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Abstract: In this study, the growing interconnectedness of the world’s financial markets is recognised, and we seek to investigate the
complicated volatility dynamics and downside risk inherent in BWP/USD, ZAR/USD, and BTC/USD exchange rate returns. Aiming
to overcome the shortcomings of conventional methods, this work seeks to provide a strong and computationally efficient approach
for predicting and modelling volatility, and this approach is two-stage. We first use the GMLE method to estimate parameters within
MS-GARCH models. The second part of the research evaluates how well the Student’s t, skewed Student’s t, and generalised error
distribution capture the stylised features of financial returns. To reduce regime path dependency, the Hamilton filter is used; quasi-
likelihood ratio tests verify statistically meaningful regime switching. Using AIC and BIC for model selection, the MS-GJR-GARCH
model is found to be the best fit for BTC/USD, featuring two regime parameters and a skewed Student t distribution. By contrast,
the MS-EGARCH specification is recommended for BWP/USD and ZAR/USD with the same student t distribution. With BTC/USD
showing far more negative risk, especially over long forecasting horizons, empirical results show different volatility patterns across all
three exchange rates. These findings draw attention to the increased investment risk of Bitcoin. The study finds that a strong foundation
for modelling exchange rate volatility is provided by regime-switching models, including generalised maximum likelihood estimation
and flexible error distributions. Future studies should look at macroeconomic factors that influence regime changes and expand the
investigation to include additional developing market currencies.

Keywords: Computational Finance; Downside Risk; Emerging Market Currencies; Exchange Rate Volatility; Financial Risk
Modeling.

1 Introduction

A primary indicator of a developed economy is the government’s capacity to sustain price stability amid shocks and
currency fluctuations. Exchange rates play a significant role in global economics, influencing international trade,
investments, and monetary policies. Traders can enhance their profits by making timely assessments of exchange rate
volatility, as indicated by [33]. Volatility, serving as an indicator of uncertainty, is fundamental to numerous
contemporary financial theories. Intrinsic fluctuations in exchange rates present substantial obstacles to businesses,
investors, and policymakers in their efforts to manage risk and make informed decisions [37, 39]. The volatility of rates
poses a significant concern for international businesses, financial institutions, and policymakers; thus, fluctuations in
exchange rates have a considerable effect on trade, investments, and economic stability. Managing risk well requires a
detailed look at how much exchange rates change, and according to [1], financial analysts and investors worry about the
uncertainty of investment returns caused by changing market prices (market risk) and the unpredictability of how
businesses perform.

Many strategies have been developed to assess the risk of the exchange rate, and most researchers, such as [41]
among others, have employed univariate and multivariate linear models to predict the volatility of the exchange rate.
However, these models are inadequate for predicting highly erratic series such as exchange rates. Models like
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autoregressive moving average (ARMA) depend on linear assumptions, which explains why they fail to model exchange
rate volatility. Furthermore, [14] asserts that linear models imply a constant connection between variables throughout
time, hence disregarding any nonlinear interactions and dynamics in the data. This results in erroneous predictions and
biased parameter estimations. Nonlinear models were then developed to accurately capture the complicated relationships
and changes in exchange rate movements, which often display sudden shifts or changes in behaviour, thus solving this
problem. For example, models such as exponentially smoothed transition autoregression (ESTAR) have been proven to
characterise actual exchange rates effectively, tolerating mean-reversion patterns that linear models may ignore [27].

In addition, [8] presented the generalised autoregressive conditional heteroscedasticity (GARCH) model, and [7] has
underlined that these models fall short when the data set incorporates structural changes. The GARCH model assumes
that the data follows a normal distribution even when volatility changes; as a result, it often expects a stable environment
where the parameters stay the same over time. However, in real-world applications, financial markets are characterised by
abrupt shifts and varying regimes, which lead to significant deviations from the assumptions of the GARCH model. These
changes are caused by economic crises or policy changes, among other things [21], where now the GARCH models do not
account for these breaks, which leads to biased estimates and poor forecast accuracy during periods of sudden changes.
The assumptions underpinning GARCH models, for instance, become erroneous during times of economic crisis, which
results in significant prediction errors. Consequently, researchers have explored alternative approaches, such as regime-
switching models and machine learning techniques, to better capture these dynamics and provide more accurate forecasts.
For exchange rates and other fast-changing financial data, where returns often have heavy tails and are uneven due to
sudden market shifts, this assumption is an issue; as a result, not being able to use normal distributions leads to a lower
estimate of the risk of extreme market changes in exchange rates and other financial markets [24, 4].

However, [23] identified the limitations of GARCH models and proposed Markov-switching GARCH (MS-GARCH)
models, which effectively capture simultaneous periods of high and low volatility while accommodating asymmetry in
both regimes. These models are capable of capturing asymmetries in volatility reactions to both positive and negative
shocks as indicated by [38]. For example, these models permit increased volatility after negative returns in contrast to
positive returns, illustrating actual market behaviour where adverse news typically results in more significant volatility
spikes. While they offer certain advantages in capturing volatility dynamics in financial time series, the MS-GARCH
models also present several disadvantages. The estimation of MS-GARCH models is frequently complex because it
requires consideration of multiple regimes and path-dependent characteristics, respectively. The exponential increase in
potential regime paths over time results in computational challenges that render estimation intractable; thus, [2] pointed
out that this complexity can cause longer computation times and difficulties in getting reliable parameter estimates. In
general, the MS-GARCH models depend on a limited set of discrete regimes, which may impose constraints; hence, this
discretisation fails to present the continuous nature of volatility changes that are evident in empirical data accurately.
Consequently, the neglect of significant nuances in volatility behaviour leads to potential misspecification of the model
and all parameters within a regime are assumed to be contingent upon the same regime sequence, thereby limiting
flexibility. As a result, [13] stated that as this occurs, various parameters may lack their unique regime variables, which
results in a less precise depiction of the underlying data dynamics. Finally, although MS-GARCH models can account
for structural breaks, they remain dependent on the assumption of stationarity within each regime; hence, violations of
these assumptions resulting from extreme market events or extended structural changes undermine the validity and
forecasting abilities of the model.

Therefore, this study develops a two-stage procedure to address these problems. We employ the generalised
maximum likelihood (GMLE) method for parameter estimation rather than the maximum likelihood estimation (MLE)
or Markov chain Monte Carlo (MCMC) methods, and to the best of our knowledge, this is the first study to apply this
algorithm to Markov-switching models or financial applications. The generalised maximum likelihood estimation
method in this study offers distinct advantages over the MLE method, particularly in terms of computational speed and
robustness in complex modelling contexts. Unlike MLE, which typically requires a complete and complex likelihood
function, GMLE employs simpler approximations that facilitate calculations without compromising accuracy in the
estimates. This streamlined approach enables faster convergence, making it especially suitable for models involving
regime switching or high-dimensional parameters, such as those found in Markov-switching models. Additionally,
GMLE is usually better at handling situations where the model is not perfectly accurate and provides more reliable
estimates when MLE might struggle or fail to reach a solution.

Nonetheless, the impact of computational complexity on model performance is particularly significant in practical
applications, where prompt inference and scalability are essential. Significant computing demands restrict the
practicality of using MLE approaches in settings that need quick updates, such as financial markets or real-time
monitoring systems. In these circumstances, GMLE’s efficacy enables more agile modelling while maintaining analytical
rigour. In financial forecasting, where prices often change rapidly and suddenly shift patterns, GMLE helps quickly
estimate the important parameters needed for making useful recommendations. Bayesian methods, on the other hand,
often require taking samples from complicated distributions, which can be very slow and use a lot of computer power,
especially when dealing with many variables or long data sets like exchange rates. The GMLE, by contrast, directly
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optimises a simplified or approximate likelihood function, enabling faster parameter estimation without the need for
iterative simulations. Bayesian methods require the specification of prior distributions, which introduces subjectivity and
can influence the results, particularly when data is scarce. In contrast, GMLE is a frequentist method and does not rely on
prior beliefs, making it more objective in its inference. This trait can be particularly advantageous when prior
information is unreliable or unavailable. Nonetheless, in the MS-GARCH models, the regimes are unobserved (latent),
making the MLE challenging due to the need to integrate all possible regime paths. But, with the generalised maximum
likelihood estimation, we effectively manage this complexity by allowing for a more tractable estimation process, often
utilising data augmentation techniques that treat latent states as parameters.

The second contribution lies in the application of the Hamilton Filter to tackle the issue of regime-dependent paths.
The Hamilton Filter effectively avoids the necessity of explicitly listing and assessing all potential paths because it is
conceptually more straightforward to implement than the Kim filter. This feature presents a notable advantage in the
context of managing multiple assets, as is our current situation. The Hamilton filter simplifies the estimation process
and allows for direct interpretation of the filtered regime probabilities. According to [29], the ”filtering” process directly
addresses the issue of path dependence, which facilitates tractable estimation and inference. The capacity to effectively
manage path dependence is crucial for currency and cryptocurrency returns, given the frequent and significant nature of
regime shifts. The calculation determines the probability of being in a specific regime at time t, based on the information
available up to that time. This function facilitates the assessment of the probability that the BWP/USD, ZAR/BWP,
and BTC/USD exchange rates are in a ”high volatility” regime at a given moment. This interpretability is essential for
comprehending market dynamics and may guide decisions concerning risk management or trading strategies.

The second phase of the study uses three error distributions to properly represent and capture volatility and extremes.
The distributions include (1) the Student’s t-distribution, renowned for its fat tails compared to the normal distribution.
This quality makes it especially appropriate for forecasting financial returns, which always show extreme values. The
model can handle the existence of severe market fluctuations and helps provide better risk assessments and more precise
volatility projections. (2) Skewed distributions, especially the skewed Student’s t-distribution, are used to permit
asymmetry in the data, which is crucial in the foreign currency market because negative and positive shocks have varying
effects on volatility. Implementing skewed distributions, on the other hand, provides a more accurate picture of market
behaviour by capturing events like leverage effects, where negative returns cause bigger future volatility spikes than
positive returns. Especially, the skewed Student’s t-distribution adds a skewness factor, letting the distribution be uneven
where the tail behaviour is controlled by the degrees of freedom parameter; lower values lead to heavier tails, while
larger values bring the distribution closer to normal. This adaptability allows for improved fitting to different datasets. (3)
The generalised error distribution (GED), which includes normal and exponential distributions as specific examples, can
model different levels of kurtosis and skewness. Its adaptability to various empirical situations enables it to be
appropriate for capturing a broad spectrum of volatility patterns seen in financial markets.

Ultimately, we evaluate the downside risk for BTC/USD, ZAR/USD, and BWP/USD using the most effective model
developed. Furthermore, different distributions provide differing degrees of resilience to outliers. By comparing them,
we can identify the model and distribution that best balance capturing overall trends while also considering unusual
results. Furthermore, high-frequency data, such as exchange rates used in this work, often have fat tails, indicating that
extreme occurrences occur more frequently than predicted by a normal distribution. By evaluating how various
distributions address these tails, we evaluate and mitigate tail risk, which is essential in finance. Variations in
distributions may provide disparate parameter estimations about parameter stability and interoperability. Consequently,
comparative analysis enables us to assess the stability of these characteristics across various distributions. A stable model
with interpretable parameters is more likely to be dependable for forecasting and decision-making. See for instance [19].

1.1 Research Highlights and Key Findings

This study delves into the intricate volatility dynamics of BWP/USD, ZAR/USD, and BTC/USD exchange rate returns,
employing a sophisticated two-stage methodological approach built upon Markov-Switching GARCH models. A central
methodological innovation lies in the implementation of generalised maximum likelihood estimation for parameter
estimation, a technique strategically chosen to mitigate the computational challenges inherent in traditional estimation
paradigms. Furthermore, the study leverages the flexibility afforded by alternative error distributional assumptions and
the analytical power of the Hamilton filter to augment model accuracy and computational tractability. The salient
findings are presented below.

1.Compelling Evidence of Regime Switching: Rigorous quasi-likelihood ratio tests provide compelling statistical
evidence against the null hypothesis of a single regime for all three exchange rates (BWP/USD, ZAR/USD, and
BTC/USD), thereby justifying the adoption of two-regime MS-GARCH models. Unlike [47], who utilised the
standard likelihood ratio test, this study employs the quasi-likelihood ratio test, a more appropriate methodology in
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this context due to the well-documented challenges associated with the likelihood ratio test when dealing with
nuisance parameters on the boundary of the parameter space, specifically the transition probabilities in
regime-switching models.

2.Employing established information criteria (AIC, BIC) and likelihood values, the study identifies the optimal model
specification for each exchange rate. The skewed Student’s t-distribution in conjunction with the
MS(2)-GJR-GARCH(1,1) model emerges as the preferred specification for BTC/USD, whilst the same distribution
coupled with the MS(2)-EGARCH(1,1) model is selected for both BWP/USD and ZAR/USD.

3.The study robustly confirms the presence of volatility clustering across all three exchange rates, with the analysis
elucidating the distinct contributions of within-regime persistence and regime persistence.

4.Our findings indicated that BTC/USD is identified as the riskiest exchange rate among the three, followed by
ZAR/USD, with BWP/USD demonstrating the lowest and most stable level of downside risk.

This study reveals compelling evidence of regime switching in BWP/USD, ZAR/USD, and BTC/USD exchange rates,
with BTC/USD exhibiting substantially higher downside risk compared to the other two currencies, which demonstrate
greater stability. These findings offer valuable insights for risk management and investment decisions.
The remaining parts of this paper are organised as follows. Section 2 discusses the methodology considered and the results
and discussion are contained in Section 3. Lastly, the conclusion of the paper is given in Section 4.

2 Methods

This section of the study presents the methods and procedures followed. The currency data from January 2, 2015, to
February 19, 2025, was obtained from Yahoo finance website. Bitcoin is traded daily by traders, leading to 3410
observations. On weekends and public holidays, the trading of the South African rand and Botswana pula is suspended,
resulting in 2431 observations. [10] advised that to analyse the data effectively, the missing values of the ZAR / USD
exchange rates should be filled with zero (0), since there are no gains or losses for the local currency holder on weekends
or public holidays; therefore, BWP / USD is not an exception. Therefore, we analysed the entire data set using the R
software environment [40] and presented the data in tables and graphs. The exchange rate returns series for the period t is
computed by

Rt = lnPt − lnPt−1 = ln
(

Pt

Pt−1

)
(1)

where Pt and Pt−1 represent the present and past values of a time series respectively. The study by [16] shows that
logarithmic returns are preferred to prices that are mainly non-stationary because they offer a more precise financial risk
assessment and are a reliable way to compute risk measures such as standard deviation, semivariance, value at risk, and
expected shortfall.

Let εt be the shock at time t and Ft be the set of information of all the information over time t. Model (2) involves the joint
estimation of the mean equation and conditional variance equation and is given by

Rt = E(Rt |Ft−1)+ εt , εt ∼ N(0,1)
Rt = µ + εt . (2)

where µ is the conditional mean of Rt given information through time t − 1, Rt is the return at time t, Ft−1 denotes the
information set available at time t −1. The term εt is assumed to be a non-constant quantity for time and is given by

εt = σtαt (3)

and,

σt =
√

Var(Rt |Ft−1)

=
√

E [(Rt −µ)2|Ft−1]

=

√
1

N −1

N

∑
t=1

(Rt −µ)2

where σt is the volatility that evolves over time and αt ∼ N(0,1) which is independent and identically distributed (i.i.d.)
residuals. This study focusses on the distribution of αt which is modelled using the error distributions discussed in
Section (1).
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2.1 Volatility Modelling with Regime Switching GARCH Models

This section presents the Markov switching GARCH model, which incorporates various conditional volatility models and
conditional distributions. [44, 49] argues that models are selected based on their ability to capture extreme hurdles in
stock returns series. Thus, this study adopts the use of the MS-TGARCH, MS-EGARCH, and MS-GJRGARCH models
because these three models incorporate asymmetry in the impact of past returns on current volatility. However, they do so
in different ways: (1) The MS-TGARCH allows for different responses to positive and negative shocks depending on the
regime. This is particularly useful in financial markets, where the impact of shocks may vary during periods of high and
low volatility. Similar to TGARCH, MS-TGARCH captures the leverage effect, where negative shocks increase volatility
more than positive shocks of the same magnitude. (2) MS-EGARCH captures the asymmetry in volatility (leverage effect)
where bad news has a different impact on volatility than good news, with this effect potentially varying across regimes.
The exponential form allows for capturing more complex features in the data, such as skewness and kurtosis, and regime-
switching enhances this ability by allowing different regimes to have different volatility dynamics. (3) MS-GJRGARCH
is capable of adjusting to different market conditions, making it more robust in environments where market behaviour
changes abruptly. The ability to switch between regimes helps to better model and forecast volatility during financial
crises or periods of market turbulence, providing more accurate risk assessments [11].

2.1.1 Markov-Switching Exponential GARCH Model

The model proposed by [35] addresses asymmetric responses of time-varying variance to shocks while maintaining
positive variance. The EGARCH (r,s) specification is expressed as follows:

logσ
2
t = α0 +

r

∑
i=1

αi |εt−i|+ γtεt−i

σt−i
+

s

∑
j=1

β j log
(
σ

2
t− j

)
(4)

Here, γt is known as the asymmetric response or leverage parameter. Typically, γt is positive, which implies that a
negative shock will increase future volatility or uncertainty, while a positive shock will lessen future uncertainty. The
model effectively captures heavy tails in returns and exhibits volatility clustering but is not able to model the leverage
effect because the conditional variance depends on the magnitude rather than the sign of past values [14]. In addition,
there are no parameter restrictions in the model. The EGARCH model guarantees a positive conditional variance
regardless of the signs of the estimated parameters, eliminating the need for such restrictions. The conditional variance of
an MS(k)-EGARCH(r,s), an extension of the standard EGARCH(r, s) model, is defined as:

logσ
2
t (St) = α0(St)+

r

∑
i=1

αi(St) |εt−i|+ γt(St)εt−i

σt−i
+

s

∑
j=1

β j(St) log
(
σ

2
i− j

)
(5)

In this context, St is the latent state component, which takes the value 1 during high regime periods and 0 during low
regime periods. It is important to highlight that model (5) allows for the estimation of low- and high-volatility structures
in exchange rate returns.

2.1.2 Markov-Switching Threshold GARCH Model

The volatility model introduced by [17] is a notable approach frequently employed to address the leverage effect. The
TGARCH (r,s) model of conditional variance is formulated as follows:

σ
2
t = α0 +

r

∑
i=1

(αt + γiNt−1)ε
2
t−1 +

s

∑
j=1

β jσ
2
t− j (6)

Here, Nt−1 is defined as:

Nt−1 =

{
1, if εt−1 < 0
0, if εt−1 ≥ 0 (7)

In this context, γi denotes the asymmetric response or leverage parameter, and αt and βi are non-negative parameters that
satisfy conditions similar to those in GARCH models. If γi = 0, the model reduces to a standard GARCH (p,q) process.
Positive shocks influence volatility by αi, while negative shocks affect volatility by αi + γi. Typically, for αi > 0, negative
shocks exert a greater influence on conditional variance than positive shocks. According to [6], the impact of ε2

t−1 on the
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conditional variance σ2
t varies depending on whether εt−1 is above or below the threshold value. This model provides

an alternative method to account for the asymmetric effects of positive and negative shocks on volatility. One major
advantage of the TGARCH model is its ability to investigate the asymmetric response of volatility, such as the leverage
effect, where negative shocks have a more pronounced impact on conditional volatility than positive shocks of the same
magnitude. The MS(k)-TGARCH(r,s) model, an extension of the standard TGARCH model, is described by:

σ
2
t (St) = α0(St)+

r

∑
i=1

ε
2
t−1 (αt(St)+ γiNt−1(St))+

s

∑
j=1

β j(St)σ
2
t− j (8)

where St is the latent state component, taking the value of 1 for high regime periods and 0 for low regime periods. Equation
(8) facilitates the estimation of low- and high-volatility structures in exchange rate returns. This model comprises four key
components: the conditional mean, the conditional variance, the regime process, and the conditional distribution.

2.1.3 Markov-Switching GJR GARCH Model

An extension of the GARCH model that considers asymmetry is the GJR-GARCH model, introduced by [17]. The
equation for the conditional variance in the GJR-GARCH (r,s) framework is as follows:

σ
2
t = α0 +

r

∑
j=1

αiε
2
t−1 +

r

∑
i=1

γtε
2
t−iN

−
t−1 +

s

∑
j=1

β jσ
2
t− j (9)

where N−
t−1 is an indicator variable that is equal to one if εt−1 is negative, and zero otherwise. A positive γ suggests that

negative shocks (bad news) have a greater effect than positive shocks (good news) [9]. When all leverage coefficients
are zero, the GJR-GARCH model simplifies to the standard GARCH model. The MS(k)-GJR-GARCH(r,s) model is an
expanded version of the standard TGARCH model, and according to [3], it is represented by:

σ
2
t (St) = α0(St)+

r

∑
j=1

αi(St)ε
2
t−1 +

r

∑
i=1

γt(St)ε
2
t−iN

−
t−1 +

s

∑
j=1

β j(St)σ
2
t− j (10)

The Generalized Maximum Likelihood Estimation (GMLE) modifies the standard Maximum Likelihood Estimation
(MLE) function to accommodate complex models with time-varying parameters [18]. The MS(k)-GARCH type models
utilised in this study were fitted using the GMLE under the assumptions of three error distributions: the generalised error
distribution (GED), the student t distribution, and the skewed student t distribution. [50] argues that this method is
instrumental in analysing non-stationary time series and the GMLE estimators are plausible and worthwhile.

2.2 Distribution assumptions of the error

Table 2 and Figures 1, 2 and 3 demonstrate that the distribution of the residuals fails the normality test. The distribution
of residual returns shows evidence of heavy tails and excess kurtosis. To address the excess kurtosis and fat tails in the
return series, the Student-t, Generalized Error, and Skewed Student-t distributions are used for the error term in the models
considered in this study presented in Subsection 2.1. For details of the Student-t distribution, Skewed student-t distribution
and GED see [20] and [15]. These distributions are appropriate to capture excess kurtosis and skewness in residual return
series. [30] articulates that these distributions are chosen since they account for heavy-tailedness, skewness, and excess
kurtosis in the return series.

2.3 Model selection

The Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Log-likelihood (LL) metrics are used
to select the best model, similar to the approach in the study by [36]. The AIC, BIC, and LL assess both the accuracy of
the model fit and the number of parameters used. [20] argues that they reward a better fit while penalising an increase in
the number of parameters in the return series data , and are defined by equations (11), (12) and (13).

AIC =−2logL+2k (11)

BIC =−2logL+ k logn (12)
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D = 2{log(likelihood for alternative model)− log(likelood for the null model)} (13)

where the likelihood function is expressed as L and the model’s estimated parameters are denoted by k. The model with
the smallest AIC and BIC values and largest LL value were selected as optimal. The best-fitting models for BTC/USD,
ZAR/USD and BWP/USD are presented in Tables 4, 6, and 5.

2.4 Risk Measures

Risk measures are quantitative tools that predict investment risk and volatility based on historical data. They are used to
evaluate and assess potential loss or uncertainty in the value of an asset or a stock due to changes in market conditions
[28]. In this section, we discuss the proposed risk measures considered in the study.

2.4.1 Value at Risk

The value at risk (VaR) is the maximum loss over a given time horizon at a given confidence level. Let Pt be the closing
index on day t. A h-day VaR on day t is defined by,

P
(
Pt+h −Pt <VaRt,h,α | Ft

)
= α

where Ft is the available information set until time t,h is the forecast horizon and α is the probability value.
In this work, we will compute VaR using the parametric approach which will be based on the logarithmic returns calculated
in equation (1). The VaR will be given by,

VaRt,h,α =
(
E [Rt+h | Ft ]+qz

α

√
Var [Rt+h | Ft ]

)
Pt

where qz
α is the quantile α of the standardised distribution of returns, Var[.] is the variance and E[.] is the expected value.

This study will consider the values of α in 95% and 99%, while h is usually one day or 20 days, depending on the intuition
of the research.

2.4.2 Expected shortfall

The ES refers to a measure of the expected loss in a portfolio conditioned on the fact that the VaR value has been breached
[12]. If we consider a violation in the VaR, the ES expresses the expected value of the loss and is estimated by;

ESh,α = E
[
Rt+h <VaRt,h,α

]
=

1
α

∫
α

0
VaRt,h,xdx

3 Results and discussion

Following the methodology described in Section 2, this section addresses data analysis. We present the findings using
tables and graphs, and Figure 1 to Figure 3 show the exchange rate plots. The kernel density plot indicates that the
distribution of the exchange rates is leptokurtic even though the data appear non-normal in Figure 1 (c and d), Figure 2(c
and d), and Figure 3(c and d). Specifically, seasonality is linked to certain positive and negative trends in Figure 1(a),
Figure 2(a), and Figure 3(a). Events such as the COVID-19 pandemic contribute to these clusters of volatility. These
currencies also show the most concentrated return losses. These numbers also indicate a potential benefit if one considers
conditional heteroscedasticity. We therefore underline two key factors: the reason for weight loss and its erratic character.
While the former contends that downturn volatility follows these shocks rather than substantial losses or profits, the
latter contends that irregular shocks in the actual business sector have a larger influence on future volatility. Financial
market shocks result in unique and significant rewards. However, the research conducted by [32] found outcomes that are
comparable to those observed in this study.

Table 1 shows the descriptive statistics of the three (3) exchange rates used in this study. The returns on BTC/USD
and BWP/USD portrayed negative skewness, while ZAR/USD gave positive skewness. This finding indicates that all the
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return series are asymmetric. For BTC/USD and BWP/USD, the negative skewness suggests that the return distributions
for these currency pairs have longer left tails, implying that extreme negative returns (losses) are more frequent or severe.
In other words, there are more substantial downside risks or shocks in these markets. A positive skewness for ZAR/USD
means that the return distribution has a longer right tail, indicating more extreme positive returns (gains). Thus, the
ZAR/USD exchange rate shows a tendency for more substantial upward movements or profits. Moreover, the BTC/USD
and BWP/USD returns have kurtosis above 3, indicating that their distributions are leptokurtic, meaning they have heavier
tails and more pronounced peaks than the normal distribution. This data suggests a higher likelihood of extreme returns
(both positive and negative), implying more risk in these markets due to the potential for large and infrequent movements.
However, the ZAR/USD returns have a kurtosis value of less than 3, meaning that the ZAR/USD return distribution
is platykurtic, indicating lighter tails and fewer extreme values compared to the normal distribution. In this case, the
distribution is flatter and suggests that the ZAR/USD market experiences fewer large unexpected moves (outliers), with
returns clustering more closely around the mean.

Fig. 1: Plots of adjusted closing prices for BTC/USD

Table 1: Descriptive statistics of exchange rate price returns.

Observations Mean Median Maximum Minimum Skewness Kurtosis
BTC/USD 2431 0.002069 0.002100 0.225100 -0.464700 -0.854415 11.719138
ZAR/USD 2431 0.000199 -0.000300 0.046200 -0.035000 0.331632 0.975223
BWP/USD 2431 -0.000155 0.000000 0.048400 -0.053700 -0.245548 6.703611
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Fig. 2: Plots of adjusted closing prices for BWP/USD

Table 2 displays the results of the tests for normality, autocorrelation, and heteroskedasticity. The rejection of the null
hypothesis of normality at the 5% significance level, as indicated by the Jarque-Bera test, implies that symmetric models
are inappropriate for analysing the return series. The ARCH effects test led to the rejection of the null hypothesis at a
5% significance level. These findings resulted in the conclusion that ARCH effects in exchange rate returns were taken
into account; therefore, we should consider the GARCH family models when analysing the aforementioned returns series.
The Ljung-Box test results for ZAR/USD and BTC/USD returns reveal insignificant p-values, suggesting that the null
hypothesis of no autocorrelation cannot be rejected. This implies that the returns may be considered independent and
identically distributed (i.i.d.).

Table 2: Test for normality, autocorrelation and heteroscedasticity

BTC/USD ZAR/USD BWP/USD
TEST Statistic p-value Statistic p-value Statistic p-value

Jarque-Bera 14236.1433 0.0001 141.5972 0.0001 4587.199 0.0001
Ljung-Box 66.266 0.05063 63.422 0.08072 128.35 0.0001

ARCH LM Test 83.413 0.001573 141.56 0.0001 242.54 0.0001

The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests in Table 3 indicate that the returns of the three
exchange rates are stationary, as we found strong evidence against the null hypothesis that they are stationary at all
significance levels of 5%. This finding confirms that these returns are appropriate for analysis using the stationary process
of the regime-switching model. All assumptions are validated, indicating the data’s readiness and suitability for primary
analyses. Hence, we observe a benefit in modelling the returns of BWP/USD, ZAR/USD, and BTC/USD using a defined
stationary MS-GARCH process.
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Fig. 3: Plots of adjusted closing prices for ZAR/USD

Table 3: Test for unit root and stationarity

BTC/USD ZAR/USD BWP/USD
Unit Root Test Statistic CV (5%) Statistic CV (5%) Statistic CV (5%)

ADF Test −34.7852 −1.95 −35.3157 −1.95 −38.5886 −1.95
PP Test −50.6759 −2.863 −48.6327 −2.863 −57.0515 −2.863

Quasi-likelihood Ratio Test 28.8 13.42 15.9 13.42 32.7 13.42

3.1 Volatility Modelling with Regime Switching GARCH Process

Before estimating the model, we used a quasi-likelihood ratio statistic to check if we could use two-regime switching
models for the three exchange rates, unlike [48], who used the likelihood ratio test in their research. The null hypothesis
posits that the exchange rate series follows a nonlinear model with a single regime (no regime switching), whereas the
alternative hypothesis allows for a model characterised by two distinct regimes. Our test results rejected the null hypothesis
of no regime switching in expected returns at the significance level of 5% for all currencies used in this study. See Table 3.

In Section 2, the regime-switching models were used to conduct the analysis, which required consolidating the results
obtained from the preliminary analysis. We fitted the TGARCH, eGARCH, and gjr-GARCH models that were subject to
regime change using the MSGARCH package of [5]. We estimated nine models for each currency, as shown in Table 4,
Table 6, and Table 5, using the student t distribution, the skewed t distribution, and the generalised error distribution for
the errors. In this case, we applied the informational criteria for selecting the models to determine which provides the
most accurate forecasts of the volatility of the exchange rate. These criteria also apply to the estimated predictive power
of the models. [33] also used similar criteria but just took AIC and BIC into account. Taking the case of BTC/USD, the
optimal error distribution for MS(2)-GJR-GARCH(1,1) is the skewed student t distribution with rank one (1). The most
appropriate distribution for the BWP/USD and ZAR/USD pairs is the skewed student t distribution with rank one (1)
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Table 4: The AIC, BIC and LL values for BTC/USD Returns assuming three different innovations term distributions

Student t-distribution
Model AIC BIC LL Rank

MS(2)-EGARCH(1,1) -10044.825 -9975.2723 5034.4125 3
MS(2)-TGARCH(1,1) -10007.3215 -9937.7688 5015.6608

MS(2)-GJRGARCH(1,1) -9997.4358 -9927.8831 5010.7179
Skewed Student t-distribution

MS(2)-EGARCH(1,1) -10056.6213 -9975.4765 5042.3107
MS(2)-TGARCH(1,1) - - -

MS(2)-GJRGARCH(1,1) -10056.9189 -9975.7741 5042.4594 1
Generalized Error-distribution

MS(2)-EGARCH(1,1) -10049.9611 -9980.4084 5036.9806 2
MS(2)-TGARCH(2,2) -9899.38 -9829.8273 4961.69

MS(2)-GJRGARCH(1,2) -10015.3017 -9945.749 5019.6508

under MS(2)-EGARCH(1,1). That being said, the top model was marked with rank 1, while the worst model was marked
with rank 3.

Table 5: The AIC, BIC and LL values for BWP/USD Returns assuming three different innovations term distributions

Student t-distribution
Model AIC BIC LL Rank

MS(2)-EGARCH(1,1) -15619.6171 -15550.0644 7821.8085 3
MS(2)-TGARCH(1,1) -15607.1384 -15537.5857 7815.5692

MS(2)-GJRGARCH(1,1) -15606.1271 -15536.5744 7815.0635
Skewed Student t-distribution

MS(2)-EGARCH(1,1) -15634.0204 -15552.8756 7831.0102 1
MS(2)-TGARCH(1,1) -15621.2284 -15540.0836 7824.6142

MS(2)-GJRGARCH(1,1) -15624.8879 -15543.7431 7826.4436
Generalized Error-distribution

MS(2)-EGARCH(1,1) -15620.0444 -15550.4917 7822.0222 2
MS(2)-TGARCH(1,1) -15118.1914 -15048.6387 7571.0957

MS(2)-GJRGARCH(1,1) -15604.4398 -15534.8871 7814.2199

Table 6: The AIC, BIC and LL values for ZAR/USD Returns assuming three different innovations term distributions

Student t-distribution
Model AIC BIC LL Rank

MS(2)-EGARCH(1,1) -18189.8339 -18120.2812 9106.9169 3
MS(2)-TGARCH(1,1) -18188.8441 -18119.2914 9106.422

MS(2)-GJRGARCH(1,1) -18083.1581 -18013.6054 9053.5791
Skewed Student t-distribution

MS(2)-EGARCH(1,1) -18297.017 -18215.8722 9162.5085 1
MS(2)-TGARCH(1,1) -18186.7925 -18105.6477 9107.3963

MS(2)-GJRGARCH(1,1) -18068.4321 -17987.2873 9048.216
Generalized Error-distribution

MS(2)-EGARCH(1,1) -18204.2571 -18134.7044 9114.1285 2
MS(2)-TGARCH(1,1) -18011.9983 -17942.4456 9017.9992

MS(2)-GJRGARCH(1,1) -18086.2475 -18016.6948 9055.1238

The estimated models for the three exchange rates are presented in Tables 7 to 9. Table 7 displays the results of the
optimal MS(2)-GJR-GARCH(1,1) model for BTC/USD returns. All parameter estimates demonstrate statistical
significance, indicating that the low regime maintains a stable probability of 0.5655, whereas the high regime exhibits a
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stable probability of 0.4345. Thus, the probabilities of being in the two states are approximately 57% and 43%,
respectively. The low-volatility regime is considered dominant in comparison to the high-volatility regime. The
parameter estimates demonstrate that the volatility process displays heterogeneity across the two regimes, with values of
α = 0.0056 and α = 0.0002 reported, respectively. This finding agrees with the study by [22, 45], which suggests that
different regimes have different levels of volatility, long-lasting volatility, and different reactions to negative returns;
hence, volatility exhibits greater persistence in regime one compared to regime two.

Table 7: MS(2)-GJR-GARCH(1,1)-Skewed Student t-distribution for BTC/USD.

Regime 1 Regime 2
Coefficient Estimate Std Error t -value p-value Estimate Std Error t-value p-value

ρ 0.0001 0.0000 2.1633 0.0001 0.0000 0.0000 0.9939 0.0001
γ 0.0949 0.0920 1.0314 0.0001 0.0640 0.1711 0.3743 0.0001
α 0.0056 0.0343 0.1621 0.0001 0.0002 0.0042 0.0490 0.0001
β 0.8835 0.0215 41.0180 0.0001 0.9356 0.0003 2785.5914 0.0001
µ 4.2188 0.7514 5.6147 0.0001 2.3486 0.0741 31.6971 0.0001
δ 0.8972 0.0304 29.5111 0.0001 0.9538 0.0272 35.0893 0.0001
P 0.9795 0.0093 105.2674 0.0001 0.0267 0.0070 3.7967 0.0001

Transition Matrix
P11 0.9795 P12 0.0205
P21 0.0267 P22 0.9733

Stable probabilities
0.5655 0.4345

The persistence of volatility in the two regimes is different. The first regime reports α1,1 +
1
2 α2,1 + β1 ≈ 0.9812,

while the second regime reports α1,2 +
1
2 α2,2 +β2 ≈ 0.9997. Thus, the first regime is said to be characterised by (i) low

unconditional volatility, (ii) strong volatility reaction to past negative returns, and (iii) low persistence of the volatility
process, while the second regime is characterised by (i) high unconditional volatility, (ii) weak volatility reaction to past
negative returns, and (iii) high persistence of the volatility process. Regime one is perceived by market participants as
”tranquil market conditions” with low volatility levels, low persistence and high reaction to past negative returns. Regime
two is ”turbulent market conditions” with high volatility levels and strong persistence. The leverage estimator γ is positive
for both regimes, and regime two exhibits higher leverage compared to regime one (See Table 7).

Table 8: MS(2)-EGARCH(1,1)-Skewed Student t-distribution for ZAR/USD.

Regime 1 Regime 2
Coefficient Estimate Std Error t -value p-value Estimate Std Error t-value p-value

ρ -0.4383 0.3305 -1.3259 0.0001 -4.7697 2.4070 -1.9816 0.0001
γ 0.0476 0.0290 1.6405 0.0001 0.0687 0.1257 0.5464 0.0001
α 0.0299 0.0157 1.9116 0.0001 0.1375 0.0736 1.8690 0.0001
β 0.9538 0.0349 27.3013 0.0001 0.4526 0.2759 1.6402 0.0001
µ 36.2945 31.9347 1.1365 0.0001 18.3480 14.8295 1.2373 0.0001
δ 1.0785 0.0446 24.1764 0.0001 1.2929 0.1056 12.2456 0.0001
P 0.9973 0.0098 101.4800 0.0001 0.0107 0.0023 4.6673 0.0001

Transition Matrix
P11 0.9973 P12 0.0027
P21 0.0107 P22 0.9893

Stable probabilities
0.7997 0.2003

Tables 8 to 9 show the results of the best MS(2)-EGARCH (1,1) models used on the returns of ZAR/USD and
BWP/USD. The findings indicate that the low regime maintains a stable probability of 0.7997, whereas the high regime
exhibits a stable probability of 0.2003. We perceive the low regime as more dominant than the high volatility regime. In
the analysis of the currencies, every coefficient within the conditional mean and variance equations demonstrates
statistical significance. The parameter representing the conditional mean, indicated by the mean (µ), demonstrates
statistical significance. The ARCH (α) and GARCH (β ) parameters are important and show that there are varying levels
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of volatility in currency returns in all situations. Additionally, we confirmed that the data is stable by adding up the
estimated ARCH and GARCH parameters for each situation and checking that their total is always less than one,
specifically, α + β < 1. For example, refer to [23] for more reading on data stability on the ARCH and GARCH
parameters. The positive and statistically significant Student’s t (δ ) skewed parameters suggest that the returns deviate
from a normal distribution. The gamma parameter (γ) is statistically significant, showing that negative return shocks
have a bigger effect on the conditional variance for stock-in-price returns.

Table 9: MS(2)-EGARCH(1,1)-Skewed Student t-distribution for BWP/USD.

Regime 1 Regime 2
Coefficient Estimate Std Error t -value p-value Estimate Std Error t-value p-value

ρ -0.1196 0.0013 -92.8650 0.0001 -8.7647 0.0183 -479.3583 0.0001
γ 0.0500 0.0054 9.1893 0.0001 -0.7130 0.0111 -64.5264 0.0001
α -0.0171 0.0055 -3.0861 0.0001 0.9194 0.0080 114.8522 0.0001
β 0.9885 0.0001 13604.4365 0.0001 -0.1251 0.0026 -48.0924 0.0001
µ 6.3337 0.0262 241.4055 0.0001 99.6198 0.0025 40593.8376 0.0001
δ 0.9756 0.0060 162.2863 0.0001 31.3037 0.1393 224.6768 0.0001
P 0.9963 0.0014 698.9253 0.0001 0.3268 0.0000 13670.3197 0.0001

Transition Matrix
P11 0.9963 P12 0.0037
P21 0.3268 P22 0.6732

Stable probabilities
0.9888 0.0112

The above results highlighted the superior capability of Markov-switching GARCH models to identify and distinguish
between different sources of volatility clustering. [42] noted that volatility clustering has two primary sources:
determination within the regime and steadiness of the regimes. This suggests that the unconditional variance is higher in
one regime than in another. For ZAR/USD and BWP/USD, this implied that volatility clustering in the first regime,
which is also known as the lower regime, was caused by both regime persistence and within-regime persistence and in
the second regime, also known as the upper regime, the persistence of the high volatility regime is also seen.
Furthermore, the transition probabilities P11 and P22 are quite high and statistically significant. This indicated the
persistence of the regime [42].

3.2 Risk Estimates

Since the student-t skewed distribution coupled with the MS(2)-GJR-GARCH(1,1) and MS(2)-EGARCH(1,1) has
outperformed other error distributions, the two risk measures discussed in Section 2 are computed using the
MS(2)-GJR-GARCH(1,1) and MS(2)-EGARCH(1,1) for the three currencies to evaluate the risk of losses. [25], in their
study, focused on both the gains and losses of the FTSE/JSE-ALSI. However, in this study, we focus only on losses. The
one (1) step, five (5) steps, ten (10) steps and twenty (20) steps ahead Value-at-risk and Expected Shortfall forecasts for
BTC/USD, ZAR/USD and BWP/USD are generated using the estimated regime-switching models identified as the best
models. Tables 10, Table 11, and Table 12 report these results. Estimates were made at the levels of 95% and 99%,
similar to the work of [46]. The negative values of the VaR and ES estimates indicate losses at the specified significance
levels. When time horizons are changed, the loss and expected losses increase for all exchange rate series considered in
the study. This result is consistent with that of [43], who estimated VaR at 99% for daily forecasts for a period of ten (10)
days.
Table 10 shows results for VaR and ES of the BTC/USD returns at 95% and 99% levels of significance. In the one-day
time horizon h = 1, the VaR value is about −10% and the ES value of about −14% at 99%, this implies that the expected
loss for BTC/USD using VaR will not exceed 10% daily. But with the ES, the average loss (conditional on exceeding VaR)
is 14.07% at 99% confidence and 8.52% at 95% confidence. The same interpretation can be made for the other horizons.
It is observed that BTC/USD estimates for VaR and expected ES are not consistent across the chosen forecasting time
horizons. This confirms the results by [34] that Bitcoin is generally a risky investment and thus, investors should trade
with informed perspectives due to the riskiness of the BTC/USD exchange risk-return risk. This conclusion is met since
the estimates of both VaR for this portfolio are higher than those of BWP/USD and ZAR/USD, respectively.
Table 11 shows the results for VaR and ES of the ZAR/USD returns at 95% and 99% levels of significance. In the one-day
time horizon h = 1, the VaR value is about −1.89% the ES value is about −2.16% in 99%, which implies that investors
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Table 10: Value at Risk and Expected Shortfall estimates for BTC/USD.

Var ES
Horizon Model 99% 95% 99% 95%

h = 1 MS(2)-GJRGARCH(1,1) −0.1009 −0.0547 -0.1407 -0.0852
h = 2 MS(2)-GJRGARCH(1,1) −0.1037 −0.0541 -0.1435 -0.0863
h = 10 MS(2)-GJRGARCH(1,1) −0.1101 −0.0579 -0.1762 -0.0989
h = 20 MS(2)-GJRGARCH(1,1) −0.1216 −0.0603 -0.1586 -0.0965

Table 11: Value at Risk (VaR) and Expected Shortfall(ES) for ZAR/USD.

VaR ES
Horizon Model 99% 95% 99% 95%

h = 1 MS(2)-EGARCH(1,1) −0.0189 −0.0133 -0.0216 -0.0166
h = 2 MS(2)-EGARCH(1,1) −0.0190 −0.0134 -0.0221 -0.0168
h = 10 MS(2)-EGARCH(1,1) −0.0196 −0.0136 -0.0233 -0.0175
h = 20 MS(2)-EGARCH(1,1) −0.0204 −0.0138 -0.0235 -0.0176

in the ZAR/USD portfolio are expecting not to lose more investment of 1.89% at the level 99% while focusing on VaR.
But with ES, not more than 2.16% will be lost in this portfolio. The same interpretation can be done for the 95% level and
with other time horizons.

Table 12: Value at Risk (VaR) and Expected Shortfall (ES) estimates for BWP/USD.

VaR BWP/USD
Horizon Model 99% 95% 99% 95%

h = 1 MS(2)-EGARCH(1,1) −0.0152 −0.0091 −0.0200 −0.0132
h = 2 MS(2)-EGARCH(1,1) −0.0153 −0.0091 −0.0205 −0.0131
h = 10 MS(2)-EGARCH(1,1) −0.0156 −0.0093 −0.0216 −0.0136
h = 20 MS(2)-EGARCH(1,1) −0.0157 −0.0091 −0.0196 −0.0129

Similarly, Table 12 shows the results for VaR and ES of the ZAR/USD returns at significance levels 95% and 99%. In the
one-day time horizon h = 1, the VaR value is about −1.52% and the ES value is about −2% in 99%, which implies that
there is about a 2% chance that the BWP / USD exchange rate will not lose more than 2% of its value and that the breach
will result in an expected loss on average of about 2% in the same time horizon. In general, the VaR and ES values at the
significance level 99% are approximately 2% and about 1% at the significance level 95% throughout all time horizons.
The results are consistent at both significance levels, and this speaks to the stability of the BWP / USD exchange rate and
gives investors and financial players confidence in their investments.

3.3 Discussion

Assessing and measuring the risk of losses in financial returns is essential for effective risk and portfolio management.
Diversification is a fundamental principle in portfolio construction, involving the strategic allocation of assets across
various classes to optimise the risk-return trade-off. This study developed and applied a two-stage statistical methodology
to evaluate downside risk in BTC/USD, ZAR/USD, and BWP/USD daily exchange rate portfolios. Although there is
increasing interest in cryptocurrencies and emerging market currencies individually, limited research has sought to jointly
analyse their volatility dynamics. This study is the first to use GMLE-based Markov-switching asymmetric GARCH
models to analyse these specific currency pairs together in a unified way. A detailed initial analysis was done before
estimating the model, helping to clearly understand the key features in each currency series.

The research shows that the best models for BTC/USD were MS(2)-GJR-GARCH(1,1), and for ZAR/USD and
BWP/USD, it was MS(2)-EGARCH(1,1), all using the skewed Student’s t-distribution. These specifications effectively
capture the non-linear and asymmetric volatility dynamics typical of financial markets. Our results diverge from those of
[31], who used seven error distributions, by demonstrating that fewer, well-chosen distributional assumptions,
specifically those allowing for skewness and fat tails, can be equally robust. The importance of the estimated ARCH α̂

and GARCH β̂ terms in all situations shows that there is conditional heteroscedasticity, which means that volatility
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shocks tend to last over time. Also, the positive and important asymmetry parameter (γ) suggests that negative shocks
affect volatility more than positive ones, which is backed by research on financial contagion and asymmetric information.

From an economic standpoint, the volatility dynamics observed in BTC/USD reflect the speculative and sentiment-
driven nature of cryptocurrency markets. The heightened downside risk and more persistent high-volatility regime suggest
greater uncertainty, lower investor confidence, and potential barriers to Bitcoin’s use as a medium of exchange or store
of value. Conversely, the more stable volatility patterns of BWP/USD and ZAR/USD imply that these currencies, despite
being from emerging economies, may offer relative insulation from systemic global shocks. This finding has meaningful
implications for monetary authorities, who may leverage exchange rate regimes as tools for macroeconomic stability.
The estimated transition probabilities show that Regime 1 (low volatility) is the most common for all three currencies,
with slow shifts into high-volatility states, matching the findings of [34]. This pattern implies that prolonged stability
is occasionally disrupted by sharp, temporary spikes in volatility, reflecting how crises manifest in currency markets.
These findings also have important implications for the equity market and investor behaviour. As exchange rate volatility
affects the pricing of internationally exposed firms, especially in emerging markets, persistent regime shifts can increase
uncertainty in corporate earnings and cash flows. Investors in sectors related to buying and selling goods internationally,
foreign loans, or global trade might have to change their risk management strategies because of exchange rate risks,
as noted in [43]. Finally, risk measures such as Value-at-Risk and Expected Shortfall were forecasted at various time
horizons. BTC/USD was shown to exhibit the highest level of risk across all periods, followed by ZAR/USD and then
BWP/USD. The one-step-ahead forecasts were less risky across all currencies, reflecting the compounding nature of risk
over time. These results reinforce the importance of understanding regime-specific risk exposures during both stable and
crisis periods. For portfolio managers, this analysis highlights the value of regime-aware risk modelling when allocating
capital and formulating hedging policies. The estimates of VaR and ES for the return of the BWP/USD exchange were
lower for all the time horizons considered, followed by ZAR/USD and BTC/USD at the levels of significance 95% and
99%, respectively. Thus, understanding the shifts in risks during crises and non-crisis times, as revealed by these results,
is beneficial for forex risk managers and investors.

4 Conclusion, Limitations, and Recommendations

This study developed and implemented a Generalised Maximum Likelihood Estimation-based Markov-switching
asymmetric GARCH framework to model and forecast exchange rate volatility for BTC/USD, ZAR/USD, and
BWP/USD. The GMLE approach, which optimises a simplified or approximated likelihood function, proved particularly
effective for estimating MS-GARCH models that involve latent regimes and heavy-tailed error distributions. Compared
to conventional Maximum Likelihood Estimation (MLE) or simulation-based methods such as Markov Chain Monte
Carlo (MCMC), GMLE offers superior computational efficiency without significantly sacrificing estimation accuracy,
making it especially suitable for financial time series exhibiting structural breaks and nonlinear volatility patterns.

Empirical results indicated that the MS(2)-GJR-GARCH(1,1) model best captured the volatility behaviour of
BTC/USD, while MS(2)-EGARCH(1,1) models were more appropriate for ZAR/USD and BWP/USD. The use of the
skewed Student’s t-distribution across all models allowed for an accurate depiction of the asymmetry and fat tails
observed in the data. All variance parameters were found to be statistically significant, and asymmetric volatility effects
were evident, highlighting the disproportionate impact of negative shocks on volatility. The persistence of high-volatility
regimes was most pronounced in BTC/USD, reinforcing its status as a high-risk, sentiment-driven asset. In contrast,
BWP/USD demonstrated relatively stable volatility dynamics, making it a potentially more resilient asset for risk-averse
investors.

These findings have notable implications for economic policy, financial stability, and investment strategy. For
policymakers, understanding how exchange rate regimes affect volatility dynamics can inform the design of monetary
policy frameworks. For investors, recognising regime-dependent volatility patterns enhances risk modelling and portfolio
diversification strategies. The ability of the proposed models to forecast regime-sensitive Value-at-Risk and Expected
Shortfall offers practical tools for managing tail risk and preparing for market stress events.

4.1 Limitations

Despite its contributions, this study is subject to several limitations. Firstly, although GMLE offers computational
advantages, it relies on approximations of the true likelihood function, which may introduce estimation bias. A
comparative analysis with simulation-based methods, such as MCMC, would help validate the robustness of the GMLE
approach. Secondly, the MS-GARCH models assume regime stationarity, which may not hold during periods of severe
financial stress or policy intervention. Thirdly, while the selected skewed Student’s t-distribution accommodates
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asymmetry and leptokurtosis, it may not fully capture all distributional features present in real-world financial data.
Additionally, the focus on only three currency pairs limits the generalisability of the findings. These exchange
rates—BTC/USD, ZAR/USD, and BWP/USD—each operate under unique liquidity conditions and institutional settings,
which could influence the observed volatility dynamics. The use of daily frequency data, although informative, excludes
insights into intraday volatility fluctuations, which are particularly relevant in high-frequency trading environments.
Moreover, although VaR and ES forecasts were generated, the study did not conduct formal backtesting to evaluate the
reliability of these risk measures. Finally, the restriction to a two-regime model, while statistically supported, simplifies
market reality. More complex models with additional regimes or time-varying transition probabilities may offer a more
nuanced understanding of volatility behaviour.

4.2 Recommendations

Based on the findings and limitations of this study, several avenues for future research are recommended. First, a formal
assessment of GMLE’s approximation accuracy in comparison with MCMC or other exact inference methods would
enhance confidence in its empirical application. Investigating alternative approximation strategies within the GMLE
framework, or adopting hybrid estimation approaches may improve estimation performance. Second, robustness checks
across varying model specifications, error distributions, and data frequencies would help assess the consistency and
stability of the findings. Third, researchers are encouraged to apply similar models to a broader range of financial assets,
including other currencies, commodities, and stock indices, to test the generalisability of the MS-GARCH-GMLE
framework. Incorporating macroeconomic variables—such as interest rates, inflation, or geopolitical indicators—into the
regime-switching structure could also help explain shifts between volatility regimes. Fourth, future studies should
explore the use of high-frequency data to investigate intraday volatility patterns, while addressing challenges related to
market microstructure noise.

Furthermore, rigorous backtesting of VaR and ES forecasts using standard validation techniques—such as the Kupiec
unconditional coverage test and the Christoffersen independence test—is essential for evaluating the real-world
applicability of these measures. Lastly, the extension to more sophisticated regime-switching models with time-varying
transition probabilities or a greater number of regimes could offer deeper insights into the complex dynamics of financial
markets, while acknowledging the trade-off between model accuracy and computational cost.
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