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1 Preliminaries

In mathematics, the Laplace transform is a widely used
technique that converts functions defined in the time
domain, 7, into functions in the complex frequency
domain, s, through the integral:

L{g(0)} = G(s) = /O " g(mes dr.

From an applied perspective, the Laplace transform
facilitates the analysis and design of systems by providing
an alternative representation that simplifies computations.
For instance, by transforming time-domain functions into
the frequency domain, it converts differential equations
into algebraic ones, and convolution operations into
multiplications, which proves particularly useful.

One of the main advantages of the Laplace transform
lies in its ability to incorporate initial conditions directly
into the algebraic solution, thus avoiding additional
calculations. Moreover, it is especially valuable for
analyzing linear systems such as electrical circuits,
mechanical systems, or control models.

Fractional calculus, which extends the concepts of
derivatives and integrals to non-integer orders, originates
from a letter written by Leibniz to L’Hopital in 1695. In
that correspondence, Leibniz introduced the idea of
derivatives of fractional order, thereby opening a new

perspective in mathematical analysis. During the 18th and
19th centuries, mathematicians such as Euler, Fourier, and
Liouville developed formalisms and applications that
consolidated this area. Initially of theoretical interest,
fractional calculus today finds practical applications in
disciplines such as physics, biology, and signal
processing.

Fractional derivatives of non-integer order can be
understood from two main approaches: global (or
classical) and local. Global derivatives, such as those of
Riemann-Liouville and Caputo, are defined via integral
transforms like Fourier or Mellin, which endow them with
a non-local nature characterized by “memory”. These are
linked to the origins of fractional calculus, developed by
mathematicians such as Euler, Laplace, Fourier, Abel, and
Liouville. Recently, these notions have been extended and
applied in numerous areas (see [3], [2], [7], [13], [19],
[23], [29]). There are also efforts to extend the classical
notion of the Laplace transform to the fractional setting
(see [25]).

In contrast, local derivatives—such as the
conformable fractional derivative introduced by Khalil
[15]—are based on an incremental approach and are
defined via the following limit:

-4y _
Dy (A)(r) = limo A(T+eT - ) f&(‘r)’

€ (0,1), 7>0.
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Abdeljawad extended this theory (see [l]) by
developing concepts such as left and right derivatives,
higher-order integrals (for { > 1), Taylor series, chain
rule, and integration by parts formulas. Additionally, there
have been numerous advances in fractional calculus (see
(41, [51,, [9], [10], [11], [13], [18], [19], [21], [20], [22],
[24], [27], [28], [29], [31], [301, [32], [34], [36]).

Moreover, considerable effort has been made to extend
the Laplace transform to the fractional context, where such
tools have become fundamental in modern applications
(see [8], [12], [14], [16], [17], [23], [26], [33]).

The following introduces the definition of the
biparametric derivative and its fundamental properties
(see [35]), which are essential to establish the main results
of this paper.

Definition 1.Let ¢ : R — R be a function, with { > 0 and
X > 0. The biparametric derivative of g is defined as

(v +hix - §)>g(r+ h)%) XD

VEX(g() = lim

s

X h
provided that the limit exists.

Remark.If g is differentiable, then

Vox(g() = L g0+ X4y (),
X X

. g(t+h) —4¢(7)

denotes th
? enotes the

where ¢’(7) = limy_,

classical derivative of g.

If the biparametric derivative V4X exists, the function
¢ is said to be (¢, y)-differentiable.

The chain rule for biparametric derivatives, along with
several additional results, can be found in [35] and are
stated below.

Theorem 1. If g is a (¢, x)-differentiable function and £
is differentiable at ¢ (7), then f o g is ({, x)-differentiable,
and

-9

VEX(fog(n) = )%/’(gz(f))g’(T) + T/’(g(f))-

Theorem 2. The operator VX satisfies the following
properties:

@) VEXA (1) +wg(r) = WE(r) +wVE g ()

b) VEX(f-g)(r) = %[/’(r)g(f) — £ (Mg (D]+

X~ r(1)g(r)
X

£(Dg) - F(Dg' (D)
[2(1)]

c) yéx (E) (1) = £
q X
X—¢ £

x la@®|’
d) V{’X(k) = uk, k constant
X

2(1) #0

e) VEX(1") = n£‘r"‘1 + X;GVT", nelR
X X
f) VEX(eT)=e"
g) V&X(sin(r)) = £ cos(7) + x-¢ sin(7)
X X
h) V{’X(COS(T)) = —£ sin(7) + X=¢ cos(T)
X X

We now introduce the definition of the biparametric
integral, as defined in [35].

Definition 1.2 Let ¢ be a continuous function defined
on [u,v]. The (¢, y)-integral, or biparametric integral,
denoted by If: "X (g), is defined by the integral

) X -0 T -
¥ () = K / %5V g (y)dy
u

The following result is analogous to that of classical
calculus.

Theorem 3. Let ¢ be a continuous function defined on
[u, v]. Then, Ig’X(g) is (£, x)-differentiable on (u, v), and
the following holds:

Vi (If’Xg(y)) =g(y).

Moreover, if % is a continuous function and 7% is the

(¢, x)-derivative of ¢ on (u,v), that is, /4 = Vf’){(g), then
we have

=9
15X (V¥ () = g(0) - glwe T 77

We now present the biparametric integrals of some
functions (see [35]).

Theorem 4.Let { > 0, y > 0, then we have:

DI (sin(r) = ——X

(12 + 2 sin(7)~

¢

(X—é

cos(r)) + (cos(u) + X ; ¢ sin(u))exic(”_”l

- _
2) IgvX(e‘r) =7 _eue%(u T)

A X=¢
3 =X 1T )
xX=¢

provided that { # y
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2 New Results

Definition 2. Let £ € (0,1), y € (0,1), and ¢ be a real
number. We define the ({, x)-exponential function as
follows:

X “=4)
E;(c,t)=eTe” ¢ 7

Definition 3. A function is said to be of generalized (£, x)-
exponential order if there exist constants M and a such
that

lg(D)] < ME; (v, 7)

for sufficiently large 1.

We now define the biparametric Laplace Transform,
also referred to as the (£, y)-Laplace Transform.

Definition 4. Let £ € (0,1), y € (0,1), s € C. Let g be a

Sfunction defined for T > 0.
If the integral

+00
Y Ee =500 o) = [ Ee(cnngnar
teoo _=0
=/ eSTeTT Tg(r)dr
0

converges for a given value of s, then we define the function
& by the expression

G(s) = ISX (B (—57) 2 (1)) (+00),
and we write G = Ly (g).

The operator L, is called the biparametric Laplace
Transform, and we say that & is the (¢, y)-Laplace
Transform of g. Likewise, ¢ is the (£, y)-inverse Laplace
Transform of &, denoted by ¢ = Lgl)((?) where .EEIX is
the (¢, y)-inverse Laplace Transform operator and is
defined as:

1
s+v

-4

;! (t)=e"Te ¢

$x

T

In order for Definition 4 to be meaningful, the following
conditions must be satisfied:

—g must be piecewise continuous on the interval (0, T']
for any T € (0, +c0).
—g must be of generalized (£, y)-exponential order; that
is, there exist positive constants M and v such that
xX—¢
4

Definition 3 is satisfied with Re(v — ¢) < and

Therefore, the (£, y)-Laplace Transform Z(s) of ¢
exists for s > v — M

Indeed, since g is of generalized (£, y)-exponential
order, there exist constants 7 > 0, K > 0, and v € R such
that

lg(T)| < KE; (v, 7T)
forallt > T and Z, y € (0, 1). We write

I=I5%(Eg oy (=5, 7)g (7)) (+00)
= 1§ (E¢ (=5, ) g (1))(T)+
I3 (Eg y (=5,7) g (7)) (+00)

=L+

Since ¢ is piecewise continuous, | exists. For the
integral I, note that for all ¢ > T

|E; x (=5, T)g(7)| < KEg )y (=(s = v),7)

Therefore,

X (Ez  (—5,7) g (1)) (+00) <

KIEX (g o (~(s = v), 7)) (+00) = K

(s_v+(x—§))’
4

whenever s — v + )%4 > 0.
Thus, the integfal I, converges absolutely for s > v —
o) ;() , and since both /; and I, exist, it follows that I exists

fors>v—(*/(;o.

Therefore, ¢ is said to be a (¢, x)-transformable
function.

Theorem 5.Let £, y € (0, 1). Then we have:

a) L [11(s) = ;, from which it follows that
i xX—{
s+ T
Lry(e)=cLy ()] forallc e R
» w r'(w+1)
b) Lg,x[T 1(s) = T owil
P
s+ 55—
where the Gamma ﬁmcgon is defined by:
I'(v,x) = e~ TV dr,

C(v,0) =T dw > —1
c) l(gv,)([)Eg,X(gY)T)a]n(S)w=> !

2 _ 9
2] < ME; ,(v7) o ( ; )
. X—¢
forall 7 and Z, € (0, 1). provided that s — ¢ + z >0
©2025 NSP
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d) Ls[sin(wr)](s) = .
s+ 4= §) +w?
provided that s + X\ Oé,
s+X° ¢
e) Ls lcos(wt)](s) = §2
s+ X7 é’) +w?
provided that s + X—% 0 ¢
w

f) Lg, [sinh(wr)](s) =

< ¢
S+X§§
g) Ly lcosh(wn)](s) = S—
s+ %) +w?
provided that s > max |w — (r ; &) , - ( ; &)
h L vT —
) Lyl 1(s) =7
s—v+
provided that s — v + X ; = >0
) > 1
i) Leyle' tl(s) = ———
o)
s—v+ 7
provided that s — v + X=¢ >0
) T'(w+1)
) Loale ™ (s) = -
\ ( X-()
w! s—v+/—=
w+l é’
¢
s—v+ X 7 )
provided that s — v + )%{ >0
Proof. a) By definition, we have
+00 _ x-< 1
Loy = [ e —
‘ 0 s+ XTC
provided that s + )%( >0
b) The integral is related to the Gamma function:
+00 B x-< F 1
L y(s) = / e (-2 )TTW dr = SRAUL, )+1 ,
0 (s + )(;()W
4

provided that s + A%‘V >0
c¢) Using the definition, we have

Loy Egx(e,1)](s) =

+00
ey = =9
/ e Te T TeTTe T Tdr
0

:‘/'_'—Oo e*(sfc+2()(‘%[))‘r dr
0

1

s—c+2

W=’
g

provided that s — ¢ + 2% >0

d) Taking into account that the classical Laplace transform
of sin(wt) is given by

w
v2 + w2’

+00
/ e VTsin(wr)dr =
0

then, applying this result in the context of the
(£, x)-Laplace transform, we obtain

Lo [sin(wn)](s) = /0 " ) Ginwr)

>

w
2
(S+X_§) +w?
4

X_£>0

provided that s +

e) It is obtained similarly to d)

f) It is obtained in a similar manner to what will be shown
in g)

g) To derive the result, we note that the classical Laplace
transform of cosh(wT) is given by

+00 v
/ e V" cosh (wr)dr = -,
0 Ve —=-w

for our (¢, y)-Laplace transform of cosh(wt), we have

L leosh(wn)](s) = /O " )T cosh (o) dr

2
(s+)%§) —w?

)

provided that s > max (w S del S )%( .

h) This result is obtained directly from the definition.

i) This result corresponds to a special case of the formula
to be established in item j).

j) The result follows by using the relation of the integral

© 2025 NSP
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with the Gamma function

x=<

Ly [T (s) =/ )T o g
0

— /mef(sﬂ)f)%g)‘r?_wd?_: Fw+1)
0 X-C w+l
s—v+ a
w!
= w+1’
(s—v+)%§)

provided that s — v + )%g >0

Remark.If ¢ = y, the (£, y)-Laplace transform coincides
with the classical Laplace transform, that is,

Lrxlg (1) = LIg(D)](s)

Proposition 1. If the functions f and ¢ are
(¢, x)-transformable, then the (£, x)-transform of their
sum exists and equals the sum of their respective
(¢, x)-transforms, that is:

Loy lf+g1(s) = Loy [£1(9) + Ly [2]1(s)

Proposition 2. If the function g is (£, x)-transformable
and A is a real number, then the (£, x)-transform of the
product Ag exists and equals the product of A and the
(¢, x)-transform of g, that is,

L{,X[/lél](s) = /l.l:g,)([gz](s)

Remark.In view of the previous propositions, the operator
L, is said to be linear.

Proposition 3.First translation or shifting property
If the function g is ({, x)-transformable and

X—{)
7 )
x-< )

—-C].
4

Loy [eTg(@](s) = /0 T T T g (1) dr

+00 _¢
=/ e T () dr
0

Lrxlg(01(s) =G (S +

then

Loy [T g(D1(s) = Gy (s N

Proof.-We compute:

Proposition 4.Second translation or shifting property
If the function g is ({, x)-transformable and

Lenlg(@Is) =%y (s . £ ) ,

and
0 rea
R A,

then

Ley[Eg (@, 0)](s) = e g, ( + éV) .

Proof.From the definition, we get

a -Z
LeolEey@nls) = [ eme S odr
0
+00 _x-<
+/ e Te” T "g(rt-a)dr
a

+00 _¢
= / e‘STe_XTTg(T—a) dr.
a

Substitute u = 7 — a, dv = du:

+00 Lx=L
/O o GHEI ) Ly gy
_ +00 _
:e—(s+XT{)a/ e—(s+%)ug(u) du
0

- —
— 6_(S+)(T)a?§’/\/ (S + X { g) )

Proposition 5.Change of scale property
If the function g is (£, x)-transformable and

X—é“)
Tk

Loy lg(D1() = G (s .

then

Ly lg(an)](s) = é?&x (é (S + X;()) _

Proof.By direct computation, we obtain:

+0o0 _
Ledlg@olo)= [ e gan an
0
+00 _
=/ ef(‘y+)%)7g(a7) dr.
0
Substitute u = art, dt = édu:

+00 _
:/ e—%(s+)%)ug(u) . ldu
0 a

1 1 —
= 25 027

© 2025 NSP
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Proposition 6. If ¢ is a (¢, x)-transformable function
then the VX (g)-derivative is (£, y)-transformable and
we have

Ly [VEX(g(D](s) =

(és Y.t ) Lo [g(®1(s) - £400).
X X X

Proof. Since V&X (g(1)) = )%gz'(‘r) + A%‘rgz(‘r), we first
compute the (£, y)-transform of ¢’ (7) and obtain

+oo _x=<
Loalg (D](s) = /0 T T (1) dr

(Xt
ifu=e <‘+ ¢ )T and dv = ¢’ (1) d7, then

+00

Lexlg' (1) = e_(”%v)rg(f)
0

/mg(r)e_(HA%{)T (— (s+ X- {)) dr
0 e

=-g¢(0)+ (S + X ; {) ‘A“’" e_(ﬁ%)Tg(‘r) dr
=4 (0)+ (s 2 ¢ ) Lo lg(@16s).
Then
Lo VEX (g ()] (s) =
)5(.1:;,,( 7/ (1) + 2= € Lo lg@]1(s)

[P St 4 ] Lo lg(@10s) - £ 4(0).
X X X

We now present the (£, y)-transform of the second
(¢, x)-derivative.

Proposition 7. The (¢, x)-transform of the second (£, x)-
derivative is given by

Lo [VEr (vEr(em)| ) =
B (§_2S+ 3()(—5)4)
X X
(/%s N 0% ;5)2)

(0) - zg '(0)+

Liylg()]

Proof. Applying the V¢ X -derivative to the V4 X -derivative,

we obtain

VEX(VEX (g(T))) =
L )+ -9 ,(T))
x \x X
X -9 (gg,(T) (x - K)g()
x \x

2 2
=§_2g,,(T)+2§(X 9 2(0)+ (X )() 2(0)

b X2

Now,

Lelg” (D1(s) = /O ) 2y

= 4 (0) - g(0) (s+ "f)+

(HX‘
¢

é, 2
) Lo lg(@(s).

Then,

Lo |ver (VX a@)| )

4«2
[ 7/(0) - 2(0) ( .
X

=

2
( ng) L{,X[Q(T)](s)’l
+2§()§(; 3] [ (0)+(s+ g)LzX[g(T) (S)]
()( 0)?
X L(/\/[Q(T)] (S)
2 _ 2
- (Ee §(x24))g(0)+{é’ s+
X /\/
X—{)+2§(X—§) (S+X_§)+
Z x? ¢
<X 5) }Lu[gwm
2
- Lr- (Sonats 5)) of
X
()5{ +XX4”) Lo, [g(D]s)

Proposition 8. Let g be a (¢, x)-exponential order
function, continuous for T > 0.

© 2025 NSP
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Then,

Leo |14 (2| ()

=Ly )%eu-fnT/+mew-ﬁyg(y) dy] (s)
X
= ———Ls[g(D)]()
g(s+2(xgz>) ex
Proof.
Loy )%@_W?Tfme( 7V g(y) dy]( ) =

+oo -Z _ =0 o w-0
/ eSTeTT T )%e 7 T/ et Ya(y) dy] dr
u u

+00 —¢ +00 x
= /% eXT{yg(y) [/ e_STe‘_Z ] dy
y

=9 o
2(y) dy

= {(ST()L{ xlz(D)](s)

The following result establishes the relationship
between the (¢, y)-Laplace transform and the classical
Laplace transform.

Theorem 6. Let £ and x € (0, 1), and let g be a (£, x)-
transformable function. Then, the following identity holds:

Lealgl(s) = L[ T gm)] ().

Proof. The result follows directly from the definition.
Indeed, we have:

Loy lg(@I(s) = / e T g (ryar

[ () g(r)]
)

20| (s)

=[(*z‘

The following result presents an analogue of the
convolution theorem for the classical Laplace transform.

Theorem 7. Let £,y € (0,1), and let £ and g be real
functions defined on [0, +oo[, such that £ and g are (£, x)-
transformable.

If we denote their (£, x)-Laplace transforms by

F(s) = Lo [£(¢7F7)]| (9 andGs) = Lo [g(01(5)

then the following identity holds:
Ly lf +gl(s) = F(s) - G(s)

where

T —ﬁ(‘r—r)
eglea® = [ 4 (F0T) grar
Proof. From the definition, we have

Ly [(/ * g){,x] (s)

+eo -2 T -z
:/ eSTeT T T [/ /(e_)(T(T_r))g(r)dr dr
0 0
T T (sl —XL (rr)
=/ g(r) / e z /(e z )d‘r
0 r

if u = — r, then du = dt, and we obtain

Ly [(/ * )¢ X] (s) =

[Catne | [Teertn (e
_ ‘/~+00g(r)e_(s+()(;§))r‘£§’)( [/ (e_(x;()u)] (s) dr
0

=F(s) - / g(r)e( X; ) dr = F(s)-G(s)

dr

The following result guarantees the existence and
boundedness of the (¢, y)-Laplace transform under
certain conditions on the function.

Theorem 8.If ¢ is piecewise continuous on [0, ) and is
(¢, x)-exponentially bounded, then

lim G, ,(s) =

§—00

where Gy (s) = Ls [g(T)](s).

Proof:Since g is of (¢, x)-exponential order, there exist #,
M, and c¢ such that

lg(D)] < MiE y(c,T)

forall T > 9. As g is piecewise continuous on [0, fo], then
¢ is bounded, hence there exists M, such that | (7)| < M»
for all T € [0, #].

If we choose M = max{M;, M,}, we obtain:

lg(T)| < ME; ,(c,7) forT >0.

Now we have,

‘/ E; (=5, 7)g(1)dt S/ |Ez y(=s,7) g(7)|dT
0 0

.
< M/ E;(=s+c,1)dr
0

:M/re(‘”C) . ()(;4’)
0
1

s—c+)%§

© 2025 NSP
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Therefore,
" M
lim / E; o (=s,7)g(1)dt| < ——— = 0,
rmelJo s—c+ X—(’

This concludes the proof

3 Examples and Applications

Example 1. Consider the V-ordinary differential equation
of order (¢, x)

VEXx(1) = Ax(1), x(0) = xo (3.1

If { = y, we obtain an ordinary differential equation
under the assumption that the growth rate of the function
x(7) is proportional to its current value. This leads to the
classical population growth model of Kermack and

McKendrick, which is written as

x'(7) = Ax(7),

x(1) = xpe'*

x(0) = xg9, whose solution is

Applying the (£, y)-Laplace transform to both sides of
the equation V4Xx(1) = Ax(7), we obtain

(£s+2()(—§)
X

- )Lg,x[x("')](s) - §x<0> -

ALy [x(0)](s),

which implies

(£S+2(X—§)
X

< - A) Lo lx(@](s) = )%xo,

from which it follows that

Ly [x(0](s) =
%X
= *0
o205 =0 _x)
X X ¢ e

Applying the biparametric inverse Laplace transform, we
obtain:

The solution of equation (3.1), obtained using the
(£, x)-Laplace transform method, is illustrated in Figure 1
for the parameter values { = % and y = %; and { = % and

X =3

Blue curve: x(t)

300 # % 10

250 18
< 200 |
© 16
>
5 150
o
g 14
6 100 +

50 | |2

0 ; 0

0 1 2 3 4 5
t

Fig. 1: Graphs of x(1) = xeGG%3)7 and x(r) =

xoe(%’l_%)‘r.

Example 2. Solve the V-ordinary differential equation of
order (£, x), which was studied in [35] in the absence of
an initial condition.

V%’%x(f) +x(t)=71e™", x(0)=xp (3.2)

We apply the (£, x)-Laplace transform to both sides of the
equation,

Ly 4 [VES@) | () + Ly 4 6@1(0) = £y 4 Tre71(9)

42 32

which implies

-1

1
2

s+2 11
4°2

= | Hl—

1
Ly 1 [x(D)](s) = Tx(0)+
2

Ly 1 [x(D)](s) = Ly 1 [re™7](s),

12

from which it follows that

(% +2) £y [x(D](5) = 52(0) + /0 reTe

and hence,
- X0
x(1) = ‘Efl 11 = (0 2
£x s+2(X;§)—§/l LiykOIO) = 08+ TG 22
_(2M_l/l)-,- x=< (&,I_M)T = x(0) + % + _% + !
=xpe ¢ e T = xge\t ¢ (s+4) (s+4) (s+2) (s+2)
©2025 NSP
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Applying the inverse (£, y)-Laplace transform, we obtain

1 1
x(7) = x(0) 3 —3 1
% (s+4)  (s+4)  (s+2) (s+2)2
1 1
= xpe 27 + Eefh - 5677 +T1e” "

1 1
= (xo + 5) e+ (T - E) e’

This result coincides with that obtained in Example 5 of
[35], with the difference that the constants are now specified
by the initial condition.

Example 3.To solve the V-ordinary differential equations
of order (¢, y) studied in Example 6 of [35]:

w\>—-

v x(7) +3x(17) =41e™>7,  x(0) = xo (3.3)

the (£, x)-Laplace transform is applied to both sides of the
equation, yielding

L [ %%x(‘l')] (s)+3L 5.3 slx(@1) =

L1 1 [47e737)(s)

11
9°3

which implies

1 13 1
(§S+?)£$;[X(T)](s) —x(O) 4( +7)2
then
- x(0) 1
Lyl = (+13) (54 13)(s +7)2

Applying the (£, x)-inverse Laplace transform, we get:

- 1 _ 1 _
13T€2T+—€ 13T€ZT—§€ 7TeZT+2Te

3
1 1
= (xg + 5) e N7 42 (T - 8) e

This result coincides with that obtained in [35], with
the difference that the constants are now specified by the
initial condition.

x(7) = xpe AP

The solution of equation (3.3), obtained using the
(¢, x)-Laplace transform method, is illustrated in Figure 3
for the initial conditions x¢ = 1, xg = 2, and x¢ = 4.

4 5
— Ty = 2
3 T ‘TO —
2 1
1 1
| J t
0.2 0.4 0.6 0.8 1
Fig. 2: Graphs of x(7) = (xo + %)e—llr +2(7 - %)e_sf for

X0 = 1,)6():2, andxo =4,

Example 4. Solve the V-ordinary differential equation of
order (£, x).

VEXx(t) = x23 (t) —x(7), x(0)=x9 (3.4)

1/3

We solve it using the change of variable z = 3x'/°, and we

have

o ("X“ (1) =22B(1) - x(2)
(20, =020 _ () _(z0)
¥ 9 Yy 271 |3 3 )7

which implies

¢ -9zr) | z(7)
Tk 3 T T

then
ver [40) -y 028

3

where we apply the (¢, y)-Laplace transform, and we
obtain

¢ =0
(3X # 2D 2 L l20) -
4 3x 2L
Wt (o)
X 3y (s + T)
from which,
3x—2C 3x-2¢

3x-2¢ x=¢ 3x-2¢\’
(s+ g) (s+_£) (s+ é,)
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1406 NS e
therefore, Example 5. Let us consider the V-ordinary differential
G0yl 3y —20 —wed), xt. equation of order (¢, y).
2(t)=z0e T ‘el '+ =F—Te ¢ ‘e '+
2x-¢

VEX(VEX (x(1))) + ex(1) =0 (3.5)

3y — 20 <=
A — R 4

=2y
then, with initial conditions x(0) = xo, V< ¥x(0) = 0, c= | %
2w, 3y -2 3y —2¢ i
x% (1) = Xé e T + 2)( £ X ) éw€ Eall When ¢ =y, the above equation becomes
x-¢ (-2 x” (1) + cx(1) = 0, which describes small oscillations of a
and thus, pendulum. Its exact solution is:
3y -2 ( 2 3)(—2{) :zXTr
x(T)=[—+ x; + e % _ g
2x - ¢ 0T T2y x(7) x()cos(1[LT ,

The solution of equation (3.4), obtained using the
if we apply the (£, y)-Laplace transform to both sides of

(£, x)-Laplace transform method for the parameter values
(=tx=%¢=Ltx= %; and £ = %, 7, and for the the (¢, y)-differential equation, we obtain:
iti = 1 and xy = 2, is illustrated in
2 2
_ 3(y —
(£s+()( 9] ) ()] - (é (04 2§)§)xO+
X X X? X

initial conditions xo =
Figures 3 and 4.

3
— _[2 2/3 _ 2 —7/5]
z(T)=|5+(xy —35)e
. (1) = [2+ (af° - 2 ¢Leylx(0)] =0
N— =i+ (=)
4 4 S
3 which implies:
%o (H 3(»«{—{))
Lo [x(1)] —
(s+ ()(2()) +%c
RS (s + )%{ N %XO)Z(\/E
= > 5 _
‘ % % ] t‘ (s+(X£O) +§c (s+<)(2£)) +)éf—zc
2 4 1
6 8 0 foﬁx())z(\/z
Fig. 3: Solutions x(7) for different pairs (¢, x) withxg = 1. N
(s + —(X_g)) +&¢
4 2
To = 2
4, then, applying the inverse (£, y)-Laplace transform, we
\ have:
(1 — _ T2 2/3 _ 2Y\,—7/5]3 :
(= s =B+er-pe T
- 3 3\,— x-¢ 2 x-¢
3| x(1) = [Z + (22/3 —3e 27/9] x(7) = xg cos ()Z(\/ET) T T4 Txo sin ()Z(\/ET) T
3 ¢
$(7_) — [% 4 (22/3 _ %)6_57/21] .
‘ —Z—xo sin (X\/ET) i
xve
e+ (2 ()
= xpe cos|=+et|+ sin cT
¢ Ve o xve
Ly The solution of equation (3.5), obtained using the
| | | T (¢, x)-Laplace transform method, is illustrated in Figure 5
2 4 6 8 10 for the parameter values { = % and y = %; { = % and
. . . . X = %; and { = % and y = %. These results correspond to
Fig. 4: Solutions x(r) for different (£, x) values with xo = (he case where the gravitational acceleration is set to
2. g = 9.8 and the pendulum length is L = 1.
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R z(7) :10371/8 cos (% %T) + 7ﬁsin (%\/?7—):|
13
"f“>:ww*“°cm(%vGﬁ)+;j%ﬂnG%¢%ﬂ}
VI
x( ):1‘061/4 cos (% %T)Jr r\/2% sin (%\/%T)}

(@)

MR
VIV T

-1

Example 6.Consider the RL circuit with step input,
governed by the V-ordinary differential equation:
LVSXi(t) + Ri(t) = Vou(r), i(0)=0

Applying the (¢, x)-Laplace transform, we obtain:

L [(ﬁs X9 ) Lo, [i(D1(s) - Zi(0)
X X X

+RLs , [i(7)](s) =V

i~

g
+_
§*¥T7

from which it follows that
1
(s + )%() [L ()é(s + 2—()(_5)) + R]

Ly li(0](s) =Vo -
X

hence

1
(L£s+2L—(*7§) +R) (s + *;C)
[\Tx X 4

Ly li(D)](s) =Vo

_XR+L(X—§)'( x=<¢ X_R)
s+2 7+t

Applying the inverse (£, y)-Laplace transform, we obtain:

=& xR

1 X expl T

(LQ§Q+R)_XR+Mx—O

i(r) =V

Example 7.To solve the V-ordinary differential equation of
order (£, y) modeling the cooling of a body:
VEXT (1) + kT(7) = kTymp,  T(0) =Ty

the (¢, y)-Laplace transform is applied to both sides,
yielding:

K£S+2X_§)LLATWHQ)—£%
X X X

kT,
+k Ly [T(D](s) = —5==
s+42
z
from which we get:
a7 =
Cx T S) =
(és +2X4 k)
X X

kTamb

+
(s+)%{) (5s+2)(;5+k)
¢ X X

Applying partial fraction decomposition:
Ty kTamb 1

w=4) | 1 x x=< x=¢
s+2 7 +k{ (k+7) 5+ 77

L [T(D](s) =

kTamb 1
h —Z\ W= , 1 x
(k + XT) s+ 2—4 +k 7

Finally, applying the inverse (¢, y)-Laplace transform, we
obtain:

k Tamb

+X;£+(To_k+/\/;
X

T(7) =

This provides the solution for the body’s temperature
over time, expressed through the (£, y)-fractional model.

4 Conclusion

The incorporation of the parameters ¢ and y not only
broadens the scope of application of the Laplace
transform, but also establishes a natural connection with
the foundations of fractional calculus. This generalization
turns the transform into a more flexible and powerful tool
for analyzing complex dynamical systems, particularly
those that cannot be adequately described by classical
methods.
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