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Abstract: This study focuses on image restoration from salt-and-pepper impulse noise using an enhanced Conjugate Gradient (CG)
method. The proposed approach adopts a two-phase process: first, an adaptive median filter identifies corrupted pixels; second, a smooth
optimization problem replaces a non-smooth one to reconstruct the image. New formulas derived from the Taylor series are introduced
to define the BBY algorithms, which improve convergence and maintain essential image features like edges. The convergence analysis
demonstrates that the proposed methods satisfy descent conditions and are globally convergent. Experimental results using standard
images (e.g., Lena, House, Elaine, Cameraman) show that BBY algorithms outperform the classical FR method in both computational
efficiency and image quality, measured using PSNR. Numerical comparisons reveal lower iteration counts and higher PSNR values for
BBY. Theoretical assumptions are validated with practical experiments. The BBY framework proves robust and effective for real-world
noisy image restoration. Overall, the study demonstrates the strength of combining optimization theory with practical image processing
techniques.

Keywords: Optimization Algorithm, impulse noise, two-phase approach, Global Optimization, Conjugate Gradient (CG) method and
convergence.

1 Introduction

Since noise poses a challenge, the image degradation needs sophisticated restoration approaches to extract the original
image. Impulse noise, especially salt and pepper noise is widespread among all the different types of noise there are in
digital imaging and is one of the most difficult to deal with [1,2]. It is defined as the random presence of extreme pixel
values resulting in white and black pixel sparsely scattered throughout the image. Letting maximum intensity value pixels
become mistakenly set to the most value roughly characterizes salt noise [3]. For example, pepper noise occurs when low
intensity pixels are set to zero [4,5]. The image restoration area has come a long way from heuristic filtering algorithms
to optimization-based and model-based approaches.

Initial approaches heavily relied on spatial domain filters, which acted directly on pixel values of an image. Among
those, the median filter is one of the extremely useful and common non-linear impulse noise filters to eliminate noises.
The overall idea of the median filter is to replace a central pixel value with the median value of pixel values in its provided
neighborhood. The operation is especially well suited to edge preservation but highly effective in smoothing impulsively
occurring outliers since the median is less sensitive to outliers than the mean employed in linear filters [6,7].

Large-scale systems of linear equations and unconstrained optimization problems, especially those resulting from the
discretization of partial differential equations, which are frequently encountered in image processing and computer vision,
are frequently solved using the Conjugate Gradient (CG) method [8], a potent iterative optimization algorithm. For large
systems where direct inversion is computationally prohibitive, it is a highly efficient alternative to direct methods due to
its strong convergence properties for general non-linear functions and its ability to converge in a finite number of steps for
quadratic functions in exact arithmetic [9, 10].

In this study, the proposed conjugate gradient algorithm is employed to address challenges in image restoration.
Raymond et al. [11] proposed a two-step approach to the recovery of noisy impulse images; in the initial step, they
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employed a median filter to identify and separate noisy pixels. Consider an image X of size M x N, with every pixel
position addressed by the index set A = {1,2,...,M} x {1,2,...,N}. Let |N| be the number of pixels detected as noisy
pixels during the first-pass detection and let N C A be the set of noisy pixel indices. For any pixel located at position
(m,n) € A, the set of its four nearest neighboring pixels is denoted by B,,,. Furthermore, let y,, , denote the observed
intensity value at pixel position (m,n).

In the second stage of the restoration process, the recovery of the corrupted pixels is formulated as a nonsmooth
optimization problem, which aims to accurately reconstruct the original pixel intensities:

B

min Y| lgmn = Ymal+ 52 Zns+Z0,) | M
(m,n)eN
where:
Zr%z,n = Z Vo (C]m,n _yaAh)v Zin = Z Va (Qa,n - Qa,b)v 2)
(a,b)EBm N (a,b)EBmp~N

The function Yy (1) = V%2 + @, where @ > 0 is a parameter, serves as an edge-preserving regularization term. This function
is particularly important for noise removal tasks that aim to maintain significant image features [12, 13], such as edges.
The vector g = [Clm,n](m,n)ev is defined as a length-based column vector, with the set |N| arranged in lexicographic order.

Solving the nonsmooth minimization problem presented in equation (1) exactly is computationally intensive and time-
consuming. To address this, Cai et al. [2] proposed a method that eliminates the nonsmooth term, resulting in the following
smooth and unconstrained optimization problem:

mqinfu ()C) = Z 2 Z Wu(Qm,n - ya,b) + Z Va (Qm,n - Qa,b) . 3)

(m,n)eEN (a,b)EBmn|N (a,b)EBm NN

The complexity of problem (3) increases proportionally with the noise level. Employing the Conjugate Gradient (CG)
method to solve the optimization problem (3), the authors in [15] demonstrated effective restoration of corrupted images.

In the present study, salt-and-pepper noise, a specific type of impulse noise, is addressed using a two-phase approach
[16]. During the first phase, noisy pixels are detected via an adaptive median filter as described in [17]. Subsequently, the
problem (3) is solved using the proposed BBY algorithms, and its performance is benchmarked against FR method from
[18,19].

In conjugate gradient methods, the new point x; | is computed iteratively using both the current point x; and a search
direction dj, that is conjugate to the previous directions [20,21]. The general update rule is given by:

Xk+1 = X + Odi, “)
where o is the step size, which is known as:
T
8k 9k
O == ®)
. Gdj,
see [22]. More generally, o, is often determined using a line search method that satisfies the Wolfe conditions as:
fluw+ ondy) < f(we) + 8 - ougf d, (©6)
df 8w+ ondy) = o -df g, @

where 0 < § < 6 < 1 [23]. di is the current conjugate direction, updated as follows:

diy1 = =81+ Br - d, ®)

where gy, is the gradient of the objective function at iteration k+ 1, and B is a scalar that controls how much of the
previous direction is preserved in the current iteration. One of the most commonly used formulas for computing f3; is the
Fletcher—Reeves (FR) [24] formula:

T
FR _ 8k+18k+1
R ©
8 8k
This formula ensures that the directions d; remain conjugate with respect to the Hessian matrix (in the case of quadratic
functions), which leads to faster convergence than simple steepest descent methods. The conjugate gradient method is
especially effective for large-scale problems, where storing or inverting the Hessian matrix is impractical.
The study placed a strong focus on harnessing the dual benefits—computational performance and theoretical rigor—
provided by new conjugate gradient approaches.
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2 Deriving new parameters via the Taylor series

We propose several new formulas for the gradient method derived using the Taylor series as follows:

1
£ () :f(xk+1)*g;{SkJrES/{Q(Xk)Sk, (10)

To compute the derivative, we use the following formula:
8ik+1 = 8k + O (1), (11)
From the relationships established in (11) and (10), it follows that:

3
st Q1) = Eszfyk-F(ka = fo), (12)
Thus, following some algebraic transformations, we derive the expression:
3 (gh1)°
T k | T
s Qe )sk = 5 = @ S Vi (13)
¢ Q) 25Tyt (fo—fesr) K

where: oy
wll _ § (8 5k)
2 spyr(sg e+ (fo— firr))
The conjugacy condition is known to be defined by the following relation, which plays a key role in the analysis:
di1 051 =0, (15)

After simplifying (13) algebraically and inserting it into (15), we get the following result:

(14)

T
8k+1)Vk
Br = ax ; (16)
dlyk
Assuming exact line search is utilized in both (12) and (16), the outcome is:
gl
Br = o —7—, (17)
dly
with: rw
2 _ 3 (gk sk)
W =57 T , (18)
2 sy yi(—sg &+ (fk — fre1))
and rw
3
(O]? (gk 5k) (19)

2 sTyi(owgl gk + (fi — fir1))
The proposed methods BBY is clearly defined and offers a robust framework to improve convergence and algorithm
performance [25].

They are referred to as BBY for convenience.

Algorithm BBY:

Input: Minimize a function by adjusting xyp € R", €.
Qutput: Optimal x with near-zero gradient.

LIf ||gx|| < € stop.

2.Compute oy using (6) and (7).

3.Update x| = xx + oydy and compute By using (17) with (14, 18, and 19).
4.Calculate dy. 1 = —gxs1 + BrSk-

5.Increment the iteration counter: k = k+ 1 and return to step 2.

Theoretical foundations of BBY algorithms and many advanced Conjugate Gradient methods are based on basic ideas of
numerical optimization, especially when it comes to descent conditions and global convergence. Constitute the theoretical basis for
BBY algorithms and, in reality, several advanced Conjugate Gradient methods [26]. The most important efficiency hypotheses of BBY
algorithms are image quality and computation velocity. It is a fundamental argument that BBY algorithms have an advantage over the
conventional Fletcher-Reeves (FR) method in terms of both image quality and computation efficiency. To serve as a reference, the FR
algorithm—one of the earliest and most widely used nonlinear Conjugate Gradient algorithms—is used [27].
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3 Convergence analysis
Assumptions required for the proof of the convergence property:

1.The set Ly = {x € R": f(x) < f(x0)} is assumed to be convex [28].
2.The gradient Vf is Lipschitz continuous: (Vf(0) — Vf(v)) < L|jo —v|| for all 0,v € R™.

The next theorem establishes that the new algorithm fulfills the descent condition.
Theorem 3.1. Suppose the sequence {x;} is computed based on the parameters in (3) and (17). Then

di ger1 <0 and  di, g1 = Prdy gk

Proof. Equation (3) multiplied by g, | results in:

1
df 18kt = —ghprgen B Al gy,
Thus, equation (21) implies:
BBY1 4T
2_ Be™" di i
llgk+11I" = (8{s)?

3 &s)”
2 siu(spit(fi—firn))
Equations (21) and (22) are now used to get:

di 18k = BEEVd] g —di i) = BEBY N d gy < 0.

This completes the proof.

(20)

21

(22)

(23)

For a study of the new algorithm’s convergence, we employ assumptions on the objective function. Based on these assumptions,

we establish that the new algorithm is globally convergent, as stated in the following theorem.
Theorem 3.2. Assuming that (3) determines the search direction dj 1, this means that:

lim inf||gg|| = 0. (24)
k—yoo
Proof. Beginning with equation (3), we derive dj | + gx+1 = Brdy. Through the process of squaring each side, we ascertain:
ekt + g1 17 + 24 1 81 = (B kel (25
By applying multiplication to both sides of the aforementioned equation by m, one obtains:
k+16k+
Il 2 gkl (BNl
(dlz-+1gk+1)2 dg+1gk+l (d]¢T+1gk+l)2 (d]{+1gk+l)2
2
1 1 d|?
<_ ||Tgk+1|| . L+ HTkH .
di g1 I8kl lgk+1ll*  (d gx)
1 Al
< T (26)
g1l (df gk)?
Take note of:
ldenl® _RH 1
T 2 = 2 @7
(dk+1gk+1) i=1 ng”
Let us define ¢; > 0 such that ||g|| > ¢ for all k € N. Then,
dial® k+1
(dk+1gk+l) 1
The above inequality now implies that:
& (gf i)
Z 7 = (29)
k=1 Hdk H
This leads to a contradiction with Lemma 2.1. Therefore, limy_,, inf||gx|| = 0 holds. The proofs of the other methods are similar to the
approach in BBY1.
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4 Numerical Experiments

In this section, we present a series of numerical results to demonstrate the effectiveness of the proposed New method in removing
salt-and-pepper impulse noise from images. Our goal is to thoroughly evaluate the performance of the New method and compare it with
the existing FR method under various experimental conditions.

All the programming code and its related algorithms for these experiments were created and used in MATLAB, version R2017a.
Once the programming code was ready, the experiments were run on a PC with suitable specifications to run them smoothly and
successfully. The numerical results are compared with standard performance measures that measure the quality of noise removal and
image recovery. These results provide a clear comparison, highlighting the advantages and potential improvements offered by the New
method over the FR method.

The following are the stopping criteria for both methods:

|f (k) = f (ug—1)|

Fao] S0 and VA | <1071+ 1)) (30)

The test images used in our experiments include widely recognized standard images such as Lena, House, Cameraman, and Elaine,
along with a sample test text image. Following the approach outlined in references [29,30], we employ the Peak Signal-to-Noise Ratio
(PSNR) as a quantitative metric to evaluate and compare the quality of image restoration. PSNR is a widely accepted measure that
reflects the similarity between the original and the restored images, providing a clear indication of the effectiveness of noise removal.
The PSNR is mathematically defined as follows:

*

2552
PSNR = 10log; < i . 2) 31
WZi,j(”i,j*”i,j)

Here, ulr j and ul* ; Tepresent the pixel values at position (i, j) in the original and restored images, respectively, and M X N is the image
dimension.

Table 1: Numerical results of FR and New algorithms.

Image | Noise level r (%) FR-Method BBY 1-Method BBY2-Method BBY3-Method
NI NF PSNR NI NF PSNR NI NF PSNR NI NF PSNR
(dB) (dB) (dB) (dB)
50 82 153 30.5529 | 55.0 69.0 30.4282 | 58.0 69.0 30.4360 | 72.0 76.0  30.4668
Le 70 81 155 274824 | 640 79.0 27.4233 | 50.0 60.0 27.5177 | 64.0 68.0 27.3287
90 108 211 22.8583 | 69.0 83.0 22.7633 | 69.0 80.0 23.0388 | 107.0 214.0 23.0365
50 52 53 30.6845 | 33.0 42.0 34782 | 48.0 55.0 349648 | 42.0 43.0  34.5528
Ho 70 63 116 312564 | 41.0 47.0 305963 | 47.0 55.0 31.0419 | 48.0 50.0  30.9029
90 111 214 25287 | 70.0 80.0 24.8714 | 67.0 77.0 25.013 63.0 65.0 25.191
50 35 36 339129 | 30.0 36.0 33.8913 | 34.0 40.0 33.8857 | 34.0 36.0 33.8743
El 70 38 39 31.864 | 39.0 47.0 31.8007 | 38.0 44.0 31.8211 | 42.0 44.0  31.7924
90 65 114 282019 | 50.0 58.0 28.1777 | 50.0 58.0 28.2136 | 54.0 56.0 28.1106
50 59 87 355359 | 39.0 50.0 354164 | 38.0 49.0 354281 60.0 120.0 35.5217
c512 70 78 142 30.6259 | 44.0 55.0 3.06682 | 47.0 54.0 30.6175 | 66.0 131.0 30.5963
90 121 236 243962 | 57.0 71.0 249216 | 67.0 78.0 24.7394 | 70.0 720 248714

As seen from Table 1, the proposed algorithms are superior to the FR algorithm with respect to function evaluations
and number of iterations and peak signal to noise ratio.
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Fig. 1: Image restoration results showing original, noisy, and restored images using different methods.
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Fig. 2: Demonstrates the results of algorithms FR, BBY 1, BBY2 and BBY3 of 256 x 256 House image
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Fig. 3: Demonstrates the results of algorithms FR, BBY11, BBY2 and BBY3 of 256 x 256 Elaine image.
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Fig. 4: Demonstrates the results of algorithms FR, BBY 11, BBY2 and BBY3 of 256 x 256 Cameraman image.
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Fig. 5: Performance on the number of iterations.
This figure shows the performance profiles of the proposed BYY methods and the classical FR algorithm based on the

number of iterations (NI). The proposed method outperforms the classical FR algorithm by achieving faster convergence
on most test problems. Its curve rises more quickly, indicating fewer iterations are needed. In contrast, the classical FR
algorithm lags behind, suggesting lower computational efficiency. The second illustrates the impact of function evaluations
on computational cost. The proposed algorithm’s curve (red) consistently outperforms the classical FR, requiring fewer
evaluations to reach optimality. This highlights the greater efficiency of the BBY methods.
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Fig. 6: Function evaluations performance.

5 Conclusion

In this paper, we introduced an efficient and complete new image restoration algorithm to remove salt-and-pepper impulse
noise based on improved Conjugate Gradient (CG) algorithms. With a strong focus on classical optimization techniques,
our work provides a mathematically sound framework for attaining computational efficiency with high-quality image
reconstruction guarantee. More particularly, we introduced three BBY-type algorithms based on Taylor series each of
which is well constructed for enhanced convergence rate without losing the critical image details like edges and textures
during restoration. Adaptive in nature, the algorithms automatically adapt themselves according to varying noise levels,
providing the same level of performance under all situations.

The two-stage model—integration of noise detection with adaptive median filtering and then optimization—was
shown to be very effective in image restoration from noisy images and perform better compared to traditional
single-stage approaches. Theoretical analysis ensured the global convergence of the BBY algorithms under reasonable
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assumptions, thereby their mathematical stability and validity. Furthermore, the descent direction property of the search
direction was strictly established, with stable and efficient optimization in restoration.

Computational simulations verified our novel BBY approaches to outperform the traditional FR method significantly
in numbers of iterations and image quality at faster convergence without sacrificing precision. The improvement was
consistently shown through higher PSNR values under different levels of noise and common test images, illustrating the
adaptability and stability of our approach. The experiments confirm the real-world validity, effectiveness, and scalability of
the said proposed algorithms, which make them far too adequate for very noisy real-world image processing applications
like medical imaging, satellite images, and surveillance systems.

Future Work: In the future, it is possible to extend such algorithms to color images, where channel
interdependencies can add additional complexity, or to video restoration, where temporal consistency needs to be
preserved. Another direction could be the incorporation of suggested schemes with hybrid deep-learning-based models
by taking advantage of optimization-based as well as data-driven benefits for even higher quality restoration. These
advances would further establish the position of our BBY algorithms within next-generation image processing pipelines.
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