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Abstract: This research seeks to investigate the impact of multiplicative white noise on the dynamical properties of soliton solutions
(SS) within the outline of the KdV equation. While conventional KdV models describe nonlinear wave propagation in deterministic
settings, real-world systems are frequently subjected to stochastic disturbances that can notably alter wave dynamics. By incorporating
multiplicative white noise, this study examines the effects of random variations on soliton stability, morphology, and propagation.
The Adomian decomposition and the simplest equation techniques are utilized to obtain solitary and SS, which are further validated
through numerical simulations. This methodology enables the exploration of stochastic influences on soliton interactions and their
long-term evolution. The results suggest that noise induces soliton deformation, amplitude modulation, and potential loss of coherence,
underscoring the significant role of stochastic processes in nonlinear wave behavior. The findings highlight the resilience of solitons
in the presence of random perturbations, providing valuable insights for applications in fields such as fluid dynamics, optical fiber
communications and plasma physics. Additionally, the study discusses the interaction between two solitons using the superposition
method.

Keywords: multiplicative white noise; soliton dynamics; nonlinear wave propagation; Stochastic KdV equation; Adomian
decomposition technique.

1 Introduction interactions with periodic or cnoidal backgrounds[18].
Advances in soliton theory have further extended to
higher-dimensional, coupled, and discrete systems|[3,8,
17,22] , as well as to nonlocal formulations[21]. This
growth has been supported by refined solution
classification techniques[4,11] and the application of
symmetry-based approaches[2,18], together offering a
comprehensive framework for analyzing deterministic
integrable systems. In realistic scenarios, however, the
assumption of purely deterministic dynamics is often
untenable. Physical systems are frequently subjected to
random perturbations, which can have profound effects
on wave evolution. Particularly, the incorporation of
multiplicative noise leads to stochastic partial differential
equations (SPDEs), where understanding the statistical

Nonlinear evolution equations are fundamental tools for
modeling wave phenomena across a range of physical
contexts. The KdV equation, in particular, has proven
pivotal in capturing the dynamics of solitary waves in
shallow water, plasmas, and other dispersive
environments[1]. Over the years, a variety of analytical
techniques such as the inverse scattering transform [1],
Bicklund and Darboux transformations[2,3,4,5,6] , and
Hirota’s bilinear method[14, 15] have facilitated a deeper
understanding of the integrable nature and solution
structures of such equations. These methods have enabled
the construction of diverse nonlinear waveforms,
including rogue waves [7,16], breathers[21] , and soliton
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characteristics of solutions becomes essential[23,24].
Such stochastic influences are relevant in a range of
fields, including fluid mechanics, optical fiber
communication, and climate dynamics. To address the
analytical challenges posed by SPDEs, semi-analytical
techniques such as the Adomian Decomposition Method
(ADM) have been developed and successfully applied to
nonlinear stochastic problems[25,26,27]. ADM offers a
systematic approach for decomposing nonlinear
operators, thereby enabling the investigation of how
stochastic perturbations modify key properties of soliton
solutions, including their stability and propagation
behavior. This work focuses on examining the statistical
effects of multiplicative white noise on soliton solutions
of the KdV equation. By integrating foundational
methods from soliton theory[l,14] with stochastic
modeling approaches [23,24], the study aims to uncover
how noise impacts soliton dynamics. Through the use of
ADM and ensemble-based analysis, this research
contributes to a deeper understanding of soliton behavior
in stochastic environments and broadens the theoretical
framework for noise-perturbed integrable systems.
Stochastic modeling provides a means to explore how
random disturbances influence wave behavior, especially
in situations where deterministic models, such as the
noise-free KdV equation, are inadequate. By introducing
stochastic terms, it becomes possible to study phenomena
such as the formation of random solitons and the effects
of noise on soliton stability and interactions. In real-world
applications, noise-free, idealized systems are rare, and
the inclusion of stochastic elements significantly broadens
the relevance of the KdV equation, allowing it to better
model environments where randomness and noise are
inherent. One key stochastic process widely studied
across various scientific fields is the Wiener process, also
known as Brownian motion. This process is characterized
by continuous, random trajectories that begin at the
origin, with increments that are independent and typically
normally distributed. A distinguishing feature of the
Wiener process is its continuity, which ensures that no
sudden jumps or discontinuities occur in the motion.
Despite its continuity, the trajectories exhibit irregularity
and lack well-defined tangents at any point (see Fig.1).
The mathematical properties of the Wiener process,
including independent increments, continuous paths, and
normally distributed changes, make it a valuable tool for
simulating stochastic phenomena. Its applications span
across multiple disciplines, including economics,
engineering, and physics.

The structure of this paper is organized as follows:
Section 2 presents the derivation and theoretical
formulation of the stochastic KdV equation. In Section 3,
we apply the ADM to obtain SS of the governing
equation. Section 4 explores alternative solitary solutions
using the simplest equation method. Section 5
investigates the interaction dynamics of two solitary
waves through the superposition technique. Finally,

Section 6 summarizes the main findings and discusses
potential directions for future research.

2 Mathematical investigations

In this section, we present the governing stochastic KdV
equation and provide a justification for its formulation as
follows:

Ui+ aUUy + Uy = cUW; @)

where U(x,?) is a real valued function of x and 7,6
denote noise intensity,W (¢) is the white noise, and cUW,
is a multiplicative noise in the Itd sense. Following
subsection, we analyses the governing equation using the
wave transformation technique.

2.1 The stochastic KdV equation with wave
transformation

The wave equation for stochastic KdV equation (1) is
given by considering the following wave transformation:

U(x,1) = u(x,1)e"W 0 -0%/2 2)

where the function u(x,t) is deterministic. We have

2 2
o {+ ("W’+ 5= Z) }e[GW<r)—62r/z]

_ {ut+Gqu}e[aW(t)702t/2]
U, = Mxe[cW(t)—czt/z] 3)

Ux = Uxce [GW ) _62t/2]

By inserting Equation (2) into Equations (1) using
equation (3), we have

us + ouW; + auuxe[cw(”*cz’/z] F Uy = ouW;  (4)

this can be simplified as

[oWO=0%/2] §y =0 ®)

Taking the expectation to both sides on equation (5) we
have:

Uy + Ouuy e

U + Oluy, eidz[/zE(egwm) F Uy =0 6)

Since W(f)is a Gaussian process, we have
E(eSV 1) = ¢~/ Hence, Equation (6) becomes:

U + QU Uy + Uy, = 0. @)
This represents the KdV equation, one of the most
well-known nonlinear partial differential equations
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Fig. 1: Illustration of Wiener process trajectories for smooth real random functions on (-5, 5) with different values of from

0.2t02.2.

(NLPDE:s). Equation (7) describes wave propagation that
accounts for both nonlinearity and dispersion. A positive
value of a corresponds to forward wave propagation,
while a negative value indicates backward wave
propagation.

3 Soliton Wave Solutions Using the Adomian
Decomposition Technique

George Adomian [25,26,27] developed the Adomian
decomposition technique, also referred to as the inverse
operator approach, to address both linear and nonlinear
problems in mathematical physics. This technique
involves decomposing the given equation Fu = g(r)
(which may include linear and nonlinear equations,
ordinary differential equations, partial differential
equations, and integral equations), into a series of
components representing solutions of different degrees.
Solutions are then determined for each component, and
their sum provides an approximation of the true solution
with any desired level of accuracy. The process involves
several key steps. First, the entire equation is divided into
distinct parts, with the linear component further separated
into linear and reversible residual components. Second,
the Adomian polynomial, which serves as an analogous
polynomial, is derived for the nonlinear portion using the
splitting principle. Finally, recursive rules are applied to
generate the solutions. We assume that the partial
differential system is expressed in the operator formula as
follows to solve the nonlinear KdV model:

Lu+lu+Mu)=0 €3]

where the symbolizations represent the nonlinear
operator M(u), and the linear differential operators are

represented by ¢; = d/dt and ¢, = d/dx. Using Equation
(8) and the inverse differential operator ¢! = [i(-)dr,
we have

u(t,x) = f(x) —E;l [F (u) + Lyu] 9)

with u(x,0) = f(x) is the function of the initial
condition that has been given. The decomposition
technique assumes that there is an infinite series for an
unknown function u(x,¢) in the form

u(t,x) =

™

uj(t,x) (10)
0

J

in addition to nonlinear operators, the expression for
is provided by an infinite series of Adomian polynomials.
F(u)is

Flu)=Y) M, an
j=0

where the process described in [27] is used to
generate the pertinent Adomian polynomials. For the
convenience of the reader, we employ the nonlinear term
F(u) = Y7 oM; of the generic preparation for the
Adomian polynomials M; , which is described by

1 d / ,
Mj(ug,...,uj)=——=|f leus , j>1
Jldai k
= A=0

12)
This approach can be readily employed to guide the
computer code in determining the number of polynomials
needed for both explicit and numerical solutions. For a
comprehensive  explanation of the  Adomian
decomposition method and the general formula for
Adomian polynomials, the reader is directed to [27] and
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the relevant references there in.

Using the decomposition process, the recursive
relationship generates the formula for the nonlinear
Equation (12)

= f(x), Hewj+Mj] (13)

when the initial condition is specified, the function
f1(x) is derived based on these conditions. Recalling that
the zeroth components are more distinct than the other
components is crucial, u;(r,x),j > 1 could be fully
determined, meaning each term could be calculated using
the terms that came before it.

Thus, the series solutions are completely determined,
and components ug,u;,u3,... are identified. However,
obtaining the exact solution in a closed form is often
feasible. We created the solution u(#,x) using numerical
formulae in the form

(Po(t7x) Uj+1 <t7x) = _éf

u(t,x) = lim Zuk (t,x) (14)

] oo

and the recurrent relationship is given by Equation
(13). Moreover, the solutions of the decomposition series
tend to converge rather quickly in truly physical domains.
In the next part, we analyze the nonlinear KdV model to
show that the ADM is applicable. The nonlinear KdV
model that follows is to be considered as

Us + Uyyy + 0w, =0 (15)

under the initial condition

J(x) = uo(x,0) (16)

with f(x) is a given function. We redefine Equation
(15) in an operator formula to solve it using the Adomian
decomposition approach.

bl = —OU Uy — Uy 17)

where the differential linear operator is expressed by
¢, = d/dt and the inverse fractional operator ¢, ' is
provided by

i = [ (ar (18)
0

Operating with £, on both sides of Equation (17) give

u(t,x) = u(0,x) — €, (Ctuy + ) (19)

To characterize the unknown function, the ADM
assumes that an infinite series can be employed u(t,x) as

x) = Z uj(t,x) (20)
=0

Equations (9) can be substituted with Equation (19) to
get
uj1 (t,x) =u(0,x) — 7 (M+ L), M= auu, (21)
Where M(u,uy) = Y7 oM; the components M;can be
computed by using the formula

M=Y M;=uu, (22)
j=0
2 J 2
= (u0+ulﬂ,+uzl + ) e (uOJrul?LJruzl +)
Since
M;= (23)
1 d’ ) ) )
?m (u0+ull+u2/’1 +...>£<u0+ull+uzl +> »
The first four terms can be written as
Moy = 2upuy, 24

My = 2uguyy + 2uyugy,
My = 2uguyy +2uyuy + 2up gy,
M3 = 2ugusy + 2uiuny + 2up g + 2u3uoy.

For a given

uo(0,x) = %‘" sech? (\/f x) (25)

with o is the speed velocity of the wave. The remainder
components u;(,x), j > 0 can be found using the recursive
relations in the following manner

uo(t,x) = %’ sech? (ﬁ x> (26)

uy(t,x) = ?’(:Jii?zx/atanh (\/?x> 27)
X [ocsech2 (\/?x) +3(2— a)sech* (\/?x)} t

and so forth. The decomposition of a domain solutions of
u(t,x) so
(28)

o~ * ([ )
won (1) [ (15
+3(2 — o) sech* (ﬁxﬂ t+...
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This can be succinctly expressed as

u(t,x) = %w sech? (ﬁ (x— cot)) (29)

Also, for a given equation

up(0,x) = f(x) = %{" - %Otanhz (\/? x) (30)

the remainder componentsu;(t,x),j > may be
discovered in the same way using the recursive relations,
and it can be compactly stated as

u(t,x) = %w—%wtanh? (ﬁ(x—wt)) 31

The impacts of white noise on the SS of the stochastic
KdV equation (1) are discussed here. Focuses on how the
noise influence on the dynamical behaviors of the model,
particularly in the reference of deterministic model which
impacts crucial for analyzing how model evolve over time
or in long-term behaviors represented by equation (29).
We will introduce various graphical representations to
depict the solutions of the stochastic KdV equation (1)
under varying conditions, particularly emphasizing the
impact of noise strength (o). These illustrations help us
for good understanding the fine details of how different
noise levels affect the dynamics of the model. Figure 2
represented the deterministic bell soliton solution when
(0 = 0), gives the flat bell soliton solution. Figure 3
represented the non-deterministic solution when
(o = 0.4), gives the non-flat bell soliton solution. Also
Figure 4 represented the non-deterministic solution when
(o = 1.3), gives the non-flat bell soliton solution. Figure
5 — a represented the cross section 2-dimnsional at
constant x = 3 with different choose of
(0 = 0.1,0.3,0.5,0.7,0.9) . In addition, Figure 5 —b
represented the 2-dimnsional at constant x = 3 with
different choose of (o =1.2,1.4,1.6,1.8,2). In Figure 6
which illustrates the backward wave propagation for
o = —6. Each subplot is labeled sequentially: (6 — a)
represents the deterministic case (a special case of the
SDE) for a one-soliton solution when (o = 0); (6 — b)
shows the SDE for a one-soliton solution with (¢ = 0.3);
(6 — ¢) presents the SDE for a one-soliton solution with
(o0 =1.1); and (6 — d) displays the 2D cross-section at
x =1 for diverse values of (¢ =0.1,0.3,0.5,0.7,0.9).

4 Solitary solution based on simplest
technique

The proposed approach is grounded in the principle of the
simplest equation method (SEM). In this context, we
provide a brief overview of the SEM algorithm, Initially,
assuming a traveling wave solution & = kx — @t , where k

represented wave number and @ denoted wave speed, the
equation is subsequently reduced to a nonlinear ordinary
differential equation. Next, it is assumed that the exact
solution can be expressed as a finite series

N
u(§) = ;as [w(&) (32)

with a; are determined later, y(&) is explicit solution
of Burgers model referred to as simplest equation, N is a
constant to be determined, which represents the power of
the specified solution function finite series, which can be
computed by balancing between the highest order
derivative term and the highest order nonlinear term
appearing in the nonlinear PDE. The simplest equation is
of lower order than the nonlinear PDE and its general
solution is will know.

4.1 The simplest equation technique based on
Burgers’ equation

The Burgers’ model is

i (£,) = 291, X) Wi (£,X) — Y (1,6) = 0 (33)
The solitary solution of Equation (33) is:
kekxfw
y(r,x) = 1t koot
with k; and @; are random constants and N positive
number. The traveling wave ansatz is & = kx — @z , so that

y(t,x) = w(&) . The Burgers’ model (33) is thus changed
into

(34)

—oy —2kyy —k2y" =0 (35)

Upon performing the first integration of Equation (25)

with respect to £ , and supposing that the constant of
integration is zero, the resulting expression simplifies to

1 o
Ye=— V-5V (36)

It is widely recognized that the dispersion relation of
Equation (33) is

o=k 37
Consequently, Equation (36) can be expressed as.
1
Ye=y- v (38)
and its solitary solution is constructed as:
kekx—ott
y(t,x) = T3 bar (39)

Building upon the aforementioned procedures, the use
of the SEM, with the assistance of Equations (39) and
(38), proves effective in solving the (1 + 1)-dimensional
nonlinear PDEs.
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Fig. 3: Evolution of non-flat one SS when 0 = 0.4, ® =4, and o0 = 6.
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Fig. 4: Evolution of non-flat one SS when ¢ = 1.3, @ =4, and o0 = 6.

4.2 New SS of the KdV model (7)

To demonstrate the accuracy of the aforementioned
method, the KdV equation is examined. Let us consider
the KdV equation as follows:

U + Qutly + Uy =0 40)

By introducing the traveling wave variable & = kx — ¢
, then Equation (40) is transformed into

—oug + otkuug +Kuges =0 (41)

By integrating with respect to & and supposing the
constant of integration is zero, the result is
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Fig. 5: Cross section 2-dimnsional at constant x = 1 with different choose of ¢.(a) when ¢ = 0.1,0.3,0.5,0.7,0.9. (b)
when o0 =1.2,1.4,1.6,1.8,2.

win 1)

e, t)

Fig. 6: Represented backward wave propagation with @ = —6,@0 = 4.6 — a) evolution of flat one soliton solution when
6 = 0,6 — b) non-flat one soliton solution when ¢ = 0.4.(6 — ¢) non-flat one soliton solution when ¢ = 1.3.6 — d) cross
section 2-dimnsional at constant x = 1 with different choose of ©.

ok 5, 5
—u+ 7u +kugg =0 42)

Substituting Equations (38) and (39) into (42) and
utilizing the balance equation, balancing uge with u?
yields N = 2. Thus, the exact solution to Equation (42) is
assumed to be

ug = (a1 +2a29) e (44

1
= (a1 +2amy) (w— ;vﬂ)

u:ao+a1w+a2y/2 43) a ) , 2ay ,
Since g :y/—%qﬂ so we have Tay- (?_ az) v _TW
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3 2a; 10
uge = ary+ (Zl +4az> v+ <ka21 - ;2) v’

Substituting Equations (45) and (43) into (42), we have
ak
—o(ag+a1y+ayy?) + - (a% +2apa1 ¥ + (2apaz +a%)l]/2)

ak 3
+> (2a1a2w3 +a%v/‘) +i <a1 v+ (—% +4az) wz)

2(11 10(12 6a2
(1) v ) =0

Setting like power coefficient of y(&) to zero, gives

ak
II/OI — 0)(1()/(2 + 761(2) = 0,
ak
l//l: —wa1+7~2a0a1+a1k3:0,
ak 3
l//z: —wa2+7(2aoa2+a%)+k3 <—Zl +4a2> =0,
3. ok 3(2a1 10ay\
Yy 7'2016124’1( (]{2_ A =0,
ok 602
l’/4: 7(1%-"]{3'7](2 :0

Solving this system we have

12k 12
ay=-—, ay=——,

o=k 46
o o (46)

ag =0,

So, the soliton solution constructed as:

12 kZekxfk*?l 12 kekxfk*%l 2

M:E <1+ekx—k3t> _E <1+ekx—k3t> (47)

The influences of white noise on the SS of the
stochastic KdV equation (1) are debated here. Emphases
on how the noise effect on the dynamical performances of
the model, particularly in the reference of deterministic
model which impacts crucial for analyzing how model
evolve over time or in long-term behaviors represented by
equation (47). We will introduce various graphical
representations to depict the soliton solutions of the
stochastic KdV equation (1) under varying conditions,
particularly highlighting the influence of noise strength
(o). These illustrations help us for good understanding
the fine details of how different noise levels affect the
dynamics of the model. Figure 7 represented the
deterministic soliton solution when (o = 0), gives the flat
periodic soliton solution. Figure8 represented the

non-deterministic solution when (o = 0.4), gives the
non-flat soliton solution. Also Figure 9 represented the
non-deterministic solution when (o = 1.3), gives the
non-flat soliton solution. Figure10-a represented

the cross section 2-dimnsional at constant x=1 with
different choose of (o = 0.1,0.3,0.5,0.7,0.9). In
addition, FigurelO-b represented the 2-dimnsional at
constant x = 1 with different choose of
(0 =1.2,1.4,1.6,1.8,2). In Figurell which illustrates
the backward wave propagation for & = —6. Each subplot
is labeled sequentially: (11 — a) represents the
deterministic case (a special case of the SDE) for a
one-SS when (o = 0); (11 — b) shows the SDE for a SS
with (6 = 0.3); (11 —¢) presents the SDE for a SS with
(o0 =1.3); and (11 — d) displays the 2D cross-section at
x = 1 for diverse values of (¢ =0.1,0.3,0.5,0.7,0.9).

5 Interaction of two SS based on
superposition technique

The superposition method is a mathematical technique
employed to analyze the interactions between two or
three solitons, which are solitary waveforms that maintain
their shape and velocity after interacting with one another.
This approach is particularly valuable, as solitons exhibit
the wunique property of retaining their integrity
post-interaction, unlike regular waves that tend to scatter
or dissipate. The core concept behind the superposition
method is that, in specific circumstances, the interaction
of multiple solitons can be represented as the sum of
individual soliton solutions. Solitons are a distinct
category of waves that retain their form while propagating
at constant speeds, and their interactions exhibit
characteristics that differ significantly from linear waves.
Whereas linear waves simply superpose upon interaction,
solitons interact in a nonlinear manner. The superposition
principle facilitates the modeling of these interactions,
accounting for the persistence of shape and velocity, even
after the solitons collide.

The mathematical treatment of solitons often involves
solving nonlinear PDEs, such as the KdV or the
sine-Gordon equations. In these cases, solutions
representing multiple solitons can often be expressed as a
sum of individual SS, particularly when the interaction is
analyzed in the asymptotic regime, before or after the
actual interaction occurs. A notable feature of solitons is
their ability to collide and pass through one another
without altering their identity. The superposition
technique models this behavior effectively, allowing for
the representation of solitons both before and after their
interactions. While the positions of the solitons may shift
during the interaction, they retain their original shape and
speed, akin to an elastic collision. The superposition
method is advantageous due to the mathematical structure
of the equations governing solitons, which often permit
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x

Fig. 9: Evolution of non-flat SSwhenc =13, k=1,and x =6

solutions that can be algebraically combined. Following
an interaction, the solitons can be represented as shifted
versions of their original forms. In scenarios involving
more than two solitons, such as three or more, the
superposition method remains applicable because solitons
preserve their integrity through collisions. As a result,
each soliton continues to move independently after
interacting with others, thereby maintaining its individual
characteristics. Overall, the superposition method

simplifies the analysis of complex nonlinear interactions
between solitons, providing a powerful tool for modeling
and understanding the behavior of solitons in various
contexts. This method aligns with the inherent nature of
soliton solutions, which retain their form and energy
during interactions.

To apply the superposition technique for two solitons,
the solution is obtained by adding the individual soliton
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Fig. 10: Cross section 2-dimnsional at constant x = 1 with diverse choose of 6. a) when 0 =0.1,0.3,0.5,0.7,0.9. b) when
c=12,14,1.6,1.38,2.

(%, 1)
(%, 1)

wix t)
wiut)

Fig. 11: Represented backward wave propagation with @ = —6, . a) evolution of flat one SS when ¢ = 0. b) non-flat one
SS when o = 0.4. ¢) non-flat SS when o = 1.3. d) cross section 2-dimnsional at constant x = 1 with diverse choose of ©.

solutions. The general form for the two-SS to the However, this form is only an approximation of the
deterministic KdV model is true solution. In the case of soliton interactions, the exact
solution involves more complex interactions, and the
solitons retain their shape after the interaction. Figurel2

30 o represented the interaction of the deterministic two SS

u(t,x) = ~— sech? <\/j(x_ wﬂ)) (48)  when (0 = 0) with a = 6,01 = 1,0 = 5 . Figurel3
@ 4 shows the interaction of the non-deterministic two SS

30, ) oy when (6 = 0.3). Figurel4 shows the interaction of the

T sech ( T(x — ! )> non-deterministic two SS when (o = 1.1) and Figurel5
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Ui, 1)

Fig. 12: the interaction of deterministic two SS with o =0, a = 6,0, = 1,0, = 5.

08
85
. 07 2
s
45 06 :
4 08
o
85 i
s
= 03 a
25
0.2
2 2
01
15
K
1 o
o5 041 “
02 -
B 0

Fig. 13: the interaction of non-deterministic two SS with 6 = 0.3, &« = 6,0, = 1,0, = 5.

Ufx, t)

Fig. 14: the interaction of non-deterministic two SS withc =1.1, x = 6,0; = 1,0, = 5.

shows the cross section 2-dimnsional at constant x = 1 the SDE) for interaction of two SS when (o = 0); (16-b)
with diverse choose of (6 = 0.1,0.3,0.5,0.7,0.9) and  shows the SDE for interaction of two SS with (¢ = 0.3);
(0=1.2,14,1.6,1.8,2). (16-c) presents the SDE for interaction of two SS with

. L (6 = 1.1); and (16-d) displays the 2D cross-section at
In Figure 16 which illustrates the backward wave | ¢ Gifferent values of (¢ = 0.1,0.3,0.5,0.7,0.9).
propagation of the interaction of two SS for o = —6,

o = 1,mm; =5 . Each subplot is labeled sequentially:
(16-a) represents the deterministic case (a special case of
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Uit

Fig. 15: Cross section 2-dimnsional at constant x = 1 with diverse choose of ¢. a) when ¢ = 0.1,0.3,0.5,0.7,0.9. b)

when o =1.2,1.4,1.6,1.8,2.
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Fig. 16: Represented backward wave propagation of the interaction of two SS with o = —6, @ = 1,m, =5 . a) when
o =0.b) when o = 0.3. ¢c) when o = 1.1. d) cross section 2-dimnsional at constant x = 1 with different choose of &.

6 Concluding remarks and scope for further
research

This study highlights the significant impact of
multiplicative white noise on the properties of soliton
solutions, revealing that random fluctuations can lead to
soliton deformation, changes in amplitude, phase shifts,
and alterations in wave velocity. These findings challenge
the conventional view of solitons as purely stable
structures in deterministic systems, suggesting that they

are more sensitive to stochastic disturbances than
previously anticipated. The analytical and numerical
methods employed have provided valuable insights into
how noise influences both individual solitons and their
interactions, emphasizing the need to account for
stochastic effects in models of real-world systems that
rely on soliton solutions.

By demonstrating that noise affects soliton dynamics and
interactions, this study opens the door to a deeper
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understanding of how complex, random processes shape
the behavior of nonlinear wave systems. The results
underscore the importance of incorporating stochastic
models to more accurately reflect the dynamics observed
in natural and engineered systems.

The results from this study suggest several directions for
future investigation. One promising avenue is the
exploration of other forms of stochastic processes, such as
non-Gaussian or colored noise, and their impact on
soliton behavior. These noise models could provide
further insights into the influence of different noise
structures on soliton interactions and stability.
Additionally, extending the study to examine
higher-dimensional soliton systems or more complex
nonlinear evolution equations could deepen our
understanding of how stochasticity affects soliton
dynamics in various contexts.

Further research could also focus on the long-term
evolution of solitons under the influence of multiplicative
noise, particularly in practical applications such as fluid
dynamics, plasma physics, and optical fibers, where
solitons play a critical role. Investigating the role of noise
in the formation and interaction of soliton trains or the
stability of multi-soliton solutions could provide
important contributions to the modeling of real-world
systems. Finally, examining the interplay between noise
and external forcing factors could lead to new insights
into the robustness and adaptability of solitons in
dynamic environments.

Considering the widespread application of solitons in
areas like optical fiber communications and plasma
physics, it is crucial to explore practical strategies for
reducing the effects of noise on soliton propagation.
Future research could concentrate on developing
optimized communication techniques aimed at
minimizing errors caused by noise, thereby enhancing the
reliability and efficiency of systems that rely on
soliton-based solutions.
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