (t,r)
c2

]−3 (
∂ f (t,r)

∂ t

)2

− c2

2r2

[
1+

2 f (t,r)
c2

]
= 0

(33)

Let us seek a solution of 33 in the form

f (t,r) =
∞

∑
n=0

Rn(r)expn
(

f − r
c

)
(34)

where Rn(r) is a function of r only
Now taking the partial derivative of equation 35 twice w.r.t (r) yields equation 36

∂ 2 f
∂ r2 = R11

0 (r)+
[

R11
1 (r)− 2

c
R′

1(r)+
1
c2 R1

]
exp

(
t − r

c

)
+

[
R11

2 (r)− 2r
c

R′
2(r)+

r2

c2 R2

]
exp2

(
t − r

c

)
+

[
R11

3 (r)− 2 ·3
c

R′
3(r)+

32

c2 R3

]
exp3

(
t − r

c

)
(35)

Taking the partial derivative of equation 35 w.r.t (r) yields equation 37

2
r

∂ f
∂ r

=
2
r

R0(r)+
2
r

R1(r)exp
(

t − r
c

)
− 2

cr
R1(r)exp

(
t − r

c

)
+

2
r

R2(r)exp
(

2t − 2r
c

)
− 2 ·2

cr
R2(r)exp

(
2
(

t − r
c

))
+

2
r

R3(r)exp3
(

t − r
c

)
− 2 ·3

cr
R3(r)exp3

(
t − r

c

)
(36)

Again partially differentiating equation 35 w.r.t (r) and squaring yields equation 38

2
r

(
∂ f
∂ r

)2

=
1
c2

(
R1

0
)2
(r)+

1
c2

(
R1

1(r)
)2

exp
(

t − r
c

)
− 2

c3 R1
1(r)R1(r)exp2

(
t − r

c

)
+

1
c4 R2

1(r)R1(r)exp2
(

t − r
c

)
+

1
c2

(
R1

2
)2
(r)exp4

(
t − r

c

)
− 4

c3 R1
2(r)R2(r)exp4

(
t − r

c

)
+

1
c2

(
R1

3
)
(r)exp6

(
t − r

c

)
− 6

c3 R1
3(r)R3(r)exp6

(
t − r

c

)
+

3
c4 R1

3(r)exp6
(

t − r
c

)

(37)

1
2c2

∂ f
∂ t

=
1

2c2 R(r)exp
(

t − r
c

)
+

2
c2 R2 exp2

(
t − r

c

)
+

3
2c2 R3(r)exp3

(
r− r

c

) (38)

Partially differentiating equation 33 w.r.t (t) and squaring yields

1
c2

[
∂ f
∂ t

]2

=
1
c2 R2

1(r)exp
(

2
(

t − r
c

))
+

4
c2 R2

2(r)exp
(

4
(

t − r
c

))
+

9
c2 R2

3(r)exp6
(

t − r
c

) (39)
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Partially differentiating equation 35 w.r.t (t) and squaring yields

3
2c2

[
∂ f
∂ t

]2

=
3

2c2 R2
1(r)exp2

(
t − r

c

)
+

6
c2 R2

2(r)exp4
(

t − r
c

)
+

27
2c2 R2

3(r)exp6
(

t − r
c

) (40)

Equating the coefficient of exp(0) we get

R11
0 (r)

2

+r
R1

0
1

+c2

(
r1

0
)2
(r) = 0 (41)

To the limit of c0 equation 42 becomes

R11
0 (r)

2

+r
R1

0 = 0 (42)

Solving the second order partial differential equation 42
we obtain the auxiliary solution as the equation below

R0(r) =−2
r

(43)

But according to Newton’s dynamical theory, Newton’s
gravitational scalar potential exterior to a distribution of
mass or pressure is given by

f (r) =−Gm0

r
(44)

where,
G = Universal Gravitational constant
m0 = Total mass of the spherical body
r = Distance of the spherical body k = v
Now comparing equation 43 with the Newton’s
gravitational scalar potential 44 we then choose the most
convenient astrophysical solution of equation 41 as

R0 ≈−k
r

(45)

Then our gravitational scalar potential obtained is given as

f (t.r)≈−k
r

(46)

Comparing the coefficient of exp
(
t − r

c

)
yields

R11(r)+2
[

1
r
− 1

c

]
R1

1(r)+
1
c

[
1− 2

r
+

1
2c

]
R1(r) = 0

(47)
This is our exact differential equation for R1 which is our
solution for R0 Thus, the solution in the order of c0,
reduces to

f (t,r)≈−k
r

exp
(

t − r
c

)
(48)

Interestingly, we discover that the solution obtained, that
is equation 48 has a particular link to the pure Newtonian
gravitational scalar potential for the gravitational field and
hence put Einstein’s geometrical gravitational field on the
same foot with the Newtonian dynamical theory of
gravitation as obtained by [3, 5, 6, 14] Equation 48

contains an arbitrary function which is a function of time
and radial distance equal to Newton’s dynamical scalar
potential, our single dependent function f (t,r) which is
our physically and mathematically most satisfactory
solution contains unknown post Newtonian terms or pure
Einsteinian gravitational terms in order of, and hence, this
research work has shown that the Einstein’s geometrical
field equation can be obtained as a generalization or
completion of Newton’s dynamical gravitational field
equations

3 Formulation of Interior Solution to
Einstein’s Geometrical Gravitational Field
Equation

The Einstein’s field equation (EFE) interior to a
homogeneous spherical distribution of mass is given by
[5-13]

Gµv = Rµv −
1
2

Rgµv =
4πGTµv

c4 (49)

Where Tµv is the energy-momentum tensor due to any
distribution of mass or pressure G is the universal
gravitational constant
Consider a homogeneous mass distribution in a weak
field limit. We can neglect the contribution from the
source, the energy-momentum tensor given by

Tµv =
1
2

ρ0c2 (50)

where,
ρ0 is the density
c is the speed of light in vacuum
Now substituting equation 50 into 49 yields

Gµv = Rµv −
1
2

Rgµv =
4πGρ0

c2 (51)

It is observed in 12 that the exterior field equations along
the G11, G22 and G33 converge within the exterior field,
similarly along the interior field. For mathematical
convenience, we choose G00
Hence the field equation is given by

G00 = R00 −
1
2

Rg00 =
4πGρ0

c2 (52)
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Substituting equation 27, 28 and 1 into 52 equation gives

∇
2 f (t,r)− 1

c2

[
1+

2 f (t,r)
c2

]−1(
∂ f (t,r)

∂ r

)2

− 1
2c2

[
1+

2 f (t,r)
c2

]−2(
∂ f (t,r)

∂ r

)2

− 1
c2

[
1+

2 f (t,r)
c2

]−1(
∂ f (t,r)

∂ t

)2

+
3

2c2

[
1+

2 f (t,r)
c2

]−3(
∂ f (t,r)

∂ t

)2

− c2

2r2

[
1+

2 f (t,r)
c2

]
=

4πGρ0

c2

(53)

In the weak field limit of the order c0, equation 53 becomes

∇
2 f (t,r) =

4πGρ0

c2 (54)

4 Conclusion

From the result obtained in equation 54, we have
established the fact that for a weak gravitational field, the
result of Einstein’s geometrical gravitational field
equations does not differ significantly from Newton
dynamical theory of gravitation. But for intense
gravitational field, the result diverges from that of
Newton’s gravitational theory because of additional
correctional terms which are not found in the existing
once, thus equation, is the Newton dynamical scalar field
equation. It is indeed a profound discovery, it confirms
the assumption made by 14 that Newton dynamical
theory of gravitation (NDTG) is a limiting case of
Einstein’s geometrical gravitational field equations
(EGGFE), and this gives more light on the report of 15. It
Experimentally shows equivalence principle of physics
with the dependency of the gravitational scalar function
on time and radial distance only.
. Furthermore, the obtained result in equation 48 differ
from [3, 5, 6, 14] in the sense that 3 is for a hypothetical
system which varies with azimuthal angle only, whereas 5
is for static homogenous oblate spheroidal systems, and
14 is for a static astrophysical system which varies with
radial distance and azimuthal angle only and 6 is exterior
to a spherical mass with varying potential whose tensor
varies with time, radial distance and polar angle. Our
resulting space-time is spherically symmetric and varies
with time when solved with a tensor field that depends on
both time and radial distance, far more complicated
solution is obtained in 6 by including azimuthal angle
which breaks spherical symmetry and could be used to
explain rotating or asymmetric gravitational fields, The
major difference is the extra challenge of simulating
non-spherical space-time and its dynamics. Spherical
symmetry, which states that the gravitational field is the

same in all directions at a given radius and time, is
assumed by a time- and radial-dependent solution in
equation 48. This symmetry is eliminated in 6 by
including the azimuthal angle (θ), which introduces
variance around a rotating axis or another specified
direction. Time (t) and radial distance (r) may be the
only starting dependencies of the metric tensor, which
describes the geometry of space-time. Cross-terms that
connect these coordinates may appear, though, if it also
depends on t, r, and the polar angle θ . Because there are
more variables and less symmetry, this increased
complexity makes the equations harder to solve. For the
description of systems with non-spherical mass
distributions or revolving black holes, such a formulation
is required. Although it adds another degree of freedom
and allows for the portrayal of more complex and diverse
gravitational effects, the azimuthal angle also increases
the difficulty of the mathematics.
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