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Abstract: Human immunodeficiency virus (HIV) remains a critical public health concern in South Africa, with KwaZulu-Natal (KZN)
reporting the highest prevalence nationally. Despite the burden, men aged 15—49 remain underrepresented in HIV testing and treatment,
exacerbating transmission risks. This study applies spatial statistical modelling to identify geographic heterogeneity and associated
risk factors of HIV prevalence among this key demographic. Data were obtained from 3547 men participating in the HIV Incidence
Provincial Surveillance System (HIPSS) in KZN between June 2014 and July 2015. A Bayesian convolution model was employed to
capture spatially structured and unstructured random effects, using the integrated nested Laplace approximation (INLA) for efficient
posterior inference. The results reveal significant spatial variation in HIV prevalence. Age emerged as a primary determinant, with
the highest odds among men aged 40—44 (OR: 14.4645; 95% CI: 8.9035-23.5022). Lower educational attainment was associated
with increased risk, whereas tertiary education was protective (OR: 0.6098; 95% CI: 0.3733-0.9866). Additional covariates positively
associated with HIV infection included drug use, lack of circumcision, TB and STI diagnoses, mobility, and reported use of PrEP. A
spatial cluster near Pietermaritzburg, with a 0.45 km radius, exhibited a 55.6% prevalence and a relative risk of 1.66, although this
was not statistically significant (p = 0.213). In conclusion, the study highlights the utility of Bayesian spatial models in identifying
localised risk patterns and informs recommendations for geographically stratified, male-specific interventions, including integrated
service delivery for HIV, TB, and STIs within high-prevalence clusters.
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1 Introduction

Human immunodeficiency virus (HIV) remains a leading public health challenge, disproportionately affecting
sub-Saharan Africa, which accounts for nearly 70% of global cases [1]. South Africa, particularly KwaZulu-Natal
(KZN), is the epicentre of the epidemic, reporting some of the highest HIV prevalence rates globally [2]. While
significant strides have been made in expanding access to antiretroviral therapy (ART) and reducing new infections,
gender disparities persist. Men remain significantly underrepresented in testing, treatment, and care programmes,
contributing to higher mortality rates and ongoing transmission.

The epidemic among men is particularly concerning as they are less likely than women to access HIV testing and
care services [3,4,5], achieve viral suppression due to delayed initiation of ART [6,7], and participate in prevention
programmes such as voluntary medical male circumcision [8]. Despite the recognised importance of involving men in HIV
prevention strategies, most intervention programmes have historically targeted women and children, driven by the maternal
and child health agenda. This has created a gap in understanding male-specific risk factors and designing interventions
tailored to this population [9].
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Incorporating spatial modelling into the analysis of HIV prevalence allows for an understanding of geographic
heterogeneities, highlighting hotspots and underlying risk factors unique to men aged 15-49. This age group is pivotal
because it represents sexually active males, who play a critical role in HIV transmission dynamics and bear the brunt of
socio-structural factors influencing their vulnerability [10].

Research highlights significant spatial variations in HIV prevalence across regions in South Africa, emphasising the
need for geographically tailored strategies. Work by [11] identified substantial disparities in HIV prevalence and called
for targeted interventions informed by spatial analyses. Advanced methods, such as Bayesian spatial models, have
demonstrated the ability to capture these variations effectively. A study by [12] employed Bayesian spatial models to
identify key predictors and spatial clusters of HIV prevalence among females aged 15-34 in uMgungundlovu District,
KZN, South Africa. While this study focused on females, similar methodologies can be applied to understand risk factors
among males.

Geographical hotspots of HIV prevalence are often linked to socioeconomic inequalities and limited access to
healthcare [13]. Studies have demonstrated that traditional statistical methods fail to adequately account for spatial
dependencies and heterogeneity, underscoring the potential of advanced Bayesian methods, such as convolution models,
to address these gaps. For example, [14] utilised Bayesian hierarchical spatial modelling to explore the clustering of HIV
prevalence at the district level, while [15] applied spatial analysis to identify underserved areas with high HIV
prevalence, advocating for geographically specific strategies.

Shifts in HIV incidence patterns across age groups have also been observed in KwaZulu-Natal. Work by [16]
highlighted the need for age-specific interventions, particularly among males aged 15-49, who contribute significantly to
epidemic dynamics [17]. Despite this, much of the existing research has failed to disaggregate data by age or gender,
limiting insights into age-related risks among males or spatial variability in prevalence.

The role of socioeconomic factors, such as education and employment, in influencing HIV prevalence is
well-documented [18,19]. However, little is known about how these determinants vary across spatial contexts in
KwaZulu-Natal. Behavioural risk factors, including mobility, substance abuse, and male circumcision, have often been
studied in isolation. Their combined impact and interaction with spatial disparities remain poorly understood, limiting
the effectiveness of current intervention strategies.

To date, limited research has integrated individual, behavioural, and spatial determinants of HIV prevalence among
males aged 15-49 in KwaZulu-Natal. Bridging this gap is crucial for designing interventions that address both individual-
level risk factors and geographic disparities. This study seeks to address these gaps by applying a Bayesian convolution
model to explore the spatial disparities and key risk factors associated with HIV prevalence among males aged 15-49
in KwaZulu-Natal. By incorporating spatial heterogeneity, this analysis provides critical insights into localised risks and
offers evidence for spatially informed policy and intervention strategies.

2 Materials and Methods

2.1 Study Area Location

Figures 1A and 1B below depict the location of the study area within uMgungundlovu District and the location of the two
sub-districts of Vulindlela (Western part) and the Greater Edendale (Eastern part), respectively.

2.2 Sources of Data and Study Population

This study used secondary data from the HIV Incidence Provincial Surveillance System (HIPSS), a population-based
survey conducted from June 2014 to July 2015 in Vulindlela (rural) and Greater Edendale (peri-urban) areas of
uMgungundlovu District, KwaZulu-Natal, South Africa. HIPSS is known for its robust design in assessing HIV
incidence and prevalence. A multi-stage probability sampling method was employed. Out of the 600 enumeration areas
(EAs), 221 were randomly selected from 591 eligible EAs (each with over 50 households). Within selected EAs,
households were chosen systematically, and one eligible individual per household was randomly selected after providing
written informed consent. GPS coordinates were recorded for all sampled households to ensure spatial precision and
reduce selection bias. To maintain data quality, the Mobenzi Researcher system enabled real-time monitoring of field
teams. Data quality was checked daily during the first month, monthly for six months, and quarterly thereafter.
Automated quality control tools flagged inconsistencies for immediate correction. Laboratory-confirmed HIV test results
from peripheral blood samples were also integrated. Through rigorous sampling, real-time monitoring, and multi-tiered
quality control, HIPSS ensured a reliable and representative dataset of males aged 15-49. These measures underpin the
study’s credibility in analysing demographic, behavioural, and socioeconomic risk factors associated with HIV
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Fig. 1: 1A and 1B. Location of the study area.

prevalence. The HIPSS survey enrolled 9,812 participants aged 15-49, including 6,265 females and 3,547 males. For this
study, 2,315 males were analysed after excluding cases with missing HIV status or key demographic data. A
complete-case analysis was applied, excluding participants with incomplete records. While this method may introduce
selection bias if excluded individuals differ systematically, it ensures analytical consistency, and the impact on
conclusions is likely minimal. The study targeted males aged 1549, a group central to HIV transmission due to their
sexually active and economically productive age. Understanding the spatial disparities and risk factors within this
demographic is crucial for designing targeted, evidence-based interventions.

2.3 Study Variables

The dependent variable was HIV prevalence, defined as the proportion of HIV-positive participants in an enumeration
area (EA). Unweighted prevalence was used to better identify geographic clustering patterns.

HIV status among participants in the study population was categorised as a binary outcome:

1 for a participant who tested positive
Yij = (D

0 for a participant who tested negative

Sociodemographic, behavioural, and biological covariates were selected based on epidemiological relevance, data
availability, and statistical significance. Variables identified in previous research as key HIV risk factors were prioritised,
and only those with minimal missing data were retained to reduce bias. Univariate analyses informed the selection of
significant predictors for the multivariate model. The final set of covariates included age, level of education, marital
status, main income, ever consumed alcohol, ever diagnosed with tuberculosis (TB) or a sexually transmitted infection
(STI), number of sexual partners, condom use, male circumcision status, drug abuse, access to healthcare, Pre-Exposure
Prophylaxis (PrEP), time spent away from home, and length of residence in the community. Age was categorised into
seven groups: 15-19, 20-24, 25-29, 30-34, 35-39, 4044, and 45-49, to reflect distinct behavioural and socio-biological
stages. This granularity supports targeted analysis and intervention design. Multicollinearity was assessed using the
variance inflation factor (VIF), with all values below 1.5, indicating minimal collinearity. A stepwise selection process
excluded non-significant or redundant variables, yielding a more streamlined and interpretable model. Spatial
dependency was explicitly modelled to account for unmeasured geographic factors, reducing omitted variable bias and
enhancing accuracy.
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2.4 Spatial Autocorrelation

The Bayesian convolution regression model was chosen for its strength in capturing spatial dependencies, handling
heterogeneity, and managing uncertainty in HIV prevalence among males aged 15-49 in KwaZulu-Natal. Unlike
frequentist models, which assume independence, the Bayesian approach incorporates spatial autocorrelation, improving
geographic risk estimation. Given the spatial clustering observed, this model was well-suited. Spatial analysis used
geo-referenced Enumeration Areas (EAs) linked to HIV data. Since nearby areas often show similar values, spatial
models help distinguish true geographic trends from random variation. Moran’s I and Geary’s C confirmed spatial
structure in the data.

2.4.1 Global Moran’s Index Statistic

The global Moran’s index statistic assesses the overall spatial autocorrelation across the whole study area. The advantage
of this statistic is its capability to examine the existence, tendency and potency of spatial autocorrelation over a given
area. Positive spatial autocorrelation is depicted when values in the neighbouring enumeration areas are comparable or
are spatially grouped [21]. On the other hand, when adjacent enumeration areas tend to have contrasting values or are
spatially scattered, Moran’s index statistic suggests that there is a negative spatial autocorrelation [22,23], and when
some neighbouring pair’s deviations are in the same direction and others in the opposite direction, it approaches zero
[24].

The formula for calculating Moran’s index statistic is given by:
n XL X050 —9) (0 — )
0 XL 0i—9)?

where 7 is the total number of enumeration areas, y; is the value of the variable at location i, y; is the value of the variable
at a neighbouring location j, ¥ is the mean of the variable y across all enumeration areas, ©;; is the spatial weight between
enumeration area i and enumeration area j, and ® indicates the sum of all spatial weights.

I =

@)

2.4.2 Geary’s C Statistic

Geary’s C statistic measures the spatial autocorrelation by evaluating the degree of similarity or dissimilarity between
values of a variable at neighbouring spatial locations. Geary’s C statistic is more sensitive to local spatial variations than
Moran’s index statistic, which assesses global spatial patterns [25,26]. The formula for Geary’s C is expressed as follows:

N XY 0500 —y))?
207, (vi—3)?

where N is the total number of enumeration areas (locations), y; and y; are the values of the variable of interest at
locations i and j, y is the mean of the variable across all locations, @;; is the spatial weight between location i and
location j, and ® is the sum of all ®;;. The value of C lies between 0 and 2. If C = 1, there is no spatial autocorrelation; if
C < 1, there is positive spatial autocorrelation; and negative spatial autocorrelation is represented by values of
C>1[27].

3

To further identify and interpret spatial clusters, we utilised Kulldorff’s spatial scan statistic (SaTScan). Unlike
Moran’s I and Geary’s C, which examine general spatial patterns, SaTScan is designed to detect significant clusters of
high-risk (hot-spots) and low-risk (cold-spots) areas by scanning circular windows across the study region. This method
enables the precise identification of areas with notably higher or lower HIV prevalence, providing valuable insights for
targeted public health interventions [28].

2.5 Bayesian Hierarchical Spatial Models

Bayesian hierarchical modelling is a multi-level statistical approach that estimates posterior distributions using Bayesian
methods. It is well-suited for analysing areal data, where outcomes are aggregated by geographic units [29]. These
models incorporate covariates and random effects to account for unexplained variation and spatial autocorrelation,
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offering flexibility in quantifying uncertainty and assessing covariate effects. By borrowing information from
neighbouring areas, they produce smoothed relative risk estimates [30]. In this study, we apply a spatial Bayesian
smoothing logistic regression model.

One of the key properties of spatial data is spatial dependence. In this study, this property was considered as follows:
a participant in a ward, say &;, of the uMgungundlovu District carries some information about HIV that is also observed
in wards that are geographically close to ;.

Suppose that the outcome variable y;; represents the HIV test result for the ith participant in the €;th ward, with
associated probability p;;, where:

i=1,...,n; j=1,...,221,

_J 1 if the participant tested positive,
Yir = 0 if the participant tested negative,

and n; is the number of participants in the €; ward included in the 2014 HIPSS baseline survey. Our outcome variable
had a binary outcome, and hence, it is necessary to fit a Bayesian hierarchical spatial smoothing logistic regression model.
The model is given by:

where f(-) is the link function, X;; = (1,x1;j,...,%pi;) is the vector of p covariates measured on the ith participant in
the €; ward, and @; is the vector of regression coefficients, including the intercept.

The term p; is an unstructured random effect assumed to follow a normal distribution, u; ~ 47(0, oﬁ), and ¢;
represents the structured spatial random effect for ward €;.

2.5.1 Bayesian Parameter Estimation Framework

In the Bayesian framework, parameter estimation is not simply about finding point estimates (e.g., maximum likelihood
estimates), but about characterising the full posterior distribution of the parameters. This allows us to quantify
uncertainty and incorporate prior beliefs into the analysis [31,32,33].

Bayesian estimation is based on Bayes’ theorem, which provides a formal way to update our beliefs about unknown
parameters based on observed data. It is given by:

Py|B)P(B)
P(y)

where P(B | y) is the posterior distribution of the parameter B after observing the data y; P(y | B) is the likelihood
function, which describes how likely the observed data are given the parameter values B; P(B) is the prior distribution,
representing prior beliefs about the parameter before seeing the data; and P(y) is the marginal likelihood, serving as a
normalising constant.

P(Bly) = o)

The marginal likelihood distribution normalises the posterior distribution and ensures that the posterior is a valid
probability distribution and sums to 1. It is obtained by integrating the joint distribution over all possible values of  and
is given by:

P(y) = [ P(v|B)P(B)aB. ©®

2.5.2 Prior Distributions

In the Bayesian framework, prior distributions (representing beliefs before observing data) are combined with likelihood
functions (representing observed data) to yield posterior distributions (updated beliefs). Priors are essential in Bayesian
hierarchical spatial models, particularly for managing small sample sizes or high spatial variability [31,34,35,36]. Priors
must be specified for all random components. When prior knowledge is strong, informative priors are used; otherwise,
non-informative or weakly informative priors are preferred. In this study, we used non-informative priors for regression
coefficients and random effect variances, given the limited prior knowledge available. We adopted penalised complexity
(PC) priors for the precision of random effects, as they strike a balance between model simplicity and complexity,
allowing the data to inform the level of spatial structure. Unlike flat or overly vague priors, PC priors reduce the risks of
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overfitting and improve interpretability and computation [37,38].

The PC prior for precision p is derived to penalise deviation from a simpler base model. For precision, the PC prior is
expressed as:

n(p) =ve VP )
with
_ log(a)
V= U 8)
and
1
p= P ©)]

where p is the precision, U is the upper bound for the standard deviation o of the random effect, and « is the probability
that o > U.

2.5.3 Posterior Distributions and Point Estimates

The complete information about the parameter estimates is contained in the posterior distribution, and point estimates
and credible intervals are generally used to summarise the posterior distribution. Point estimates are divided into three
categories, namely posterior mean, posterior mode and posterior median. The posterior distribution is then used for
inference and prediction.

The posterior mean is the expected value of the parameter under the posterior distribution. It is a common estimate,
especially when the posterior is symmetric. For a parameter f3, it is given by:

A

Bucw =EIB |~ [ BP(B|Y)dB (10)

The posterior mode is a point estimate of a parameter in the Bayesian framework. It corresponds to the value of 8 that
maximises the posterior distribution P(f | y), that is, the most probable value of 8 given the observed data. It is expressed
mathematically as:

Biar = argmaxP(B |y) (1)

where argmaxg indicates finding the value of B that maximises this posterior probability. The MAP estimate is often
used when the posterior is skewed, but it can be sensitive to the choice of the prior.

The posterior median is a robust point estimate that divides the posterior distribution into two equal parts. It is less
sensitive to outliers compared to the mean or mode.

Bayesian credible intervals indicate the range within which the parameter is likely to fall with a certain probability. A
95% credible interval means that there is a 95% probability that the true parameter lies within the interval, given the data
and prior.

For a parameter B, the 95% credible interval is given by:

P(ﬁ]ower < B < Bupper | Y) =0.95. (12)

Unlike frequentist confidence intervals, credible intervals directly provide the probability that the parameter lies within a
certain range.

© 2025 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 14, No. 5, 817-837 (2025) / www.naturalspublishing.com/Journals.asp %N Sy 823

2.5.4 Parameter Estimation Computational Techniques

In most Bayesian practical problems having models with hierarchical or spatial structures, the posterior distribution does
not have a closed-form solution. Hence, we depend on computational techniques to approximate the posterior
distribution. These computational techniques include Markov Chain Monte Carlo (MCMC), Integrated Nested Laplace
Approximation (INLA) and Variational Inference (VI).

MCMC techniques are utilised to estimate the posterior distribution by creating samples from it. These samples can
then be utilised to approximate posterior summaries such as means, medians, and credible intervals. Gibbs Sampling,
Metropolis-Hastings Algorithm, and Hamiltonian Monte Carlo (HMC) are the most widely applied MCMC techniques
[39,40,41].

The Gibbs sampling technique involves sampling the posterior, one parameter at a time, from its full conditional
distribution and iteratively updating each parameter. It can be expressed as:

B ~ P(Bi | B_iy)

The Metropolis—Hastings algorithm is a more general MCMC method applied when the full conditionals are not easily
sampled. A candidate point is proposed at each iteration, and it is accepted or rejected based on the acceptance ratio given
by:

a:mm<hpmwymw@|W7>, 13
PB" |y)q(B"| B

where B is the proposed new parameter value, and g( | B') is the proposal distribution.

The Hamiltonian Monte Carlo (HMC) is a more advanced MCMC algorithm that utilises gradients of the
log-posterior to examine the parameter space more conveniently, resulting in faster convergence. An alternative to
MCMC is INLA, which is designed specifically for latent Gaussian models. This computational technique uses
numerical approximations instead of sampling to compute the posterior distribution. It is suitable for large sets of data or
complex hierarchical models and is faster and provides accurate posterior marginal distributions for each parameter
compared to MCMC [42,43,44].

The Variational Inference (VI) is a method that estimates the posterior by getting a simpler distribution that is close to
the true posterior. Instead of sampling, it minimises the Kullback-Leibler (KL) divergence between the true posterior and
the approximating distribution [45,46,47]

In our analysis, we preferred INLA due to its speed, accuracy, scalability, and ease of use. It outperforms MCMC in
these contexts by eliminating the need for sampling while delivering precise results [42].

2.6 Bayesian Convolution Model

The Bayesian Convolution Model provides a robust, data-driven approach to analysing HIV prevalence, accounting for
spatial structure, uncertainty, and small-area variation. This makes it an ideal choice for uncovering spatial disparities
and risk factors among males aged 15-49 in KZN, ultimately helping to inform more effective HIV intervention
strategies.

In convolution models, both unstructured and structured components are combined to model both spatially structured
effects and unstructured heterogeneity simultaneously. In our study, the Bayesian convolution model deals with a binary

outcome variable ¥; for each observation i, where Y; € {0, 1} and follows a Bernoulli distribution. Thus,

Y; ~ Bernoulli(p;),
where p; is the probability that ¥; = 1.

The link function is the logistic function given by:
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exp(¢i)
= — 7, 14
T Trew(e) (o
where ¢; is a linear predictor expressed as
01 = Bo+ X[ B, (15)

where fy is the intercept, X; is the vector of covariates for observation i, and B is the vector of regression coefficients.

2.6.1 Convolution Model Specification

To account for spatial autocorrelation and unstructured heterogeneity, the convolution model extends the logistic
regression formulation by incorporating both structured and unstructured random effects:

logit(pi) = Bo+X{ B +ui + 6, (16)
where u; denotes the unstructured random effects and u; ~ .4(0,67), and 6; indicates the spatially structured random

effect at location i, typically modelled using an intrinsic conditional autoregressive (ICAR) prior or a Besag—York—Mollié
(BYM) model to capture spatial dependence.

2.6.2 Likelihood Function

Given the Bernoulli assumption for Y;, the likelihood function for the Bayesian convolution logistic model is:

N

LB)=]]pi(1—p)' " 17)

i=1

Substituting the logit function:

X exp(Bo+ XIB+ui+6) >Y< | >1y,.
L(ﬁ)_g(lJrexp(ﬁoJerTﬁ +u+6;) 1+exp(Bo+XI'B+u;+6) (18)

2.7 Model Diagnostics

After fitting the model, we checked for the model adequacy using the residuals plot and the normal Q-Q plot. If the
residuals plot shows that residuals are not symmetrically distributed about zero, or are showing any clear pattern or trend,
and have no constant variance, then the model will not be of best fit [48,49,50]. The deviation from normality in the Q-Q
plot suggests that the residuals do not perfectly follow a normal distribution.

We also examined the spatial autocorrelation in the residuals by applying Moran’s index statistic, Geary’s C statistic,
and the variogram plot. We applied these to verify whether the spatial structure was adequately captured. The model’s
failure to fully capture spatial dependencies is indicated by high spatial autocorrelation in the residuals [51,52]. If
Moran’s index statistic and Geary’s C statistic for the residuals are significant, then the model will not fit the data well.
Using the variogram plot, an increasing semi-variance with distance implies spatial autocorrelation, suggesting that the
model may not have fully accounted for the spatial structure. On the other hand, a flat variogram implies that residuals
are spatially uncorrelated, indicating that the model has adequately captured the spatial structure [51,53].

Posterior density plots were also used to examine the validity, reliability and stability of the fitted model. A smooth,
unimodal plot suggests the model has fit well and provides reliable results for the parameter under consideration.
Multimodal may suggest ambiguity or issues with the model or data [31].
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2.8 Software and Implementation

The implementation of the Bayesian convolution model was carried out using the integrated nested Laplace
approximation (INLA) method, as developed by [42] and later reviewed in 2017. This was performed using R software
(version 4.4.0) with the application of the “INLA”, “sf”, “sp”, “spdep”, and “dplyr” packages. Spatial relationships
between the enumeration areas were established by creating a spatial weight matrix, with neighbours identified through
Queen’s contiguity. We also employed Kulldorff’s spatial scan statistics via SaTScan software version 10.1.3.

3 Results, Discussion and Conclusion

3.1 Results
3.1.1 Descriptive Statistics Results

Table 1 presents the HIV prevalence (%) and corresponding 95% confidence intervals for all variables included in the
study. A total of 2,315 males were included in the analysis after excluding participants with incomplete HIV status or
missing key demographic variables. Among them, 787 were HIV-positive, resulting in an overall HIV prevalence of
34.0% (95% CI: 32.07-35.93).

HIV prevalence showed clear variation across demographic and behavioural factors. Prevalence increased with age,
peaking at 62.5% in the 40-44 age group, while the lowest prevalence was observed in the 15-19 age group (4.55%),
highlighting age as a critical risk factor. Educational attainment was inversely associated with HIV prevalence; males
with tertiary education had the lowest prevalence (16.13%), whereas those with only primary education or no schooling
had significantly higher rates. Unemployed males and those relying on remittances also exhibited differing prevalence
levels, with the highest (40.31%) observed among those with no income. ;pScmrcccc
Covariate n =787 Prevalence (%) 95% CI Lower 95% CI Upper p-Value

Covariate n =787 Prevalence (%) 95% CI Lower 95% CI Upper p-Value

Age Group < 0.0001
15-19 10 4.55 1.82 7.27
20-24 61 11.01 8.48 13.72
25-29 140 30.77 26.59 34.95
30-34 184 50.00 44.84 55.16
35-39 160 54.42 48.64 60.20
40-44 145 62.50 56.03 68.53
45-49 87 45.31 38.54 52.60

Education Level < 0.0001
Complete Secondary 285 27.67 24.95 30.39
Incomplete Secondary 396 41.25 38.12 44.38
No Schooling/Pre-primary 20 43.48 30.43 58.70
Primary (Grade 1-7) 61 49.19 40.32 58.06
Tertiary 25 16.13 10.32 21.94

Main Income 0.0237
No Income 79 40.31 33.67 47.45
No Response 18 36.00 24.00 50.00
Other non-farming income 87 36.71 30.80 43.04
Pension or grants 150 33.86 29.57 38.37
Remittance 9 23.68 10.53 36.84
Salary/Wage 441 32.86 30.33 35.39
Farming sales 3 33.33 0.00 66.67

Marital Status 0.1732
Divorced 0 0.00 0.00 0.00
Legally married 66 40.49 33.13 47.85
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Living together 37 64.91 52.63 77.19

Separated 1 50.00 0.00 100.00

Single (never married) 623 31.50 29.47 33.57
Single (previously cohabiting) 58 52.73 43.64 61.82
Widowed 2 66.67 0.00 100.00

Drug Abuse 0.5179
Never 762 34.37 32.39 36.36
Yes 25 25.51 17.35 34.69

PrEP Use 0.5272
No 778 33.78 31.87 35.74
Yes 9 75.00 50.00 100.00

Circumcision Status < 0.0001
Circumcised 161 20.05 17.31 2291
Uncircumcised 626 41.40 38.96 43.92

Ever Diagnosed with TB 0.4287
No 723 33.20 31.22 35.17
No Response 2 20.00 0.00 50.00
Yes 62 48.82 40.16 57.48

Condom Use 0.2837
No 26 37.14 25.71 48.57
Yes 761 33.90 31.94 35.86

Number of Sexual Partners 0.7022
1 598 34.59 32.33 36.84
2 75 28.09 22.85 33.71
3+ 114 35.74 30.41 41.07

Alcohol Use 0.8114
No 383 32.82 30.16 35.56
Yes 404 35.19 32.40 37.98

Diagnosed with STI 0.0533
No 694 33.02 31.02 35.01
Yes 93 43.66 37.09 50.23

Away from Home 0.0035
No 697 34.22 32.16 36.28
No response 0 0.00 0.00 0.00
Yes 90 33.46 27.88 39.03

Length in Community 0.0094
Always 586 32.81 30.63 34.99
<1 year 17 33.33 21.57 47.06
>1 year 183 38.45 34.03 42.86
No response 1 50.00 0.00 100.00

Access to Healthcare 0.3380
Did not respond 1 14.29 0.00 42.86
No 515 33.03 30.72 35.41
Yes 271 36.18 32.71 39.65

Marital status, health behaviour, and biomedical factors further influenced HIV prevalence. Widowers (66.67%) and
cohabiting males (64.91%) had the highest rates. Surprisingly, PrEP users had a much higher prevalence (75%), likely
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due to reverse causality (PrEP targeting high-risk individuals). Uncircumcised males, those diagnosed with TB or STTs,
and those reporting multiple sexual partners or alcohol consumption all had higher prevalence. Interestingly, some factors
such as condom use, time spent away from home, recent migration, and access to healthcare showed only marginal
differences, with slightly higher prevalence among males with access to services, potentially reflecting greater health-
seeking behaviour in higher-risk populations.

3.1.2 Spatial Variation and Clustering of HIV Prevalence

HIV prevalence varied across geographical locations, as illustrated in Figure 2. The spatial distribution map, based on
posterior estimates from the Bayesian convolution model, depicts the geographic variation in HIV prevalence using
posterior mean estimates. The colour gradient represents these estimates, highlighting spatial heterogeneity in HIV
prevalence across different regions. The estimated posterior means ranged from -0.10 to 0.15, indicating that HIV
prevalence is not uniformly distributed across the study area. The global Moran’s index statistic displayed in Table 2, was

~ .83
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Fig. 2: Spatial Distribution Map of HIV prevalence (Interactive Map), see: https://drive.google.com/file/d/
1UyV2IMSczfmsHpaww2qnkQoDh18bTWup/view ?usp=sharing

0.7699 with a p-value < 0.001, indicating the existence of significant positive spatial autocorrelation in the
uMgungundlovu District. Since the Moran’s index value is positive and statistically significant, we can conclude that
HIV prevalence among males in the district is spatially heterogeneous. This suggests the presence of clusters of high and
low HIV prevalence areas within the study region, indicating a non-random spatial pattern. The positive Moran’s index
also implies that HIV prevalence in neighbouring wards tends to be similar.

These findings are supported by the results of Geary’s C statistic, which further confirm the presence of spatial
heterogeneity in HIV prevalence among males within the uMgungundlovu District. The summary statistics for Moran’s
index and Geary’s C are provided in Table 2.

Table 1: Moran’s I and Geary’s C Summary Statistics

Summary Statistics Moran’sI  Geary’s C

Statistic 0.7699 0.2180
p-value < 0.001 < 0.001
Expectation -0.0004 1.0000
Variance 0.0002 0.0002
Standard Deviate 62.3053 53.0581
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The results from Moran’s Index and Geary’s C consistently reveal spatial heterogeneity in HIV prevalence among
males in the uMgungundlovu District. These findings imply that HIV prevalence is not randomly distributed across the
district, but rather spatially clustered.

However, Moran’s index test statistic and Geary’s C statistic are less informative when coming to distinguishing
between hotspots and cold spots clusters. Accordingly, to identify hotspots and cold-spots wards for HIV prevalence, we
employed Kulldorf’s spatial scan statistic. This statistic identified one cluster. The distribution of spatial clusters of HIV
prevalence is displayed on a map in Figure 3 below.

Fig. 3: Spatial Clustering of HIV Prevalence in uMgungundlovu Municipality, see: https://drive.google.com/file/d/
1xMOxYpbpMQA9vjd38d9UpuvD5DVU_mPM/view ?usp=sharing

The identified cluster, which was a hotspot with a radius of 0.45 km, had a 55.6% HIV prevalence and a relative risk of
1.66. Thus, the risk within the cluster was 66% higher than outside the cluster. This cluster was around the Pietermaritzburg
area, with five location IDs. However, this cluster was not statistically significant since its p-value was 0.213 > 0.05.

3.1.3 Bayesian Spatial Modelling and Risk Factor Analysis

Summary statistics for HIV prevalence rates across all covariates included in the study are presented in Table 1. While
these statistics provide an initial indication of potential associations, the convolution model results are emphasised due to
their robustness in accounting for spatial correlations and confounding effects. This approach ensures that conclusions are
drawn from a more comprehensive analysis of the data.

To investigate spatial disparities and risk factors associated with HIV prevalence among males aged 15-49 in
KwaZulu-Natal, a Bayesian convolution model was fitted. Most covariates were statistically significant at the 5%
significance level, though a few did not demonstrate statistical significance.

To identify factors associated with HIV prevalence, adjusted odds ratios (ORs) were calculated using the fitted
convolution model, implemented with INLA in R software. Table 3 presents the adjusted ORs along with their
corresponding 95% credible intervals (CIs) for the participants’ characteristics. ;p6.2cmccc
Covariate OR 95% CI Lower 95% CI Upper

Covariate OR 95% CI Lower 95% CI Upper
Intercept 0.0488 0.0098 0.2430

Age Group (ref: 15-19)
20-24 1.4234 0.8834 2.2934
25-29 4.5357 2.8950 7.1068
30-34 9.9118 6.3024 15.5902
35-39 11.7944 7.4068 18.7837
40-44 14.4645 8.9035 23.5022
4549 7.0116 4.2016 11.7017

Education (ref: Complete Secondary)
Incomplete secondary (Grade 8—11/NTC1/2) 1.6192 1.3061 2.0075
No schooling/creche/pre-primary 1.4539 0.7685 2.7499
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Primary (Grade 1-7) 1.6389 1.0751 2.4990
Tertiary (Diploma/degree) 0.6098 0.3733 0.9886

Main Income (ref: No Income)
No response 1.0677 0.5364 2.1253
Other non-farming income 0.9185 0.5996 1.4068
Pension or grants 0.8064 0.5501 1.1823
Remittance (migrant worker) 0.5863 0.2568 1.3384
Salary and/or wage 0.7901 0.5666 1.1017
Sales of farming products 0.7926 0.2303 2.7280

Marital Status (ref: Divorced)
Legally married 0.6970 0.2795 1.7382
Living together (like husband and wife) 1.7158 0.6441 4.5704
Separated, still legally married 0.8891 0.1729 4.5728
Single, never married 0.9868 0.4077 2.3880
Single, lived with someone before 1.3297 0.5236 3.3769
Widowed 1.6124 0.3416 7.6106

Drug Abuse (ref: Never)
Yes 1.6226 1.0357 2.6600

PrEP (ref: No)
Yes 3.1180 1.0001 9.7225

Male Circumcision Status (ref: Circumcised)
Uncircumcised 2.0533 1.6424 2.5673

TB (ref: No)
No response 0.6010 0.1769 2.0416
Yes 1.9868 1.3087 3.0165

Condom Use (ref: No)
Yes 0.8183 0.4705 1.4232

Number of Partners (ref: 1)
2 0.8021 0.5769 1.1152
3 1.0882 0.8085 1.4642

Alcohol (ref: No)
Yes 0.9701 0.7958 1.1828

STI Diagnosed (ref: No)
Yes 1.4468 1.0448 2.0042

Away From Home (ref: No)
No response 0.2850 0.0684 1.1873
Yes 1.3163 1.0772 1.6400

Length in Community (ref: Always)
Moved here less than 1 year ago 0.9863 0.5257 1.8497
Moved here more than 1 year ago 1.0597 0.8306 1.3518
No response 1.6147 0.2961 8.8049

Accessed Health Care (ref: No response)
No 1.2765 0.4085 3.9893
Yes 1.6223 0.5166 5.0953
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The covariates depicted in Table 3 provide insights into the factors associated with HIV prevalence among males
aged 15-49 in KwaZulu Natal. Only significant covariates are reported here. A covariate is significant if its 95% credible
interval does not include 1.

Age emerged as a strong determinant of HIV prevalence, with older males, especially those aged 30—44, at significantly
higher risk. Men aged 25-29, 30-34, 35-39, 40-44, and 45-49 showed significantly higher odds of being HIV-positive
compared to those aged 15-19. The odds ratios for these age groups were 4.5357, 9.118, 11.7944, 14.4645 and 7.0116
respectively. The risk peaked in the 40—44 age group (OR: 14.4645; 95% CI: 8.9035-23.5022), indicating that this group
has 14.4645 times higher odds of HIV prevalence compared to the age group 15-19.

Considering the level of education, the odds of HIV prevalence for males with incomplete secondary were 1.6192 (OR
=1.6192,95% CI: 1.3061 —2.0075) times more than those with complete secondary. Participants with primary education
were 1.6389 (OR = 1.6389, 95% CI: 1.0751 —2.4990) times more likely to be HIV infected compared to participants with
complete secondary. Males with tertiary education were at lower risk (OR = 0.6098, 95% CI: 0.3733 — 0.9866) of being
HIV infected compared to those with complete secondary, suggesting that higher education may be protective.

Based on the drug abuse covariate, males who reported drug abuse had higher odds of being HIV-positive (OR: 1.6226;
95% CI: 1.0357-2.6600). For the PREP covariate, males who reported using PrEP had an increased risk of being HI'V-
infected (OR = 3.1180, 95% CI: 1.0001 — 9.7225). Male circumcision also emerged as a key factor for HIV prevalence,
with uncircumcised males having significantly higher odds of being HIV-positive (OR: 2.0533; 95% CI: 1.6424-2.5673)
compared to circumcised males. Males who were diagnosed with TB were 1.9868 (OR =1.9868, 95% CI: 1.3087 — 3.0165)
times more likely to be HIV infected compared to those who never suffered from TB. The odds of HIV prevalence for
males who were diagnosed with STIs were 1.4468 times greater than those who were not diagnosed with STIs.

Results based on being away from home revealed that males who were away from home showed higher odds of HIV
prevalence (OR: 1.3163; 95% CI: 1.0772-1.6400) compared to those who have not been away from home. This suggests
that mobility and migration may increase exposure to high-risk environments.

From the interpretations above, the results highlight significant spatial disparities and risk factors associated with HIV
prevalence among males in KwaZulu-Natal. The key significant risk factors identified include older age, lower educational
attainment, lack of circumcision, drug abuse, TB, STIs, and mobility (being away from home).

3.1.4 Diagnostic Evaluation of the Convolution Model

The performance of the fitted convolution model was evaluated using residual plots and normal quantile-quantile (Q-Q)
plots. To assess spatial autocorrelation in the residuals, Moran’s Index, Geary’s C statistic, and the variogram plot were
applied. Additionally, posterior density plots for statistically significant covariates were examined to further explore their
influence on the model. Figure 4 below displays the residuals plot.

residuals
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1
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INndex

Fig. 4: Residuals Plot for the Fitted Model

The residuals plot displayed in Figure 4 suggests that the model fits the data well. The residuals are symmetrically
distributed around zero, show no clear pattern, and exhibit constant variance, indicating no systematic bias in the model’s
predictions. Ideally, residuals should be centred around zero for the model to be considered well-fitted.
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Figure 5 displays the Q-Q plot of the residuals. The plot in Figure 5 indicates that the residuals deviate from normality,
showing an S-shaped pattern, which suggests heavier tails than a normal distribution. However, in spatial modelling,
particularly with convolution models, residuals are not always expected to follow a normal distribution due to inherent
spatial dependencies.

Normal Q-Q Plot for Residuals
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Fig. 5: Normal Q-Q Plot for the Residuals

Several researchers have highlighted that spatial models, such as the convolution model introduce spatial dependency
into the residuals, leading to deviations from normality. This is a recognised characteristic in spatial statistics and should
be understood as a reflection of the model’s ability to capture spatial structure rather than strictly adhering to normality
assumptions [34,51,54,55,56].

The global Moran’s I statistic for the residuals was -0.0017 (p-value = 0.5373). The non-significant p-value (p > 0.05)
indicates that the residuals exhibit no statistically significant spatial autocorrelation, suggesting that the convolution model
effectively accounted for most of the spatial structure in the data.

Similarly, Geary’s C statistic was 0.9925 (p-value = 0.3049), which is close to 1, further confirming the absence of
significant spatial autocorrelation in the residuals. The non-significant p-value supports the conclusion that the model
adequately captured spatial dependencies. Together, the results of Moran’s I and Geary’s C tests affirm that the residuals
are spatially uncorrelated, reflecting a good model fit.

Additionally, the variogram plot of the residuals (Figure 6) provides further evidence of spatial independence. The
lack of spatial correlation in the residuals confirms that the fitted model has effectively addressed the spatial structure
within the data.

Wariogramm of Residuals
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Fig. 6: Variogram Plot for the Residuals

The plot shows a flat or constant semi-variance around 0.15, indicating that the residuals from the fitted convolution
model lack spatial autocorrelation, suggesting spatial independence. If the residuals were spatially dependent, such as
clustering of positive or negative residuals in space, the semi-variance would increase with distance at some point.
However, this pattern was not observed in the plot.

Figure 7 displays the posterior density plots of the statistically significant regression parameters of the structured
model. All the plots display smooth curves and single peaks, suggesting stability and proper convergence of the model.
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Fig. 7: Posterior Density Plots for the Statistically Significant Coefficients in the Model

Based on the spatial autocorrelation tests applied, the results revealed that the residuals were not spatially
autocorrelated. This suggests that the convolution model was appropriate and successfully captured the spatial structure
in the data. Further support for the model’s adequacy comes from the smooth and unimodal patterns observed in the
posterior density plots.

3.2 Discussion

This study explored the spatial disparities and risk factors associated with HIV prevalence among males aged 15-49 in
KwaZulu-Natal, South Africa, using a Bayesian convolution model. The findings highlight critical determinants that align
with and extend existing knowledge about HIV epidemiology. The overall HIV prevalence of 34% aligns with earlier
work [57,58] that positions KZN among regions with the highest HIV prevalence rates globally. Age was a significant
predictor of HIV prevalence, with men aged 30—44 being at the highest risk. This is consistent with previous studies that
report peak HIV prevalence in similar age groups due to increased sexual activity, multiple partnerships, and cumulative
exposure to risk over time [9, 17,59,60]. The sharp increase in risk among men aged 30—44 highlights the need for targeted
interventions such as scaling up testing and prevention programmes for middle-aged men.

Educational attainment was found to be a key socioeconomic factor, with males having incomplete secondary or
primary education at higher risk of HIV infection compared to those with complete secondary or tertiary education.
These findings agree with studies linking lower educational levels to reduced access to HIV-related knowledge,
prevention resources, and healthcare services [18,19]. Conversely, tertiary education appeared protective, likely due to
better awareness and adoption of safer sexual practices. This highlights the importance of integrating HIV education into
school curricula, particularly for underserved populations.

Drug abuse was significantly associated with higher odds of HIV infection, a finding consistent with research
indicating that substance use is a major driver of risky sexual behaviour, including inconsistent condom use and multiple
sexual partners [61,62]. Prevention strategies targeting substance abuse, combined with HIV prevention programmes, are
essential to reduce the dual burden of these intertwined public health issues. Unexpectedly, PrEP users had higher odds
of HIV positivity, possibly due to adherence challenges, initiation after exposure, or selection bias, where individuals at
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higher risk are more likely to be prescribed PrEP. These findings align with studies emphasising the importance of
adherence counselling and regular monitoring for those on PrEP [63,64].

Regarding male circumcision status, uncircumcised men had significantly higher odds of being HIV-positive
compared to circumcised males, consistent with evidence that male circumcision is associated with reduced HIV risk
[11,65]. Scaling up voluntary medical male circumcision (VMMC) programmes, particularly in rural and underserved
areas, remains a key intervention for HIV prevention. We observed that men diagnosed with TB were at higher risk of
HIV infection, reaffirming the strong bidirectional relationship between HIV and TB [66]. This is also consistent with
the well-documented association between TB and HIV co-infection, as highlighted in the research by [67,68].

Additionally, our analysis revealed that STIs are significantly associated with increased HIV risk. This is supported by
research indicating that individuals diagnosed with STIs have higher odds of HIV infection [11]. This implies that STIs
are a marker of risky sexual behaviour and a biological facilitator of HIV transmission. Hence, scaling up STI prevention
and treatment services may help mitigate this risk.

Mobility, particularly time spent away from home, was also linked to a higher risk of HIV infection, reinforcing prior
research on migration and HIV vulnerability. This aligns with studies suggesting that migration disrupts social networks
and increases exposure to high-risk environments [69]. This is also supported by research showing that individuals who
travel or are away from home frequently have higher odds of HIV infection [70].

In contrast to some previous studies, we did not find significant associations between HIV infection and main
income, marital status, condom use, multiple sexual partners, alcohol use, or length of residence in the community.
These discrepancies could be attributed to differences in study design, demographic composition, or regional contexts.
Further research is needed to explore these variations.

Figure 2 highlights geographic disparities in HIV prevalence. Higher prevalence areas tend to be concentrated in urban
and peri-urban regions, while lower prevalence areas are more widely dispersed. These patterns likely reflect population
density, socioeconomic conditions, and healthcare accessibility. Recognising these spatial trends is crucial for designing
targeted interventions and optimising resource allocation for HIV prevention and treatment programmes.

High-prevalence areas may benefit from focused strategies, including HIV awareness campaigns, expanded PrEP
distribution, and mobile health services. A spatial hotspot near Pietermaritzburg exhibited elevated HIV prevalence,
though it did not have statistical significance. However, this pattern suggests the potential need for localised
interventions.

Similar spatial analyses in South Africa have identified geographical clusters of high HIV prevalence, often linked to
socioeconomic vulnerabilities and disparities in healthcare access [15,71,72,73]. Additionally, studies from other sub-
Saharan African settings, including Uganda, have reported significant HIV heterogeneity across different communities,
highlighting the role of geographical and population-specific risk factors in shaping the epidemic [74,75]. These findings
collectively reinforce the existence of localised HIV heterogeneity and the need for context-specific interventions.

The Bayesian convolution model effectively captured spatial dependencies and heterogeneity, yielding more precise
and reliable HIV prevalence estimates across enumeration areas in uMgungundlovu District. By incorporating both
structured and unstructured spatial effects, this approach enhances the robustness of epidemiological analyses while
accounting for spatial autocorrelation and unmeasured confounders. Our study underscores the advantages of using
Bayesian methods in HIV research, offering a more comprehensive understanding of geographical disparities while
adjusting for both individual and community-level covariates.

3.3 Conclusion

This study significantly advances spatial epidemiology and HIV research by applying a Bayesian convolution model to
analyse HIV prevalence among males aged 15-49 in KwaZulu-Natal, South Africa. Unlike conventional approaches,
this method accounts for both spatial heterogeneity and dependence, resulting in more accurate prevalence estimates and
a nuanced understanding of geographic disparities. The analysis revealed elevated HIV prevalence in urban and peri-
urban regions, with a notable, though not statistically significant, hotspot near Pietermaritzburg. The integration of diverse
sociodemographic, behavioural, and biological factors highlighted key risk determinants, including older age (particularly
3044 years), low educational attainment, lack of circumcision, drug abuse, tuberculosis, sexually transmitted infections
(STIs), and mobility.

Conversely, variables such as marital status, alcohol use, condom use, multiple sexual partners, and income source
were not significantly associated with HIV status, suggesting that drivers of HIV transmission may differ across regions
or contexts. These findings carry important public health implications, underscoring the need for geographically targeted,
male-focused HIV interventions. Expanding awareness campaigns, improving access to PrEP, and deploying mobile health
services in high-risk areas are critical next steps. Moreover, the strong associations between HIV, TB, and STIs support
the adoption of integrated healthcare strategies.
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Future research should utilise longitudinal data to better capture temporal patterns of HIV transmission and explore
how socioeconomic and structural factors shape spatial disparities. Comparative studies across provinces could offer
insight into the generalisability of these patterns. Ultimately, implementing localised, data-driven interventions that
address both individual and structural risk factors is essential for reducing HIV prevalence and advancing South Africa’s
long-term public health goals.
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