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Abstract: Gompertz is one of the important continuous distributions that is often applied to describe the distribution of adult lifespans
by demographers and actuaries. Related fields of science such as biology, and gerontology, also considered the Gompertz distribution for
survival analysis. In this study, a new Gompertz distribution with four parameters was proposed according to the truncated Nadarajah-
Haghighi-G family to obtain a more flexible distribution, some statistical properties for the latest model where introduced, different
shapes for CDF and PDF given with two- and three-dimension plot. To verify the aim of the study, two data sets were applied to
illustrate flexibility for the proposed distribution compared with some statistical distributions, published in the literature according to
information standards such as AIC, CAIC, BIC, and HQIC. The research produced encouraging results that could help statistical work
and data analysis.
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1 Introduction

One essential aspect of our lives is the dissemination of statistics. It enables us to comprehend the environment we
live in and make wise choices. It also aids in the discovery of possibilities and trends. Over the past few decades, a
number of statistical distributions have been extensively utilized in a wide range of disciplines, such as engineering,
economics, the medical sciences, demographics, and more. Many researchers, such us, El-Gohary er al. [10] proposed
the generalized Gompertz distribution; Mazucheli et al. [19] developed Unit-Gompertz distribution; Eghwerido et al.[8]
introduced the modified beta Gompertz distribution; Eraikhuemen et al. [11] formulated transmuted power Gompertz
distribution; Bantan et al. [7] developed the unit gamma/Gompertz distribution; Ieren et al. [13] developed the power
Gompertz distribution; Atanda et al.[6] proposed a new odd Lindley-Gompertz distribution; Meraou et al. [20] formulated
the exponential T-X Gompertz model; Mahdy et al. [17] introduced a new bivariate odd generalized exponential Gompertz
distribution; Joshi & Kumar [16] proposed Lindley Gompertz distribution; Nzei et al. [21] developed the Topp-Leone
Gompertz distribution; Pasupuleti & Pathak [22] studied a particular form of the Gompertz model and its application; and
Alizadeh et al. [3] studied some characterizations of the exponentiated Gompertz distribution and employed it to analyze
many life phenomena. In this paper, a new Gompertz distribution with four parameters was established. In addition some
statistical properties, for instance, the quantile function, moments, incomplete moments, order statistics, and three various
types of entropies. The term and concept of entropy is used in a wide range of fields, from classical statistical and
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dynamical physics to quantum physics. In fact, entropy refers to a common concept of uncertainty. It is one of the types
with common applications, Rényi entropy, Arimoto entropy and Tsallis entropy. Its importance has been discussed by
researchers, such as: Alotaibi et al. [4], Habib et al. [12] and Ahsan & Aslam, [1].

Several methods for creating general families of distributions have been created and explored by numerous authors in

recent years. By include one or more factors in a baseline model, these families provide greater modeling flexibility for
lifetime data. To increase accuracy and adaptability, they are crucial for applied statisticians in fields including economics,
environmental sciences, finance, medicine, and reliability studies. The widely recognized generators include the following:
Marshall Olkin-G in [23], a new shifted Lomax-X family in [24], sine-exponentiated Weibull-H family in [25], Weibull-G
in [26], a new truncated Zubair-G in [27], a new truncated Muth-G in [28], odd-Burr-G in [29], a new logarithmic tangent-
U family in [30], odd inverse power generalized Weibull-G in [31], Kumaraswamy-G Poisson family in [32], odd Burr-G
Poisson family in [33], a new generalized Burr-G [34], sine-G in [35], unit exponentiated half logistic power series class
of distributions in [36], ratio exponentiated-G in [37], compounded Bell- G in [38], alpha power transformed weibull-G
in [39], weighted exponentiated -G in [40], sine Burr-G in [41], odd Lomax trigonometric-G in [42], new hyperbolic
sine-G in [43], discrete analogue of odd Weibull-G in [44], log-logistic tan generalized family in [45]. For more details
see [46]-[59].
The motivation behind choosing and writing the topic is to generate a distribution with four parameters to be more flexible,
to describe natural phenomena that classical distributions could not express in a way that models them accurately. In
addition, most modern data sets are considered a challenge in data analysis processes. To be a clear contribution to the
field of statistics and data analysis by generating a distribution with four parameters capable of dealing with a wide
spectrum of modern natural phenomena.

2 The Proposed Model

Al Habib et al. [2] proposed and studied a new family for extended distributions which is [0, 1] truncated Nadarajah
Haghighi — G family. The new family have the following CDF and PDF respectively:
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Where; X = l_ellw

Figure 1 shows that the curve of the two-dimensional CDF of the proposed four-parameter Gompertz-type distribution
under several parameter settings increases monotonically from O to 1, illustrating how parameter changes shift the onset
and steepness of accumulation (earlier/later rise) and affect tail behavior. Figure 2 shows that the 3-D surface of the
CDF for the proposed four-parameter Gompertz-type model with (a = 0.80, b = 0.50, 6 = 1.50, a = 0.75): the surface
increases smoothly from O to 1 across the support, with a gentle rise near the origin, a steeper accumulation in the mid-
range, and clear saturation as F — 1. This parameter setting illustrates a right-skewed behavior with accelerated growth
(steeper gradient) at intermediate values and a compressed upper tail. From Fig. 3(A), we notice that the 2-D panel
contrasts how the parameters shift the mode and alter peak sharpness and tail weight, while the 3-D surface reveals the
density landscape and the ridge around the modal region. Fig. 3(B) shows that the 3-D surface of the PDF for the proposed
four-parameter Gompertz-type model (a = 0.80, b = 0.50, 6 = 1.50, oe = 0.75) is unimodal with a pronounced ridge at
mid-range, showing a steep rise toward the mode and a gradual decay thereafter, consistent with moderate right-skewness.

The survival hazard rate functions will be
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Fig. 1: 2-dim plot for CDF with different parameters
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Fig. 2: 3-dim plot for CDF with parameters (¢ = 0.80, b = 0.50, 6 = 1.50, o = 0.75)
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Figure 3 (a) 2-dim and 3-dim plot for PDF with different parameters
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Figure 3 (b) 3-dim plot for PDF with parameters (a = 0.80, b = 0.50, 6 = 1.50, a = 0.75)
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The mixture representation of the PDF is essential in the derivation of the statistical properties of [0,1] TNHGo
distributions. By take eq. (2) and use the expansion exponential formula, moreover, by use the generalized binomial
theorem formula; the pdf will be

f(x)=ye @thax S
Where
Ve X(ab.6.0) i <i> <d) (—D)Fsttd (g (s41))" b7 (ak+al) (m(ak+al))'

il n!
J.k,s,n,m,d=0 n Jon m §

3 Statistical Measures

The document explores several statistical measures related to a newly proposed probability distribution, including the
quantile function, moments (mean, variance, skewness, and kurtosis), and the moment-generating function, which are
essential for describing the distribution’s characteristics. It also examines incomplete moments for applications in risk
assessment and order statistics for analyzing sample extremes. Additionally, it derives the Lorenz and Bonferroni curves,
commonly used in inequality analysis and reliability studies. Furthermore, the document evaluates entropy measures such
as Rényi, Arimoto, and Tsallis entropy, which quantify uncertainty within the distribution. The findings suggest that
failure time uncertainty decreases as the entropy index increases while remaining within a non-zero range, providing
deeper insights into the behavior of the proposed model.

3.1 Quantile function

The quantile of a random variable X is defined by solving the following equation:
1+h<1—e(79(eim’l)))]
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3.2 The " moments
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, and therefore:

The " moment of a random variable X can be expressed as t,= [ x"f (x)dx , where f (x) given in (5) so that:
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Table 1 shows some numerical values of moments for different values of parameters.

Table 1: The first fourth moments for the new model with variance, Skewness and kurtosis

a b ’] a my my m3 ny Var(X) Skew kurtosis
0.2 0.5 0.3 2 0.400 0.303 0.324 0.432 0.143 1.942 4.705
0.2 0.5 0.3 3 0.276 0.149 0.115 0.113 0.072 1.999 5.089
0.2 1.5 04 2 0.341 0.232 0.224 0.271 0.115 2.004 5.034
0.2 1.5 0.5 2 0.331 0.214 0.194 0.217 0.104 1.959 4.738
1.2 0.5 0.3 2 0.385 0.286 0.301 0.398 0.137 1.967 4.865
2.2 0.5 0.3 2 0.346 0.238 0.239 0.308 0.118 2.058 5.437
0.6 0.7 0.3 2 0.382 0.284 0.299 0.397 0.138 1.975 4.922
0.6 1.2 0.3 3 0.352 0.251 0.259 0.34 0.127 2.059 5.396

© 2025 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

792 %N S\ S. E. Hemeda et al. : New Skewed Tail Gompertz Distribution...

3.3 Moment generating function

The moment generating function for a random variable X can be expressed as follows:

oo

r oo
My (t):;)%[mx’ f(x)dx
Where f(x) was defined in (5) we get
hed r 00
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3.4 Incomplete moments

The incomplete moments of a random variable X can be expressed as M, (y)= [>_x"f (x)dx , where f (x) given in (5),
we have

1 r+1
)a> Y(r+1,(d+1)ay). ©)]

y
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3.5 Order statistics

Let X;,X>,X3,...,X, have [0,1] TNHGo distribution with CDF, PDF defined in (3),(4) respectively and let
Xi:ns Xon 5 X3:m - - -, X be the order statistic calculated using this sample. To extract the probability density function of
the p'” order statistic from the [0,1] TNHGo distribution, use (3) and (4) in the equation below.
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3.6 Lorenz curve
The Lorenz curve for a random variable X can be described as
Lr)= 5 [ xfos
Using the PDF in (5) we obtain the Lorenz curve of the new model as follows.
Lr()=Y [Tx e timay
1 2
L) =v (g ) 1O L D a), (i
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3.7 Bonferroni curve

The Bonferroni Curve for a random variable X has been described as Br (y) =Lr0) where Lr (y)asin (11) and F(y) was

TF0)
defined in (3) with respect to y, we have
1— elf[l+b]“ 1 2
B = 1 1 . 12
F(y) 1_ el[1+h(1e(9<”a’vl)))rw<(d+l)06> ,}/(V—F a(d+ )OC)’) ( )

3.8 Rényi entropy
Rényi entropy I (¢) for the random variable X is calculated by

Ig(c)= %_Clog [/ch(x)dx} ,c#l, >0,
So

— L L —(d+1)ox
Iz(c)= l—clog[—(d—i—l)ae ,c#l,¢>0. (13)

3.9 Arimoto entropy

Arimoto entropy (ARE) of the new distribution is explained as follows:

A, = lcc<</ooof6(x)dx) c—l) , c#1,¢>0,

1
Q i
A, = 1; ((_(dﬂ)ae(d*lm)f) —1> ,c#1,¢>0. (14)

so it will be

3.10 Tsallis entropy

The Tsallis entropy (TSE) of the new distribution can be described as follows T, = l—lc (I—Jf (x)dx) , c#1,c>0,
and after some calculations, it becomes

1 Q
—(d+1)ox
lc—l c<1+( l) e ) (15)

Table 2: Analysis of Rényi Entropy, Arimoto Entropy and Havrda and Charvét Entropy fora =b=0 = a = 0.3

c-value RE ARE HCE

1.5 1.491 1.175 -0.162
2.0 1.439 1.026 -0.513
2.5 1.402 0.948 -1.040

Through the three entropy tables 2- 4 above, it is clear that the measure of uncertainty for the phenomenon of failure
times decreases when the parameter values remain constant and the value of the entropy index increases. It also maintains
the same hypothetical context for the measure when the entropy index remains constant and the parameter values increase
successively, and it does not reach the state of constant (0).
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Table 3: Analysis of Rényi Entropy, Arimoto Entropy and Havrda and Charvat Entropy fora=b=c=a=1.5

0-value RE ARE HCE
0.3 -0.420 -0.450 0.062
0.5 -0.454 -0.491 0.067
0.7 -0.487 -0.529 0.073

Table 4: Analysis of Rényi Entropy, Arimoto Entropy and Havrda and Charvat Entropy fora =b=c=6=0.3

a-value RE ARE HCE

1.3 0.979 3.784 -3.394
23 0.558 1.148 -1.030
33 0.269 0.375 -0.336

4 Different Estimation Technique

Parameter estimation techniques are essential to the analysis of data and the production of precise and trustworthy findings
in mathematical statistics. The goal of parameter estimation is to use the available data to estimate the unknown values
of parameters in a family of statistical distributions. The parameter of the [0,1] TNHGo distribution will be estimated
in this section using five different techniques: the maximum likelihood technique, the Cramér—von Mises technique, the
weighted least squares technique, the right-tail Anderson-Darling technique, and the ordinary least squares technique.

4.1 Ordinary Least Squares

The ordinary least square estimation [60,61] parameters of the [0,1] TNHGo parameters are obtained by minimizing the
equation:

2

Xk: X 1—el_[”bo_e(ie(eim*l)))r _kJSrl

s=1

4.2 Weighted Least-Squares

We can obtain weighted least square estimation [62,63] for [0.1] TNHGo parameters can obtained by
Minimizing the following function with respect to the parameters:

s a 2
zk: n+1 ) (n+2) - 1—[1+b<17e(’9(e ”)))} s
wr AR —e _
= —s+1) n+1
4.3 Cramér—Von Mises
Cramér-von Mises estimation [64,65]for [0,1] TNHGo parameters obtained by minimizing.
2

Dg [ (i )
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4.4 Right-Tail Anderson-Darling
The Right Anderson Darling estimation [66,67] of [0,1] TNHGo parameters acquired by minimizing:

k _ (e rm-n)\ ]
I;—ZSZZIN L [1o( )]

| & _ I ST
%Sg (2s—1)In |1 — X l—e] [l+b<l >]

4.5 Maximum likelihood

The log likelihood function form of a sample n observations, (X;,Xz,...,X,) for the TNHGo distribution is given as
L(a.b,0.0) = [ [nab6 e 0 -Dra (1+601- e*(e”"”))a I l1b(1=e o)
i=1
—B(eaxi—l))]

L ax; ax; a1
InL(a,b,0,0) =Y In [nabgae[ta(e i—1)+auxi] (1 Fb(1—e b lfl))) ol l1+b(1—e
i=1

The normal equations are obtained through calculating the partial derivatives with regard to a, b, o, 0 and equating them
to zero.
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aal—zL =n-(b(1-e D) 4 1)““”
. {aab (b (1 _e—e(e‘“iq)) i 1) (a=1) e_b<1_e—e(e%>1))eaxiie(em_l)
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+ab(b(1-e o) 1) (@1 b1 (i)
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Since there is no closed-form solution to this system of equations, we will solve for @,b,é& and @ iteratively, using R
package.

5 Simulation Study

Estimation methods in section are used to compare the simulation study in terms of the averages of the three quantities:
absolute Bais |Baist| = 5 Y| | — 7|, Root mean square error (RMSE), RMSE =
error (MRE), MRE = 3 Y| |[T—1|/7.

We generate N = 1,000 random samples, and sample size n = 50, 100, and 200 from the [0,1] TNHGo distribution with
six different sets of initial parameters. All numerical results are provided in Tables 5-10.

Ly¥ (F—1)* and mean relative

Table 5: Simulation results for sample size n = 50 with 1000 iterations and initial valuesa =0.1,5=0.8, « = 0.7, 6 = 3.

6 Applications

Name Initial Mean RMSE Bias

a_mle 0.1 0.3206198 0.3553930 0.2206198
b_mle 0.8 0.5575577 0.3508849 0.2424423
o _mle 0.7 0.5371202 0.4830373 0.1628798
0_mle 3 10.318117 4.882625 7.318117
a_olse 0.1 0.01312539 | 14.882625 0.11312539
b_lose 0.8 0.74495164 | 0.43077586 | 0.05504836
a_olse 0.7 0.5937770 0.29393114 | 0.1062230
0_olse 3 4.248083 0.7551407 1.248083
a_wlse 0.1 0.0292198 3.216459 0.0707802
b_wlise 0.8 0.76831561 | 0.3427389 0.03168439
a_wlse 0.7 0.60306699 | 0.30870450 | 0.09693301
0_wlse 3 4.288619 0.74474119 | 1.288619
a_cvme 0.1 0.090130395| 0.410042275| 0.009869605
b_cvme 0.8 0.73426475 | 0.30330520 | 0.06573525
a_cvme 0.7 0.68220148 | 0.70723977 | 0.01779852
0_cvme 3 3.707371 2.301032 0.707371
a_rade 0.1 0.08021415 | 0.30327098 | 0.01978585
b_rade 0.8 0.71474981 | 0.32249087 | 0.08525019
a_rade 0.7 0.5464788 0.7506912 0.1535212
0_rade 3 4.692142 4.092967 1.692142

In this section, R software employed to apply a real data sets of the model [0,1] Truncated Nadarajah Haghighi Gompertz
distribution. In order to obtain the best result using the following statistical criteria (-LL, AIC, AIC, BIC, HQIC) compared
to other models, such as Beta Gompertz (BeGo) Jafari et al. [15]. Kumaraswamy Gompertz (KuGo) Rocha et al. [68].
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Table 6: Simulation results for sample size n = 100 with 1000 iterations and initial values ¢ = 0.1, b = 0.8, ¢ = 0.7,

0 =3.
Name Initial Mean RMSE Bias
a_mle 0.1 0.2568874 0.25931998 0.15688740
b_mle 0.8 0.5957603 0.3251745 0.2042397
o_mle 0.7 0.5365248 0.5257647 0.1634752
0_mle 3 7.454992 8.054750 4.454992
a_olse 0.1 0.0271732 0.32799876 0.07282679
b_lose 0.8 0.7424295 0.29484341 0.05757041
a_olse 0.7 0.6176859 0.66080161 0.08231403
0_olse 3 3.8185499 2.3512357 0.8185499
a_wlse 0.1 0.04864219 0.22825957 0.05135781
b_wlse 0.8 0.76550603 0.29373853 0.03449397
a_wlse 0.7 0.5922188 0.6077939 0.1077812
0_wlise 3 3.9258939 2.4237520 0.9258939
a_cvme 0.1 0.0987317 0.308651866 0.0012682
b_cvme 0.8 0.73464221 0.27646493 0.065357
o_cvme 0.7 0.5860080 0.6091458 0.1139920
0_cvme 3 3.9162082 2.5251657 0.9162082
a_rade 0.1 0.099154965 0.209329816 0.000845035
b_rade 0.8 0.75914271 0.28460847 0.04085729
a_rade 0.7 0.5210859 0.6360715 0.1789141
0_rade 3 4.009638 2.589439 1.009638

Table 7: Simulation results for sample size n = 200 with 1000 iterations and initial values ¢ = 0.1, b = 0.8, ¢ = 0.7,

0 =3.
Name initial Mean RMSE Bias
a_mle 0.1 0.22865196 0.21110604 0.12865196
b_mle 0.8 0.6282245 0.3186117 0.1717755
o_mle 0.7 0.475875 0.4975663 0.2241249
0_mle 3 6.592611 6.029430 3.592611
a_olse 0.1 0.03790415 0.24199623 0.06209585
b_lose 0.8 0.76110513 0.24721069 0.03889487
a_olse 0.7 0.65330624 0.50153302 0.04669376
0_olse 3 3.4798055 0.50153302 0.4798055
a_wlse 0.1 0.106679188 0.148471138 0.006679188
b_wlse 0.8 0.78290065 0.23117688 0.01709935
a_wlse 0.7 0.4634423 0.5029453 0.2365577
0_wlise 3 4.079788 2.203073 1.079788
a_cvme 0.1 0.09351699 0.20976394 0.00648301
b_cvme 0.8 0.76257052 0.22889760 0.03742948
a_cvme 0.7 0.60829096 0.50462026 0.09170904
0_cvme 3 3.6848975 2.2807533 0.6848975
a_rade 0.1 0.108180904 0.154915364 0.008180904
b_rade 0.8 0.78856193 0.22733890 0.01143807
a_rade 0.7 0.4402423 0.6094888 0.2597577
0_rade 3 3.9297066 2.2564728 0.9297066

Exponential Generalized Gompertz (EGGo), weibull Gompertz (WeGo ) El-Bassiouny et al. [9]. Gompertez Gompertz
(GoGo). The first data set (failure times of 20 components) were studied by Ismael, & AL-Bairmani. [14], New extension
for Chen distribution and Arshad et al. [S]. A comprehensive review of data sets. Also the second data set (failure times
of 84 Aircraft Windshield ) proposed by many research like, Al-Sadat N. [69]. A new modified model with application
to engineering data sets, Magbool et al. [18]. Modified-Weibull distribution with Applications. Some descriptive analysis
for the real data sets are provided in Table 11.
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Table 8: Simulation results for sample size n = 50 with 1000 iterations and initial values a = 0.9, b = 0.6, o0 = 1.2,

S. E. Hemeda et al. : New Skewed Tail Gompertz Distribution...

6 =35.

Name Initial Mean RMSE Bias
a_mle 0.9 1.2156419 0.6684944 0.3156419
b_mle 0.6 0.8417091 0.4468618 0.2417091
o _mle 1.2 0.8020091 0.7892512 0.3979909
0_mle 3.5 7.072269 12.259250 3.572269
a_olse 0.9 1.2955448 0.9605318 0.3955448
b_lose 0.6 0.8232932 0.4550286 0.2232932
a_olse 1.2 0.7715597 0.8300767 0.4284403
0_olse 3.5 4.631767 2.954303 1.131767
a_wlse 0.9 1.0481989 0.8673047 0.1481989
b_wlise 0.6 0.8851117 0.5529052 0.2851117
a_wlse 1.2 0.8654644 0.7330694 0.3345356
0_wlse 3.5 4.0078161 1.9013252 0.5078161
a_cvme 0.9 1.4664666 1.1275919 0.5664666
b_cvme 0.6 0.7730599 0.3942963 0.1730599
a_cvme 1.2 0.9783706 0.7706341 0.2216294
0_cvme 3.5 4.0943671 2.2406407 0.5943671
a_rade 0.9 0.97521001 0.60783491 0.07521001
b_rade 0.6 0.8517561 0.4764981 0.2517561
a_rade 1.2 0.7938293 0.8100914 0.4061707
0_rade 3.5 42617916 1.9187803 0.7617916

Table 9: Simulation result for sample size 100, iterations 1000 and initial value 0.9 0.6 1.2 3.5

Name Initial Mean RMSE Bias
a_mle 0.9 1.2203702 0.5802119 0.3203702
b_mle 0.6 0.8771945 0.4353599 0.2771945
a_mle 1.2 0.7371512 0.6996620 0.4628488
0_mle 3.5 5.466114 8.839013 1.966114
a_olse 0.9 1.1141102 0.6388656 0.2141102
b_lose 0.6 0.8368312 0.4065096 0.2368312
a_olse 1.2 0.7745948 0.7166976 0.4254052
0_olse 3.5 4.2174506 1.7004163 0.7174506
a_wlse 0.9 1.0394679 0.6703240 0.1394679
b_wlise 0.6 0.8686625 0.4946095 0.2686625
a_wlse 1.2 0.8474542 0.6967895 0.3525458
0 _wlise 3.5 4.1729091 1.8707508 0.6729091
a_cvme 0.9 1.3432334 0.8126958 0.4432334
b_cvme 0.6 0.7943335 0.3457040 0.1943335
a_cvme 1.2 0.8248041 0.6917055 0.3751959
0_cvme 3.5 4.3377077 2.2745812 0.8377077
a_rade 0.9 0.9562398 0.4542371 0.0562398
b_rade 0.6 0.8044597 0.4033533 0.2044597
a_rade 1.2 0.8593951 0.6972537 0.3406049
0_rade 3.5 4.0198615 1.4850917 0.5198615

It is evident from the values displayed in Tables (12,13,14,15) that the distribution performs better than the comparison
distributions. Because the proposed extended distribution has the biggest p-value and the lowest values based on

informational and statistical criteria, it offers an appropriate depiction.
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Table 10: Simulation result for sample size 200, iterations 1000 and initial value 0.9 0.6 1.2 3.5

Name Initial Mean RMSE Bias
a_mle 0.9 1.0920209 0.4117221 0.1920209
b_mle 0.6 0.8713124 0.4454021 0.2713124
o_mle 1.2 0.8627722 0.5639909 0.3372278
0_mle 35 3.9840451 2.2961452 0.4840451
a_olse 0.9 1.2335683 0.6083143 0.3335683
b_lose 0.6 0.8096269 0.3364980 0.2096269
o _olse 1.2 0.7532842 0.6799320 0.4467158
0_olse 35 42815115 1.4433577 0.7815115
a_wlse 0.9 1.0630597 0.5592175 0.1630597
b_wlse 0.6 0.8257620 0.4330405 0.2257620
o _wlse 1.2 0.8468562 0.6416692 0.3531438
0_wise 3.5 4.2029553 1.9925126 0.7029553
a_cvme 0.9 1.2650991 0.6299762 0.3650991
b_cvme 0.6 0.8313567 0.3965089 0.2313567
o_cvime 1.2 0.7559804 0.6929347 0.4440196
0_cvme 35 4.1014559 1.3755361 0.6014559
a_rade 0.9 1.0351232 0.4803006 0.1351232
b_rade 0.6 0.8449523 0.4652328 0.2449523
o_rade 1.2 0.8417786 0.6199099 0.3582214
0_rade 35 3.8543586 1.4061220 0.3543586
Table 11: Descriptive statistic for the two datasets.
Var n mean median min max skew kurtosis
Datal 20 2.1 2.21 0.48 322 -0.83 0.93
Data2 85 2.56 2.38 0.04 4.66 0.09 -0.69
Table 12: The p-value and K-S, W value of the failure times of 20 components.
Model w A K-S p-value
[0,1]TNHGo 0.0443 0.2996 0.1100 0.9471
BeGo 0.0606 0.4013 0.1205 0.9001
KuGo 0.1039 0.6417 0.2062 0.3174
EGGo 0.0607 0.4018 0.1209 0.8984
WeGo 0.0626 0.4231 0.1281 0.8570
GoGo 0.0860 0.5973 0.1838 0.4551
Table 13: Values of statistical criteria for the failure times of 20 components.
Model -LL AIC CAIC BIC HQIC
[0,1]TNHGo 15.82 39.65 42.31 43.63 40.42
BeGo 16.31 40.63 43.30 44.620 41.41
KuGo 17.53 43.07 45.73 47.05 43.84
EGGo 16.32 40.64 43.31 44.627 41.42
WeGo 16.43 40.87 43.54 44.85 41.65
GoGo 17.82 43.64 46.31 74.63 44.42

7 Conclusion

This paper introduced a new four-parameter Gompertz distribution (THNGo) generated within the truncated Nadarajah
Haghighi—-G (TNHG) family. The model accommodates a wide spectrum of shapes for the PDF and CDF including
pronounced right-skewness and varying tail behavior while retaining analytical tractability. In particular, we derived a
closed-form quantile function, enabling straightforward random-variate generation and facilitating simulation-based
inference (e.g., Monte Carlo experiments and bootstrap accuracy assessments). We established core distributional
properties (moments and incomplete moments, order statistics) and examined entropy-based measures (Rényi, Arimoto,
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Table 14: The p-value and K-S, W value of the failure times of 84 Aircraft Windshield.

Model w A K-S p-value
[0,1]TNHGo 0.0908 0.5996 0.0845 0.5782
BeGo 0.0971 0.6607 0.0855 0.5623
KuGo 0.1021 0.6868 0.0859 0.5570
EGGo 0.1023 0.6876 0.0854 0.5636
WeGo 0.1048 0.7015 0.0850 0.5707
GoGo 0.1916 1.1464 0.0896 0.5009

Table 15: Values of statistical criteria for the failure times of 84 Aircraft Windshield.

Model -LL AIC CAIC BIC
[0,1]TNHGo 126.96 261.93 261.43 271.70
BeGo 128.21 264.42 264.92 247.19
KuGo 128.31 264.62 265.12 274.39
EGGo 128.36 264.72 265.22 274.49
WeGo 128.38 264.77 265.27 274.54
GoGo 129.35 266.71 267.21 276.48
= — TNHGo =
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Fig. 4: Fitted THNGo pdf and cdf, respectively for the failure times of 20 components data.

and Tsallis). Numerical evaluations of these entropies across parameter ranges exhibit coherent trends that, within the
examined settings, indicate higher certainty/stability for larger parameter values and higher entropy orders. On the
empirical side, case studies on the failure times of 20 components and 84 aircraft windshields show that the proposed
model delivers flexible and competitive fits relative to five benchmark alternatives Beta-Gompertz,
Kumaraswamy-Gompertz, Exponentiated Generalized Gompertz, Weibull-Gompertz, and Gompertz-Gompertz as
reflected by standard diagnostics (log-likelihood, AIC/BIC, and KS-based measures). Overall, the THNGo distribution
provides a versatile alternative for reliability and survival analyses where skewness and tail behavior matter. Promising
directions include (i) regression and accelerated-life formulations, (ii) Bayesian estimation and uncertainty
quantification, (iii) multivariate coupled constructions via copulas, (iv) stress strength reliability, and (v) enhanced
goodness-of-fit diagnostics under model misspecification.
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Fig. 5: Fitted THNGo pdf and cdf for the failure times of 84 Aircraft Windshield data.
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