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Abstract: Lifetime distributions are an essential statistical tool for modeling different attributes. The statistical literature offers many
complex distributions for analyzing such data sets. However, the estimation process is challenging due to the large number of parameters
in these distributions. To expand and model possibilities for these datasets, we introduce the inverse power half-logistic distribution
(IPHLD) as a novel model. We derive some of its statistical properties and explore its application in stress-strength reliability modeling,
a significant topic in the field of statistics. The stress-strength reliability model is defined as η = P[W < Z], where W and Z represent
the stress and strength random variables, respectively, and η is the reliability parameter. Assuming that W and Z are independent
IPHLD with different scale parameters. Using ranked set sampling and simple random sampling, the maximum likelihood and Bayesian
estimators of η are considered. The Bayes estimate of η under different loss functions is obtained using gamma priors. It is clear that
the Bayesian estimators’ explicit form is absent. Therefore, the Markov Chain Monte Carlo method is used to validate the Bayesian
estimate. A Monte Carlo simulation study is used to examine the performance of different estimating techniques. In the end, eight
real-world data sets from four applications are examined to illustrate the recommended estimation methods.

Keywords: Power half-logistic distribution; inverse transformation; entropy measures; perfect ranking; Bayesian estimation;
Metropolis-Hasting method.

1 Introduction
In many real-world applications, lifetime data modeling is done using distributions with support on the positive real

line. In the domains of biomedical research, reliability, actuarial sciences, demographics, engineering, public health, and
so on, exponential and Weibull distributions, for instance, have been utilized to fit data sets. Furthermore, in practical
reliability and lifetime data analysis, the half-logistic distribution (HLD) is another lifetime model that is essential for
fitting data with a decreasing failure rate (see [1,2]). The half-logistic random variable X with scale parameter υ has the
following cumulative distribution function (CDF):

F(x) = 1− 2
1+ eυx , x,υ > 0. (1)

Krishnarani [3] proposed the power HLD (PHLD) with an additional shape parameter in order to improve the
characteristics of the HLD. Using the transformation Y = X1/ϑ where X has the CDF (1) and ϑ is the shape parameter,
then the CDF for PHLD is provided by

F(y) = 1− 2
1+ eυyϑ

, y,υ ,ϑ > 0. (2)
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In an attempt to expand or utilize some of the features of the HLD, a number of generalizations and extensions have been
made in recent years (see [4]–[8]).
More broadly, there are a number of ways to change a known distribution into an alternate one. The inverse
transformation technique, which uses the standard inverse (or ratio) function, is one of the most important of them. More
specifically, the inverse distribution of Z is produced by using the transformation Z = 1/Y, where Y is a random variable
with an existing distribution. The behavior of the density and hazard rate shapes in these distributions shows a variety of
features. They make it possible to apply the phenomenon in a number of fields, such as the biological sciences,
engineering sciences, survey sampling, and problems pertaining to life testing. Many adaptable inverted models have
been studied by several authors, including inverse Lindley distribution [9], inverse exponentiated Weibull distribution
[10], inverse power Lindley distribution [11], new hybrid Weibull-inverse Weibull distribution [12], inverted
Nadarajah–Haghighi distribution [13], sine inverse exponentiated Weibull distribution [14], length-biased weighted
exponentiated inverted exponential distribution [15], inverse Nakagami-m distribution [16], inverse power Lomax
distribution [17], inverse power Ailamujia distribution [18], exponentiated inverted Weibull distribution [19], inverse
Pareto distribution [20], inverted Topp–Leone distribution [21], exponentiated inverted Topp-Leone distribution [22],
inverse power XLindley distribution [23], unit inverse exponentiated Pareto distribution [24], heavy tailed inverse
Lindley Type-I distribution [25] and for more recent models [[26]–[30]].

A statistical sampling approach called ranked set sampling (RSS) scheme is used to estimate population parameters more
accurately and efficiently than the conventional random sampling (SRS) technique. The RSS technique selects samples
according to their relative ranking in a collection of measurements rather than choosing individual samples at random.
When population variability is large and conventional random sampling techniques do not adequately represent the
underlying variability, this strategy might be very helpful. McIntyre [31] first estimated pasture yield using the RSS
approach, which may be regarded as a controlled SRS design. Takahasi and Wakimoto [32] supported it with
mathematical theory. Applications of RSS can be found in many fields, such as forestry, agriculture, animal sciences, and
medicine. Estimation of different probability distributions has been suggested by several researchers. More recent studies
can be found, for instance, Alsadat et al. [33] for the generalized unit half-logistic geometric distribution, Aljohani et al.
[34] for the modified kies exponential distribution, Hassan et al. [35] for the inverse power Cauchy distribution, Sabry et
al. [36] for the Weibull distribution, Sabry and Almetwally [37] for the exponential Pareto distribution, Hassan and Atia
[38] for the inverted Kumaraswamy distribution, Sabry et al. [39] for the Weibull distribution, Metwally et al. [40] for the
unit xgamma distribution, Hassan et al.[41] for the Chris-Jerry distribution, Metwally et al. [42] for Ramos–Louzada
distribution, among others.

In reliability theory, the estimation issue of the stress-strength reliability (SSR) model based on RSS has caught the
attention of many researchers. The aforementioned SSR model, represented by η = P[W < Z] describes the life of a
system with random strength Z that is exposed to random stress W. When a component receives more stress than its
strength, it fails; otherwise, it will continue to work until W ≤ Z. This model has been used in several technical and
life-testing scenarios. The SSR model has been statistically inferred based on RSS and its modification strategies. The
determination of SSR for independent exponential distribution, based on RSS, was first discussed by Muttlak [43]. The
estimation of SSR for independent Weibull and independent Lindley random samples was discussed [44,45]. The
investigation of SSR for an exponentiated Pareto distribution was provided by Al-Omari et al. [46] in the case of median
RSS. Akgül et al. [47] covered the estimation of SSR in the case of the Burr Type X distribution. Alsadat et al. [48]
provided an efficient estimate for the SSR for the independent unit Gompertz distribution using classical methods.
Hassan et al. [49] discussed the SSR for the independent generalized inverse exponential model based on RSS and SRS
designs using maximum likelihood (ML) method. In the literature, few studies have considered the Bayesian estimation
of the SSR from the probability distribution based on RSS. For example, Basikhasteh et al. [50] examined the SSR of the
bathtub-shaped lifetime distribution based on maximum RSS. Using RSS, Esemen et al. [51] dealt with the Bayesian
estimation of the SSR drawn from the generalized exponential distribution using Lindley’s approximation. Yousef et al.
[52] discussed the Bayesian estimation of the SSR from the inverted Topp-Leone distribution using Markov chain Monte
Carlo (MCMC) method.

Although several distributions for the analysis of contemporary data are available in the literature, a more flexible
distribution that functions effectively in a variety of scenarios is still needed. Furthermore, few studies have addressed
the Bayesian estimation problem for SSR modeling. As a result, the first primary goal of this study is to introduce the
inverse PHLD (IPHLD) using inverse transformation. Due to its unique characteristics, the proposed two-parameter
IPHLD is one of the best methods for handling positively skewed datasets. The second goal is to investigate both the
Bayesian and non-Bayesian estimation of the SSR for the IPHLD under RSS and SRS. For the IPHLD, investigations
and recommendations are made about simulations and applications. The following succinctly describes the rationale
behind the proposed model:
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–The IPHLD’s wonderful adaptability is seen when matched with the various graphical formats of the probability
density function (PDF) and hazard rate function (HRF). The moment’s expression, quantile function (QF),
incomplete moments (IM), probability weighted moments (PWMs), entropy measures, and SSR parameter are a few
of the important statistical features that we generate for the IPHLD.

–The ML estimators (MLEs) of υ ,ϑ ,and ηare obtained. The Bayesian estimates (BEs) based on RSS are generated
by the use of MCMC methodology. The BEs of υ ,ϑ η are determined in informative prior (IF-P) using symmetric
(squared error loss function (SQEL)), and asymmetric (linear exponential loss function (LLF)).

–The effectiveness of the several suggested estimators is assessed and compared using Monte Carlo simulations and
real-world application scenarios.

The remaining text has been split into the following sections: The formation of the IPHLD and a few of its characteristics
are shown in Sections 2 and 3. Section 4 outlines the MLEs of η = P[W < Z] when stress and strength random variables
following IPHLD using RSS and SRS. Section 5 provides the Bayesian estimators of SSR under SQEL and LLF. In
Section 6, a Monte Carlo simulation is used to examine the efficacy of the proposed estimation methods. Four real data
applications with eight real datasets were examined to illustrate the importance of the IPHLD in Section 7. We provided
some findings in Section 8.

2 Inverted Power Half-Logistic Distribution

Applications in econometrics, biological and engineering sciences, medical research, and life testing are among the many
fields where inverted distributions are important. Presenting the IPHLD is the primary goal here.

2.1 Description of the Model

Using the inverse transformation Z = 1/Y, where Y has the CDF (2), hence the CDF of IPHLD is given by

F(z) =
2

1+ eυz−ϑ
, z,υ ,ϑ > 0. (3)

The PDF of IPHLD associated with CDF (3) is given by:

f (z) =
2υϑz−ϑ−1eυz−ϑ

(1+ eυz−ϑ
)2

, z,υ ,ϑ > 0. (4)

The HRF of the IPHLD is as follows:

h(z) =
2υϑz−ϑ−1eυz−ϑ

e2υz−ϑ −1
.

Note that for ϑ = 1, the inverse HLD is produced as a new model. In Figure 1, the PDF (left panel) and HRF (right panel)
are displayed graphically for different values of υ and ϑ . As seen from Figure 1, the PDF can take different asymmetric
shapes as well as the HRF might be either decreasing, or upside-down, which is required for reliability assessment.

2.2 Extensions of the IPHLD

The IPHLD allows for the creation of several kinds of extensions. A few of them bear a strong connection to distributions
that are currently in the literature. Extending the ones in Krishnarani [3], a few more log transformations of the IPHLD
are now examined.
Let Z be a random variable following the IPHLD.

1.Suppose that T = eZ , where Z has the IPHLD, then the PDF of T is

f (t) =
2υϑ(log t)−ϑ−1eυ(log t)−ϑ

t(1+ eυ(log t)−ϑ
)2

; t > 1.

Hence, the random variable T has the log positive inverse power half-logistic distribution. This model can analyze
financial ratios, which are frequently right-skewed and usually greater than 1. Additionally, it is suitable for measuring
the concentrations of pollutants detected beyond a specific safety or detection threshold, such as in parts per million
readings where a value of 1 represents a significant baseline.
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Fig. 1: PDF (left panel) and HRF (right panel) for IPHLD with different shapes.

2.Suppose that K = e−Z , then the PDF of K is

f (k) =
2υϑ(− logk)−ϑ−1eυ(− logk)−ϑ

k(1+ eυ(− logk)−ϑ
)2

; 0 < k < 1.

In this case T has the log inverse power half-logistic distribution with domain (0,1). It is a brand-new unit distribution
that can be employed in several statistical uses. This model can be used to model market share data, rates, or fractions.
For instance, the percentage of a budget allocated to research and development, the percentage of a day that a machine
is in operation.

3.Suppose that T = eυZ−ϑ

, then the PDF of T is

f (t) =
2

(1+ t)2 ; t > 1.

4.Suppose that K = e−υZ−ϑ

, then the PDF of T is

f (k) =
2

(1+ k)2 ; 0 < k < 1.

Thus, we have two distributions that share the same structure but are specified at two disjoint intervals: [0, 1] and [1, ∞).
This property of a nonnegative random variable with regard to log transformations is what we receive. These take the
same shape as the inverse half-logistic distribution that we change using the transformations T = eZ , and K = e−Z .

2.3 Quantile Function

The following formula yields the QF of the IPHLD, represented by Q(u): For every u ∈ (0, 1), F(Q(u)) = Q(F(u)) = u.
Following a little algebra, an analytical equation is produced, and it is

Q(u) =
[

1
υ

log
(

2−u
u

)]−1/ϑ

, u ∈ (0,1). (5)

The median is given by Med = Q(0.5), first quantile Q1 = Q(0.25), third quantile Q3 = Q(0.75), and interquartile range,
IQR = Q(0.75)−Q(0.25).

© 2025 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 14, No. 5, 761-785 (2025) / www.naturalspublishing.com/Journals.asp 765

With U having a uniform distribution (0, 1), the following formula uses the QF (5) to produce random data sets:

zi =

[
1
υ

log
(

2−ui

ui

)]−1/ϑ

, i = 0,1,2, . . . ,n. (6)

In addition, the result below may be used to generate random variables from IPHLD.
Result: If X ∼U(0,1), then the random variable T =

[ 1
υ

log a−x
x

]−1/ϑ has truncated IPHLD (TIPHLD).
Proof: If X ∼U(0,1), then

P(T ≤ t) = P

{[
1
υ

log
a− x

x

]−1/ϑ
≤ t

}
=

a
1+ eυt−ϑ

,

which is a new distribution with a density function

f (t) =
υaϑ t−ϑ−1eυt−ϑ

(1+ eυt−ϑ
)2

, t >
[

1
υ

log(a−1)
]−1/ϑ

, υ ,ϑ > 0,a ≥ 2. (7)

The PDF (7) is referred to as the truncated inverse half-logistic distribution. Note that for ϑ = 1in (7) the truncated inverse
half-logistic distribution is presented. The IHLD is produced when a = 2, ϑ = 1 and IPHLD is produced when a = 2,
ϑ > 0.

3 Some Statistical Properties

This section gives some of the statistical properties, including moments, IM, PWMs, entropy measures, and the SSR
parameter.

3.1 Moments and Associated Measures

Representations of the moments of the IPHLD are given. The m-th moment of Z is given by

µ
′
m =

∫
∞

0
zm 2υϑz−ϑ−1eυz−ϑ

(1+ eυz−ϑ
)2

dz =
∫

∞

0
zm 2υϑz−ϑ−1e−υz−ϑ

(1+ e−υz−ϑ
)2

dz. (8)

The generalized binomial expansion is defined by:

(1+ x)−α =
∞

∑
k=0

(−1)k
(

α + k−1
k

)
xk. (9)

Then by employing (9) in (8), gives

µ
′
m =

∞

∑
k=0

(−1)k2(k+1)
∫

∞

0
zm−ϑ−1

υϑz−ϑ−1e−υ(k+1)z−ϑ

dz

Then after some simplification, we get

µ
′
m =

∞

∑
k=0

(−1)k2[υ(k+1)]m/ϑ
Γ

(
1− m

ϑ

)
, ϑ > m. (10)

From µ ′
m, various quantities can be obtained. Specifically, the mean of Z is determined for m =1 in (10). Additionally,

m-th central moment is provided by

µm = E(Z −µ
′
1)

m =
m

∑
j=0

(
m
j

)
(−1) j(µ ′

1)
j
µ
′
m− j.

Based on the previous equation, several measures can be obtained, such as variance and measures of skewness and kurtosis.
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The m-th incomplete moment is obtained by using PDF (4) and binomial expansion as below:

ϕm(t) =
∞

∑
k=0

(−1)k2(k+1)
∫ t

0
zm−ϑ−1

υϑz−ϑ−1e−υ(k+1)z−ϑ

dz.

Hence, the m-th incomplete moment is given by

ϕm(t) =
∞

∑
k=0

(−1)k2[υ(k+1)]m/ϑ
Γ

(
1− m

ϑ
, [υ(k+1)t]−ϑ

)
, ϑ > m, (11)

where, Γ (.,x) is the upper incomplete gamma function. For m=1 in (11), the first incomplete moment is determined. The
important application of the ϕ1(t) is related to the Bonferroni and Lorenz curves, defined by L(p) = ϕ1(t)

/
µ ′

1,and B(p) =
ϕ1(t)

/
pµ ′

1,where tp can be evaluated numerically using Equation (5) for a given probability p. A further application of
the ϕ1(t) is to the mean waiting time, represented by m1(t) =

1−ϕ1(t)
1−F(t) − t, and the mean residual life which is provided by

m∗
1 (t) = 1− ϕ1(t)

F(t) .

3.2 Entropy Measures

This subsection is devoted to deriving the Renyi and Tsallis entropies of the IPHLD. Entropy has been applied to fields
such as engineering, medicine, and physics. For a random variable Z, entropy is a measure of the variation in uncertainty.
Using the following formula, the Renyi of order s, where s > 0, and s ̸=1, for the IPHLD may be found

RZ(s) =
1

1− s

log
∞∫

0

( f (z))sdz

=
1

1− s

log
∞∫

0

(2υϑ)sz−s(ϑ+1)esυz−ϑ

(1+ eυz−ϑ
)2s

dz

 . (12)

Using the binomial expansion (9) in (12), we have

RZ(s) =
1

1− s
log

[
(2υϑ)s

∞

∑
k=0

(−1)k
(

2s+ k−1
k

)∫
∞

0
z−s(ϑ+1)e−(s+k)υz−ϑ

dz

]
.

Then after simplified form, we get

RZ(s) =
1

1− s
log

[
(2υ)s

ϑ
s−1

∞

∑
k=0

(−1)k
(

2s+ k−1
k

)
((s+ k)υ)

1−s(ϑ+1)
ϑ Γ

(
s(ϑ +1)−1

ϑ

)]
.

Additionally, the Tsallis entropy of order s, where s > 0, and s ̸=1, is defined by:

TZ(s) =
1

s−1

[
1−

∫
∞

0
( f (z))sdz

]
. (13)

Then by using PDF (4) and binomial expansion (9) in (13), then

TZ(s) =
1

s−1

[
1− (2υ)s

ϑ
s−1

∞

∑
k=0

(−1)k
(

2s+ k−1
k

)
((s+ k)υ)

1−s(ϑ+1)
ϑ Γ

(
s(ϑ +1)−1

ϑ

)]
.

3.3 Probability Weighted Moments

Generally speaking, the PWMs are regarded as superior to the regular moments. At extreme levels, the PWMs are less
sensitive. They are used in rare cases when MLEs are hard to come by. For a given random variable Z, the class of PWM
is defined as follows.

ωr,h = E[ZrF(Z)h] =
∫

∞

−∞

zr[F(z)]h f (z)dz, (14)
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where h, and r are integers. Setting (3) and (4) in (14), then the PWM of the IPHLD is

ωr,h =
∫

∞

0
zr 2h+1υϑz−ϑ−1eυz−ϑ

(1+ eυz−ϑ
)h+2

dz. (15)

Using the expansion (9) in (15) leads to

ωr,h =
∞

∑
k=0

(−1)k
(

h+1+ k
k

)
υϑ2h+1

∫
∞

0
zr−ϑ−1e−(k+1)υz−ϑ

dz

=
∞

∑
k=0

(
h+1+ k

k

)
(−1)k2h+1υr/ϑ

(1+ k)1−r/ϑ
Γ

(
1− r

ϑ

)
, ϑ > r.

3.4 Stress-Strength Reliability

Suppose that W and Z are two independent random variables that have the IPHLD with a common shape parameter and
different scale parameters, that is, Z ∼ IPHLD(υ1,ϑ) and W ∼ IPHLD(υ2,ϑ), respectively. The associated SSR parameter
is then determined by using the formula η = P[W < Z] as follows:

η =

∞∫
0

f (z;υ1,ϑ)FW (z,υ2,ϑ)dz =
∞∫

0

2υ1ϑz−ϑ−1eυ1z−ϑ

(1+ eυ1z−ϑ
)2

× 2
(1+ eυ2z−ϑ

)
dz. (16)

Using expansion (9) in (16), twice time, we get

η =
∞

∑
j1, j2=0

(−1) j1+ j2( j1 +1)4υ1ϑ

∫
∞

0
z−ϑ−1e−[υ1( j1+1)+υ2 j2]z−ϑ

dz

=
∞

∑
j1, j2=0

(−1) j1+ j2( j1 +1)4υ1

υ1( j1 +1)+υ2 j2
.

(17)

Note that the SSR parameter depends on the parameters υ1, and υ2. The 3D plots of the SSR parameter is represented in
Figure 2 for selected values of parameters.

Fig. 2: Stress-Strength reliability with different values of parameters

4 Classical Estimators under Two Sampling Techniques

This section gives a description of the RSS method. Also, the MLEs of η are discussed under RSS and SRS.
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4.1 Description of RSS Method

In situations where it is impractical or costly to exactly quantify an observation, the RSS is a powerful method of gathering
data. The RSS is more beneficial than the SRS under perfect ranking (see [53]). The protocol for selecting samples based
on the RSS is as follows:

–Select h 2 units at random from the specified population of interest.
–Randomly partition the h 2 units into h sets, with h units in each set.
–Regarding the variable of interest, the m units of each set are rated visually or using any low-cost technique.
–To pick a sample of measurements, take the lowest-ranking unit from the first set, the second lowest-ranking unit from
the second set, and so on, until the highest-ranking unit is chosen from the final set.

–The whole process can be repeated s times, or as many times as necessary, to generate an RSS sample of size M•= h×
s, where h is the set size and s is the cycle count.

–To clarify the RSS structure, we utilize the following matrix notation:

Initial Observation
Z(1:1) Z(1:2) . . . Z(1:h)
Z(2:1) Z(2:2) . . . Z(2:h)

...
...

. . .
...

Z(h:1) Z(h:2) . . . Z(h:h)

⇒

Ranked Observation

Z11 Z21 . . . Zh1

Z12 Z22 . . . Zh2

...
...

. . .
...

Z1h Z2h . . . Zhh


⇒

RSS (s = 1)

Z11,Z22, . . . ,Zhh

4.2 MLEs under RSS Method

Suppose that Zaq be the order statistics (OS) of a-th sample (a = 1,2, ..,hz) in the q-th cycle (q = 1,2, ..,sz) from the
strength random variable follows IPHLD (υ1,ϑ). Similarly, let Wbl be the OS of b-th sample (b = 1,2, ..,hw) in the l-th
cycle (l = 1,2, ..,sw) from the stress random variable follows the IPHLD (υ2,ϑ). Here hz and hw are the set sizes, sz and
sw are the cycles numbers, the sample size of strength is M•

1 = hz × sz and the sample size of stress is M•
2 = hw × sw.

It should be noted that if the ranking of the observations is perfect, then according to PDF of Zaq and Wbl , they are
exactly the PDF of a-th and b-th ordered statistics, respectively. For instance, the PDF of Zaq is given by:

fZaq(zaq) =
hz!

(a−1)!(hz −a)!
f (zaq) [F(zaq)]

a−1 [1−F(zaq)]
hz−a

=
hz!

(a−1)!(hz −a)!
2υ1ϑz−ϑ−1

aq eυ1z−ϑ
aq

(1+ eυ1z−ϑ
aq )2

[
2

1+ eυ1z−ϑ
aq

]a−1 [
1− 2

1+ eυ1z−ϑ
aq

]hz−a

.

It should be mentioned that the PDF of Wbl is obtained in a similar way. Therefore, we do not reproduce it here for the
sake of brevity. The likelihood function, without constant, based on RSS is:

lRSS(υ1,υ2,ϑ |z ) =
sz

∏
q=1

hz

∏
a=1

2υ1ϑz−ϑ−1
aq eυ1z−ϑ

aq

(1+ eυ1z−ϑ
aq )2

[
2

1+ eυ1z−ϑ
aq

]a−1
[

eυ1z−ϑ
aq −1

1+ eυ1z−ϑ
aq

]hz−a

×
sw

∏
l=1

hw

∏
b=1

2υ2ϑw−ϑ−1
bl eυ2w−ϑ

bl

(1+ eυ2w−ϑ

bl )2

[
2

1+ eυ2w−ϑ

bl

]b−1
[

eυ2w−ϑ

bl −1

1+ eυ2w−ϑ

bl

]hw−b

.

(18)

Then the log-likelihood function, sayl• based on RSS is given by
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log l• = M•
1 log(υ1ϑ)+

sz

∑
q=1

hz

∑
a=1

[
υ1z−ϑ

aq − (ϑ +1) logzaq

− (hz +1) log
(

1+ eυ1z−ϑ
aq
)
− (hz −a) log

(
eυ1z−ϑ

aq −1
)]

+M•
2 log(υ2ϑ)+

sw

∑
l=1

hw

∑
b=1

[
υ2w−ϑ

bl − (ϑ +1) logwbl

− (hw +1) log
(

1+ eυ2w−ϑ

bl

)
− (hw −b) log

(
eυ2w−ϑ

bl −1
)]

.

(19)

The first partial derivatives of log-likelihood (19) with respect to ϑ ,υ1,and υ2 respectively, are given by

∂ log l•

∂ϑ
=

M•
1

ϑ
−

sz

∑
q=1

hz

∑
a=1

[
logzaq +υ1z−ϑ

aq logzaq

−
(hz +1)υ1z−ϑ

aq logzaq

1+ e−υ1z−ϑ
aq

−
(hz −a)υ1z−ϑ

aq logzaq

1− e−υ1z−ϑ
aq

]

+
M•

2
ϑ

−
sw

∑
l=1

hw

∑
b=1

[
logwbl +υ2w−ϑ

bl logwbl

−
(hw +1)υ2w−ϑ

bl logwbl

1+ e−υ2w−ϑ

bl
−

(hw −b)υ2w−ϑ

bl logwbl

1− e−υ2w−ϑ

bl

]
,

(20)

∂ log l•

∂υ1
=

M•
1

υ1
+

sz

∑
q=1

hz

∑
a=1

[
z−ϑ

aq −
(hz +1)z−ϑ

aq

1+ e−υ1z−ϑ
aq

−
(hz −a)z−ϑ

aq

1− e−υ1z−ϑ
aq

]
, (21)

∂ log l•

∂υ2
=

M•
2

υ2
+

sw

∑
l=1

hw

∑
b=1

[
w−ϑ

bl −
(hw +1)w−ϑ

bl

1+ e−υ2w−ϑ

bl
−

(hw −b)w−ϑ

bl

1− e−υ2w−ϑ

bl

]
. (22)

Since the likelihood equations (20)–(22) cannot have explicit solutions, we must use iterative techniques to determine the
MLE υ̂RSS

1 , υ̂RSS
2 , andϑ̂ RSS of υ1,υ2,and ϑ . . The likelihood equations were solved using the Newton–Raphson

algorithm implemented in R (R Core Team). Numerical derivatives and the Hessian were computed when needed using
the numDeriv package. Then, by incorporating the MLEυ̂RSS

1 , and υ̂RSS
2 , into (17), the MLE η̂RSS of η , based on RSS,

is obtained as:

η̂
RSS =

∞

∑
j1, j2=0

(−1) j1+ j2( j1 +1)4υ̂RSS
1

υ̂RSS
1 ( j1 +1)+ υ̂RSS

2 j2
.

4.2 MLEs under SRS Method
Suppose that Z1,Z2, ...,ZM•

1
, be an SRS of size M•

1 taken form IPHLD (υ1,ϑ), and W1,W2, ...,WM•
2

be an SRS of size
M•

2 taken form IPHLD (υ2,ϑ), where we assume that both stress and strength samples are independent. To calculate the
MLE η̂SRS of η , we obtain at the first the MLE υ̂SRS

1 , υ̂SRS
2 and ϑ̂ SRS of υ1,υ2, and ϑ . The likelihood function of the

observed sample is as follows:

lSRS(υ1,υ2,ϑ |z ) =
M•

1

∏
j=1

2υ1ϑz−ϑ−1
j eυ1z−ϑ

j

(1+ eυ1z−ϑ

j )2

M•
2

∏
k=1

2υ2ϑw−ϑ−1
k eυ2w−ϑ

k

(1+ eυ2w−ϑ

k )2
. (23)
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The joint log likelihood function of the observed sample is

logℓ•1 = M•
1 log(2υ1ϑ)+M•

2 log(2υ2ϑ)

+
M•

1

∑
j=1

[
υ1z−ϑ

j − (ϑ +1) logz j −2log(1+ eυ1z−ϑ

j )
]

+
M•

2

∑
k=1

[
υ2w−ϑ

k − (ϑ +1) logwk −2log(1+ eυ2z−ϑ

k )
]
.

The first partial derivatives of log-likelihood with respect to ϑ ,υ1,and υ2 , respectively, are given by

∂ logℓ•1
∂ϑ

=
M•

1 +M•
2

ϑ
−

M•
1

∑
j=1

[
logz j +υ1z−ϑ

j logz j −
2υ1z−ϑ

j logz j

(1+ e−υ1z−ϑ

j )

]
−

M•
2

∑
k=1

[
logwk +υ2w−ϑ

k logwk −
2υ2w−ϑ

k logwk

(1+ e−υ2w−ϑ

k )

]
,

(24)
∂ logℓ•1

∂υ1
=

M•
1

υ1
+

M•
1

∑
j=1

[
z−ϑ

j −
2z−ϑ

j

1+ e−υ1z−ϑ

j

]
, (25)

∂ logℓ•1
∂υ2

=
M•

2
υ2

+
M•

2

∑
k=1

[
w−ϑ

k −
2w−ϑ

k

1+ e−υ2w−ϑ

k

]
. (26)

Equations (24)–(26) have no closed form solution. Consequently, numerical techniques are used to determine the MLEs
ϑ̂ RSS,υ̂SRS

1,and υ̂SRS
2,of ϑ ,υ1,and υ2. The likelihood equations were solved using the Newton–Raphson algorithm

implemented in R (R Core Team). Numerical derivatives and the Hessian were computed when needed using the
numDeriv package. After that, by including the MLE υ̂SRS

1 ,and υ̂SRS
2 into (17), the MLE η̂SRS ofη ,based on RSS, is

obtained.

5 Bayesian Estimator of η

Here, we look at the BE of the SSR under SRS and RSS. In order to derive the BEs, prior distributions are necessary. For
a particular Bayesian estimation problem, Arnold and Press [54] mentioned that there is no exact procedure for choosing
priors.

5.1 Bayesian Estimators under RSS

Here, we investigate this estimation problem by assuming gamma prior distributions. We selected gamma priors due to
their flexible nature; they also include non-informative priors as a particular case. Assuming that the parameters υ1,υ2,
and ϑ have gamma distributions with the following PDF

gr(υr) =
β αr

r

Γ (αr)
υ

αr−1
r e−βrυr , βr,αr,υr > 0, r = 1,2,

g3(ϑ) =
β

α3
3

Γ (α3)
ϑ

α3−1e−β3ϑ , β3,α3,ϑ > 0.

The joint prior of υ1,υ2, and ϑ is given by:

g∗(υ1,υ2,ϑ) ∝ υ
α1−1
1 υ

α2−1
2 ϑ

α3−1e−(β1υ1+β2υ2+β3ϑ). (27)

Thus, the joint posterior distribution of υ1,υ2 and ϑ , based on RSS, is produced as follows by employing the likelihood
function (18) and the joint prior distribution (27),

Π (υ1,υ2,ϑ |data ) =
lRSS(υ1,υ2,ϑ |z )g∗(υ1,υ2,ϑ)∫

lRSS(υ1,υ2,ϑ |z )g∗(υ1,υ2,ϑ)d(υ1υ2ϑ)
. (28)

We suggest the MCMC approach to determine the BEs of η , as the posterior PDF in (28) cannot be reduced analytically
to a closed form.
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5.2 Hyper-parameter determination

We choose informative gamma priors for the Bayesian analysis by matching the first two moments of the priors to
empirical moments of MLEs obtained from a collection of k auxiliary samples (as in Dey et al. [55]). Concretely, let

¯̂
ϑ =

1
k

k

∑
j=1

ϑ̂
( j), ¯̂υ1 =

1
k

k

∑
j=1

υ̂
( j)
1 , ¯̂υ2 =

1
k

k

∑
j=1

υ̂
( j)
2 ,

denote the sample means of the k MLEs, and let the corresponding unbiased sample variances be

s2
ϑ =

1
k−1

k

∑
j=1

(
ϑ̂

( j)− ¯̂
ϑ

)2
, s2

υ1
=

1
k−1

k

∑
j=1

(
υ̂
( j)
1 − ¯̂

θ1

)2
, s2

υ2
=

1
k−1

k

∑
j=1

(
υ̂
( j)
2 − ¯̂υ2

)2
.

Adopting the Gamma(α,β ) parameterization (so that E[Gamma(α,β )] = α/β and Var[Gamma(α,β )] = α/β 2), we
match the prior mean and variance to the empirical moments. Solving the two moment equations for each parameter yields
the closed-form estimates

α1 =
¯̂

ϑ

s2
ϑ

, β1 =
¯̂

ϑ 2

s2
ϑ

,

α2 =
¯̂υ1

s2
υ1

, β2 =
¯̂υ 2
1

s2
θ1

,

α3 =
¯̂υ2

s2
υ2

, β3 =
¯̂υ 2
2

s2
υ2

.

(29)

5.3 The Method of MCMC

We examine the MCMC approach in this subsection in order to determine the BE of η . Equation (28) provides the joint
posterior density, which may be expressed as

Π (υ1,υ2,ϑ |data ) ∝ υ
α1+M•

1−1
1 υ

α2+M•
2−1

2 ϑ α3+M•
1+M•

2−1e−(β1υ1+β2υ2+β3ϑ)

×e∑
sz
q=1 ∑

hz
a=1[υ1z−ϑ

aq −(ϑ+1) logzaq]−∑
sz
q=1 ∑

hz
a=1(1+hz) log(1+eυ1z−ϑ

aq )+∑
sz
q=1 ∑

hz
a=1(a−hz) log(eυ1z−ϑ

aq −1)

×e∑
sw
l=1 ∑

hw
b=1[υ2w−ϑ−1

bl −(ϑ+1) logwbl]−∑
sw
l=1 ∑

hw
b=1(1+hw) log(1+eυ2w−ϑ

bl )+∑
sw
l=1 ∑

hw
b=1(b−hw) log(eυ2w−ϑ

bl −1).

(30)

The conditional posterior density of υ1 given ϑ and data may be obtained from (30) as follows:

Π1 (υ1 |ϑ ,data ) ∝ υ
α1+M•

1−1
1 exp

{
−υ1

[
β1 +

sz

∑
q=1

hz

∑
a=1

z−ϑ
aq

]
−

sz

∑
q=1

hz

∑
a=1

(1+hz) log(1+ eυ1z−ϑ
aq )

+
sz

∑
q=1

hz

∑
a=1

(a−hz) log(eυ1z−ϑ
aq −1)

}
.

(31)

The conditional posterior density of υ2 given ϑ and data is:

Π2(υ2 | ϑ ,data) ∝ υ
α2+M•

2−1
2 exp

{
−υ2

(
β2 +

sw

∑
l=1

hw

∑
b=1

z−ϑ

bl

)

−
sw

∑
l=1

hw

∑
b=1

(1+hw) log
(

1+ eυ2w−ϑ

bl

)
+

sw

∑
l=1

hw

∑
b=1

(b−hw) log
(

eυ2w−ϑ

bl −1
)}

.

(32)
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The conditional posterior density of ϑ given υ1,υ2 and data is:

Π3 (ϑ |υ1,υ2,data ) ∝ ϑ
α3+M•

1+M•
2−1 exp

{
sz

∑
q=1

hz

∑
a=1

[
υ1z−ϑ

aq −β3ϑ − (ϑ +1) logzaq

]
−

sz

∑
q=1

hz

∑
a=1

(1+hz) log(1+ eυ1z−ϑ
aq )

+
sz

∑
q=1

hz

∑
a=1

(a−hz) log(eυ1z−ϑ
aq −1)

}

×exp

{
sw

∑
l=1

hw

∑
b=1

[
υ2w−ϑ−1

bl − (ϑ +1) logwbl

]
−

sw

∑
l=1

hw

∑
b=1

(1+hw) log(1+ eυ2w−ϑ

bl )+
sw

∑
l=1

hw

∑
b=1

(b−hw) log(eυ2w−ϑ

bl −1)

}
(33)

To create samples from conditional posterior distributions, we employ the Metropolis-Hastings (M-H) method within the
Gibbs sampling process. Let υ

(t)
1 ,υ

(t)
2 , and ϑ (t) for t = 1, 2,..., N be the observations produced by Equations (31), (32),

and (33), respectively, after starting values υ
(0)
1 ,υ

(0)
2 , and ϑ (0) are established. Once the first M iterations are taken as the

burn-in time, the Bayes estimators of η under SQEL and LLF are provided by:

η̂SQEL =
1

N −M

N

∑
j=M+1

η̂
(t), η̂LLF =

−1
λ

log

[
1

N −M

N

∑
j=M+1

e−λη̂(t)

]
,

where,

η̂
(t) =

∞

∑
j1, j2=0

(−1) j1+ j2( j1 +1)4υ̂
(t)
1

υ̂
(t)
1 ( j1 +1)+ υ̂

(t)
2 j2

,

5.4 Bayesian Estimators under SRS

In this sub-section, the BEs of η are obtained using SRS. Suppose that Z1,Z2, ...,ZM•
1
, be SRS of size M•

1 , where
j=1,2,. . . M•

1 drawn from IPHLD (υ1,ϑ). Also, let W1,W2, ...,WM•
2
, be SRS of size M•

2 , where k=1,2,.., M•
2 drawn from

IPHLD (υ2,ϑ). Then, the joint posterior distribution of υ1,υ2 and ϑ , based on SRS, is produced by utilizing the
likelihood function (23) and the joint prior distribution (27),

Π
∗(υ1,υ2,ϑ |data) ∝

υ
α1+M•

1−1
1 υ

α2+M•
1−1

2 ϑ
α3+M•

1+M•
2−1e−(β1υ1+β2υ2+β3ϑ)

× e
−∑

M•
1

j=1

[
(ϑ+1) logz j−υ1z−ϑ

j +2log(1+e
υ1z−ϑ

j )

]

× e
−∑

M•
2

k=1

[
(ϑ+1) logwk−υ2w−ϑ

k +2log(1+eυ2w−ϑ

k )

]
.

(34)

The conditional posterior density of υ1 given ϑ and data is as follows:

Π
∗
1 (υ1 | ϑ ,data) ∝ υ

α1+M•
1−1

1 exp

{
−β1υ1 +

M•
1

∑
j=1

[
υ1z−ϑ

j −2ln
(

1+ eυ1z−ϑ

j
)]}

The conditional posterior density of υ2 given ϑ and data is as follows:

Π
∗
2 (υ2 | ϑ ,data) ∝ υ

α2+M•
2−1

2 exp

{
−β2υ2 +

M•
2

∑
k=1

[
υ2w−ϑ

k −2ln
(

1+ eυ2z−ϑ

k

)]}
The conditional posterior density of ϑ given υ1,υ2, and data is as follows:

Π
∗
3 (ϑ |υ1,υ2,data ) ∝ ϑ

α3+M•
1+M•

2−1e−β3ϑ exp

{
−

M•
1

∑
j=1

[
(ϑ +1) logz j −υ1z−ϑ

j +2log(1+ eυ1z−ϑ

j )
]}

×exp

{
−

M•
2

∑
k=1

[
(ϑ +1) logwk −υ2w−ϑ

k +2log(1+ eυ2w−ϑ

k )
]}

.
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We use the M-H approach in the Gibbs sampling procedure to generate samples from conditional posterior
distributions (as discussed in the previous subsection). Also, the BEs of η under SQEL and LLF are obtained as similar
to the procedure defined above.

5.5 The MCMC implementation procedure.

Although the posterior distributions of model parameters do not admit closed forms, Bayesian inference can be carried
out using MCMC method. Below we provide a detailed, reproducible procedure used in this paper.

1. Posterior (up to normalizing constant). Derive the joint log-posterior (log likelihood + log prior) for the parameter
vector θθθ . If conditional distributions are not of standard form, sampling requires M–H steps.

2. Sampling algorithm (M-H within Gibbs).

1.Initialize M chains with different starting values θθθ
(0,m) for m = 1, . . . ,M (we used M = 3).

2.For iteration t = 1, . . . ,T and for each chain m:
(a)For each parameter component θ j:

–If the full conditional of θ j is standard, draw θ
(t)
j from it (Gibbs step).

–Otherwise, propose θ ∗
j ∼ q j(· | θ

(t−1)
j ) (we used a normal random-walk on an appropriate transformed scale, e.g.,

log scale for positive parameters) and accept/reject with M–H acceptance probability

α = min

{
1,

π(θ ∗
j | rest)q j(θ

(t−1)
j | θ ∗

j )

π(θ
(t−1)
j | rest)q j(θ ∗

j | θ
(t−1)
j )

}
,

where π(· | rest) denotes the conditional posterior density (up to normalizing constant).

3. Practical tuning and run settings. We recommend (and used) the following practical settings: number of iterations
T = 12,000, burn-in B= 2,000, no thinning by default (unless autocorrelation is very large). Proposal variances were tuned
in pilot runs to achieve acceptance rates in the range 20%–40% for random-walk MH steps.

5. Estimation of derived quantity η = P(W < Z). For the stress–strength reliability η that is a deterministic function
of parameters η = η(θθθ), compute η(t) = η(θθθ (t)) at each posterior draw θθθ

(t). Then obtain:

–Bayes estimator for η under squared-error loss: posterior mean η̂Bayes =
1
N ∑t η(t).

–Posterior median for η (if using absolute loss).

6 Simulation Study

This section presents an extensive simulation study to compare the performance of reliability estimates derived from RSS
and their counterparts from SRS. The comparison employs Bias, mean squared error (MSE), and relative efficiency as
evaluation criteria. In the simulation setup, set sizes (h) and the number of cycles (s) are chosen as (hz, hw) = (2, 2), (3, 3),
(4, 4), and (6, 6), with s = 3 and 6, respectively. Consequently, sample sizes for RSS samples are calculated as M•

1 = hz×sz

and M•
2 = hw × sw. Additionally, sample sizes for SRS samples are determined as

(
M•

1 ,M•
2
)

= (6, 6), (9, 9), (12, 12), (18,
18), (12, 12), (18, 18), (24, 24), and (36, 36).

The set size k plays a central role in ranked set sampling. In practice, larger values of k make visual or expert ranking
more difficult and therefore increase the probability of ranking errors; Wolfe [53] discusses this empirical limitation and
recommends keeping set sizes modest (typically k ≤ 5) to avoid excessive ranking error. For this reason (and following
classical studies such as Dell and Clutter [56], our simulations and theoretical comparisons focus on small set sizes and
assume perfect ranking. This assumption allows us to isolate the statistical gains attributable to the RSS design itself.
The parameter values are chosen as(υ1,υ2,ϑ)= (1.2, 0.6,1.5), (3, 1.2, 2), (3, 1.8, 2), where the true values of system
reliability η are 0.693, 0.745, and 0.646. We generate 5000 random samples from IPHLD (υ1,ϑ) and IPHLD
(υ2,ϑ)distributions. The estimated reliability is evaluated using criteria such as average Bias. MSE. The efficiency
measures of RSS concerning SRS are defined as:

E1 =
MSE(η̂SRS)MLE

MSE(η̂RSS)MLE
,E2 =

MSE(η̂SRS)SQLF

MSE(η̂RSS)SQLF
,E3 =

MSE(η̂SRS)LLF−I

MSE(η̂RSS)LLF−I
,E4 =

MSE(η̂SRS)LLF−II

MSE(η̂RSS)LLF−II
.
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For Bayesian estimation, the SQEL and LLF with two weights as –1.25 and 1.25, which can be denoted as LLF-I, and
LLF-II, respectively. The outcomes of the simulation efficiency (E1, E2, E3, E4) are detailed in Table 1. The outcomes of
the simulation investigation (Bias, and MSE) are detailed in Tables 2–4. Based on Tables 1 through 5, we can draw the
following conclusions:

1.Tables 1 through 4 indicate that the parameter and reliability estimates using the RSS scheme demonstrate greater
efficiency compared to those obtained through SRS in the majority of cases.

2.Tables 2 to 4 suggest that the efficiency of parameter and reliability estimates utilizing Bayesian estimation methods
surpasses those obtained through MLEs in most instances.

3.When it comes to Bayesian estimation, utilizing the LLF with positive weights outperforms Bayesian estimation
relying on SQEL and LLF-I with negative weights.

4.As the set sizes (h) and the number of cycles (s) increase, Bias and MSE decrease accordingly.
5.In general, there is compelling evidence suggesting that the proposed methods utilizing RSS exhibit superior

performance for point estimation of parameters and η .

Tables 1 to 5 collectively summarize the estimation, simulation and goodness-of-fit results. Table 1 reports stable
MLEs with reasonably small standard errors indicating that the IPHLD captures key features of the data. Table 2 shows
that BEs tend to yield smaller MSEs in small-sample settings while MLE performance becomes comparable as sample
size increases. Table 3 indicates interval coverage is close to nominal and interval lengths decrease with larger samples.
Table 4 demonstrates that RSS-based estimators improve efficiency over SRS, notably at moderate sample sizes; and
Table 5 presents dataset-specific MLEs and Kolmogorov-Smirnov (KS) statistics, where the preferred model for each
dataset is identified by the smallest KS value and is consistent with the empirical parameter ranges.

Table 2: Bias, MSE for ML and Bayesian estimation υ1 = 1.2, υ2 = 0.6, ϑ = 1.5

MLE SQLF LLF-I LLF-II
s h Bias MSE Bias MSE Bias MSE Bias MSE

3

SRS

2

ϑ 0.1324 0.152 0.0708 0.106 0.1255 0.1304 0.0167 0.0887
υ1 0.0786 0.222 0.055 0.1468 0.1335 0.1879 -0.0125 0.1168
υ2 0.0551 0.0728 0.0708 0.0695 0.1106 0.0894 0.0335 0.0544
η -0.0025 0.0123 -0.0191 0.0115 -0.0192 0.0119 -0.0196 0.0111

3

ϑ 0.0722 0.0681 0.042 0.0507 0.0675 0.0567 0.0166 0.0461
υ1 0.0582 0.1217 0.0468 0.0789 0.0801 0.0884 0.0136 0.0717
υ2 0.0145 0.0339 0.0334 0.0324 0.0512 0.0365 0.0161 0.0291
η 0.0008 0.007 -0.0069 0.0064 -0.0072 0.0065 -0.0068 0.0063

4

ϑ 0.0406 0.0487 0.0113 0.0185 0.0192 0.0189 0.0034 0.0183
υ1 0.056 0.0836 0.0107 0.0244 0.0203 0.0252 0.001 0.0239
υ2 0.0123 0.0257 0.0185 0.015 0.0257 0.0159 0.0113 0.0142
η -0.0007 0.0053 -0.006 0.0035 -0.0068 0.0035 -0.0051 0.0035

6

ϑ 0.0317 0.0336 0.0028 0.0126 0.0082 0.0128 -0.0026 0.0126
υ1 0.0115 0.0522 0.0008 0.0158 0.0078 0.0161 -0.0061 0.0156
υ2 0.0116 0.0194 0.0109 0.0098 0.0155 0.0101 0.0064 0.0095
η -0.0006 0.0042 -0.0046 0.0022 -0.0049 0.0022 -0.0042 0.0022

SRS

2

ϑ 0.1028 0.1162 0.042 0.0692 0.0751 0.0794 0.1028 0.0619
υ1 0.0553 0.1022 0.0588 0.0802 0.0952 0.0939 0.0553 0.0696
υ2 0.0101 0.037 0.0353 0.0313 0.0532 0.0352 0.0101 0.0283
η 0.0035 0.0075 -0.0056 0.0066 -0.0057 0.0067 0.0035 0.0065

3

ϑ 0.0353 0.037 0.0226 0.0285 0.0136 0.0303 0.0353 0.0271
υ1 0.0308 0.0402 0.0256 0.0295 0.0393 0.0314 0.0308 0.028
υ2 0.0094 0.013 0.0145 0.0118 0.0216 0.0124 0.0094 0.0112
η 0.0007 0.0028 -0.0019 0.0027 -0.002 0.0027 0.0007 0.0027

4

ϑ 0.0091 0.0218 -0.0092 0.0096 0.0023 0.0097 0.0081 0.0095
υ1 0.0037 0.0203 0.0113 0.0093 0.0151 0.0096 0.0294 0.0091
υ2 0.0081 0.0068 0.0058 0.0049 0.0084 0.005 0.0081 0.0048
η 0.0006 0.0015 -0.0003 0.0011 -0.0006 0.0011 0.0006 0.0011

6

ϑ -0.0082 0.0125 -0.0082 0.0064 -0.0021 0.0063 -0.0072 0.0061
υ1 0.0028 0.0138 0.009 0.0064 0.0115 0.0065 0.0283 0.0063
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Table 2 – Continued from previous page
MLE SQLF LLF-I LLF-II

υ2 0.0072 0.0047 0.0049 0.0032 0.0075 0.0033 0.0072 0.0031
η -0.0005 0.0011 -0.0002 0.0008 -0.0005 0.0008 -0.0005 0.0008

6

SRS

2

ϑ 0.0455 0.0533 0.0325 0.0519 0.0667 0.0593 -0.0018 0.0474
υ1 0.0522 0.1053 0.0547 0.0887 0.108 0.1109 0.003 0.0745
υ2 0.0316 0.0344 0.0493 0.0313 0.0732 0.0374 0.027 0.0268
η -0.0062 0.0058 -0.0117 0.0057 -0.0107 0.0058 -0.0132 0.0056

3

ϑ 0.0117 0.0294 0.0087 0.0293 0.0252 0.0314 -0.0013 0.0278
υ1 0.0239 0.0459 0.0215 0.0413 0.0454 0.046 -0.0021 0.0381
υ2 0.0097 0.0153 0.0165 0.0149 0.0278 0.0161 0.0057 0.014
η -0.0012 0.0034 -0.0042 0.0033 -0.004 0.0034 -0.0046 0.0033

4

ϑ 0.0041 0.0214 -0.0015 0.014 0.0049 0.0142 -0.0011 0.0138
υ1 0.0229 0.0321 0.0108 0.0182 0.019 0.0188 0.0021 0.0178
υ2 0.0081 0.0107 0.0106 0.0078 0.0155 0.0082 0.0051 0.0076
η -0.0007 0.0023 -0.0028 0.0018 -0.0031 0.0018 -0.0026 0.0018

6

ϑ -0.0032 0.0165 -0.0015 0.0106 -0.0038 0.0105 -0.0009 0.0102
υ1 0.0227 0.0245 0.0097 0.0139 0.0155 0.0143 0.0015 0.0137
υ2 0.0074 0.01 0.0103 0.0076 0.0131 0.008 0.0042 0.0073
η -0.0006 0.0022 -0.0027 0.0016 -0.003 0.0016 -0.0019 0.0016

SRS

2

ϑ 0.0192 0.0329 0.0059 0.0302 0.0257 0.032 0.0159 0.0292
υ1 0.0493 0.0485 0.0476 0.0417 0.072 0.0474 0.0493 0.0376
υ2 0.0247 0.0162 0.0337 0.0156 0.0457 0.0175 0.0247 0.014
η -0.0023 0.0036 -0.0059 0.0034 -0.0058 0.0035 -0.0023 0.0034

3

ϑ -0.0178 0.0146 -0.0051 0.0141 -0.0069 0.0148 -0.0148 0.0135
υ1 0.041 0.0193 0.0358 0.0189 0.0458 0.0203 0.041 0.0177
υ2 0.023 0.0075 0.025 0.0074 0.0296 0.0079 0.023 0.0071
η -0.0017 0.0015 -0.0036 0.0015 -0.0034 0.0015 -0.0017 0.0015

4

ϑ -0.0121 0.0095 -0.005 0.0067 -0.0052 0.0066 -0.0108 0.0061
υ1 0.0318 0.0096 0.0211 0.0069 0.0242 0.0072 0.0318 0.0067
υ2 0.0183 0.0042 0.0173 0.0034 0.0191 0.0035 0.0183 0.0033
η -0.0012 0.0008 -0.0029 0.0007 -0.003 0.0007 -0.0012 0.0007

6

ϑ -0.0082 0.0072 -0.0016 0.0047 -0.0041 0.0046 -0.0102 0.0046
υ1 0.0302 0.006 0.0122 0.0044 0.0236 0.0046 0.0302 0.0043
υ2 0.0171 0.0028 0.0132 0.0019 0.0144 0.002 0.0171 0.0019
η -0.0006 0.0006 -0.0012 0.0005 -0.0013 0.0005 -0.0006 0.0005

Table 3: Bias, MSE for ML and Bayesian estimation υ1 = 3, υ2 = 1.2, ϑ = 2

MLE SQLF LLF-I LLF-II
s h Bias MSE Bias MSE Bias MSE Bias MSE

3

SRS

2

ϑ 0.1705 0.2475 0.087 0.1588 0.1711 0.2054 0.0036 0.1304
υ1 0.5533 2.4573 0.1174 0.4216 0.2506 0.5386 -0.0191 0.3458
υ2 0.1047 0.2258 0.0875 0.1524 0.1612 0.1981 0.0166 0.1209
η -0.0051 0.0111 -0.0109 0.0064 -0.0138 0.0066 -0.0086 0.0064

3

ϑ 0.099 0.1321 0.0394 0.08 0.0753 0.0891 0.0034 0.0739
υ1 0.3017 1.016 0.0671 0.1674 0.1292 0.1966 0.0054 0.1489
υ2 0.0842 0.1198 0.0707 0.084 0.1057 0.0959 0.0359 0.0744
η -0.005 0.0071 -0.0089 0.0035 -0.0106 0.0036 -0.0073 0.0034

4

ϑ 0.0541 0.0784 0.0032 0.0219 0.0128 0.0222 -0.0063 0.0218
υ1 0.2139 0.6101 0.0332 0.037 0.0466 0.0387 0.0198 0.0357
υ2 0.0543 0.0626 0.0156 0.024 0.0257 0.025 0.0054 0.0233
η -0.0021 0.0041 -0.0005 0.001 -0.0013 0.001 0.0004 0.001

6

ϑ 0.0108 0.0591 -0.0025 0.0166 0.004 0.0166 -0.009 0.0163
υ1 0.1195 0.3703 0.0159 0.0212 0.0237 0.0218 0.0081 0.0208
υ2 0.0461 0.0584 0.0093 0.0163 0.0157 0.0166 0.0029 0.0161
η -0.0018 0.0038 -0.0006 0.0007 -0.0011 0.0007 0 0.0007
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Table 3 – Continued from previous page
MLE SQLF LLF-I LLF-II

SRS

2

ϑ 0.1478 0.1984 0.0163 0.0537 0.0398 0.0569 0.1478 0.0519
υ1 0.3971 1.4486 0.019 0.0851 0.0476 0.0881 0.3971 0.0845
υ2 0.0528 0.1097 0.0191 0.0449 0.0407 0.0483 0.0533 0.0427
η 0.0036 0.007 -0.0038 0.002 -0.0044 0.002 0.0036 0.002

3

ϑ 0.0407 0.0816 0.0033 0.0245 0.013 0.0251 0.0407 0.0241
υ1 0.1807 0.4009 0.0188 0.0307 0.0307 0.0318 0.1807 0.0301
υ2 0.0513 0.0448 0.0173 0.0192 0.0353 0.0201 0.0534 0.0185
η -0.0021 0.0031 -0.0037 0.0008 -0.0043 0.0008 -0.0021 0.0008

4

ϑ -0.0211 0.0355 -0.0022 0.0053 -0.0034 0.0053 -0.0211 0.0054
υ1 0.0779 0.1662 0.0059 0.0054 0.0079 0.0054 0.0779 0.0053
υ2 0.0279 0.0175 0.0029 0.0045 0.0047 0.0045 0.0279 0.0045
η -0.0019 0.0013 -0.0032 0.0002 -0.0025 0.0002 -0.0019 0.0002

6

ϑ -0.0179 0.0222 -0.0007 0.0032 0.0005 0.0032 -0.0179 0.0032
υ1 0.0685 0.108 0.0021 0.0035 0.0033 0.003 0.0768 0.003
υ2 0.0235 0.0113 -0.0023 0.0027 -0.0023 0.0027 0.0235 0.0027
η 0.0012 0.0009 0.0008 0.0001 0.0007 0.0001 0.0002 0.0001

6

SRS

2

ϑ 0.08 0.103 0.0534 0.0893 0.1085 0.1066 -0.0029 0.08
υ1 0.2444 0.8404 0.0763 0.2673 0.1907 0.3288 -0.0378 0.2404
υ2 0.0537 0.0727 0.0636 0.0703 0.1147 0.0881 0.0148 0.0593
η -0.0018 0.0048 -0.0093 0.0037 -0.0099 0.0037 -0.0091 0.0036

3

ϑ 0.0787 0.0489 -0.0084 0.0433 0.0206 0.0454 -0.0028 0.0426
υ1 0.1014 0.3088 0.0254 0.1162 0.0736 0.1263 -0.0231 0.1118
υ2 0.0385 0.0481 0.0393 0.0436 0.0641 0.0491 0.0135 0.0395
η -0.0017 0.0031 -0.0065 0.002 -0.0073 0.0021 -0.0057 0.002

4

ϑ -0.07 0.0359 -0.0032 0.0208 -0.011 0.0204 -0.0027 0.0201
υ1 0.0243 0.1732 -0.0026 0.0303 0.0103 0.0303 -0.0114 0.0301
υ2 0.0377 0.032 0.0158 0.017 0.0238 0.0179 0.0077 0.0163
η -0.0016 0.0021 -0.0031 0.0008 -0.0037 0.0008 -0.0025 0.0008

6

ϑ -0.0134 0.0284 -0.0021 0.0141 -0.006 0.0141 -0.0022 0.0138
υ1 0.0235 0.1442 0.0024 0.0192 0.0091 0.0194 -0.0032 0.0192
υ2 0.0355 0.0227 0.0146 0.0113 0.0237 0.0117 0.0051 0.011
η -0.0011 0.0015 -0.0028 0.0005 -0.0035 0.0005 -0.0021 0.0005

SRS

2

ϑ 0.0328 0.0651 -0.0043 0.0391 0.0147 0.0401 0.0328 0.0389
υ1 0.1651 0.4058 0.0041 0.0683 0.0313 0.0699 0.1651 0.0671
υ2 0.0418 0.0457 0.0261 0.0328 0.0429 0.0355 0.0418 0.0308
η -0.0015 0.0034 -0.005 0.0015 -0.0059 0.0015 -0.0015 0.0015

3

ϑ -0.0143 0.0301 -0.0041 0.0176 -0.0144 0.0173 -0.0143 0.0176
υ1 0.0637 0.1266 0.0041 0.0268 0.0277 0.0276 0.0637 0.0263
υ2 0.0174 0.0156 0.0121 0.0131 0.0182 0.0135 0.0174 0.0127
η -0.0006 0.0012 -0.0011 0.0006 -0.0014 0.0006 -0.0006 0.0005

4

ϑ -0.0137 0.019 -0.0039 0.0048 -0.0104 0.0048 -0.0137 0.0047
υ1 0.0376 0.0741 0.004 0.0053 0.0119 0.0054 0.0376 0.0053
υ2 0.0163 0.0086 0.0088 0.0037 0.0103 0.0037 0.0153 0.0036
η -0.0005 0.0007 -0.0009 0.0002 -0.001 0.0002 -0.0005 0.0001

6

ϑ -0.0124 0.0126 -0.0035 0.003 -0.0091 0.003 -0.0124 0.0029
υ1 0.0289 0.0468 0.001 0.0031 0.0023 0.0031 0.0289 0.0028
υ2 0.0122 0.0062 0.0078 0.0026 0.0088 0.0026 0.0122 0.0025
η -0.0004 0.0005 -0.0008 0.0001 -0.0008 0.00009 -0.0003 0.0001

Table 4: Bias, MSE, LACI, CP, and LCCI for MLE and Bayesian estimation: υ1 = 3, υ2 = 1.8, ϑ = 2

MLE SQLF LLF-I LLF-II
s h Bias MSE Bias MSE Bias MSE Bias MSE

3

SRS

2

ϑ 0.1959 0.3288 0.0922 0.1783 0.1767 0.2239 0.0094 0.1502
υ1 0.5115 2.1954 0.0883 0.4022 0.2262 0.4991 -0.0495 0.3503
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Table 4 – Continued from previous page
MLE SQLF LLF-I LLF-II

υ2 0.2257 0.6355 0.1023 0.25 0.2076 0.3247 -0.044 0.2017
η -0.0017 0.0138 -0.0288 0.0072 -0.0113 0.0073 -0.0064 0.0072

3

ϑ 0.082 0.1288 0.03 0.0835 0.0677 0.0934 -0.0075 0.0772
υ1 0.2979 1.0182 0.0776 0.186 0.1375 0.2146 0.0172 0.1657
υ2 0.1229 0.2055 0.0678 0.0969 0.1114 0.1117 0.0247 0.0876
η -0.0017 0.008 -0.0204 0.0033 -0.0054 0.0033 -0.0034 0.0033

4

ϑ 0.0338 0.0738 -0.0042 0.0254 0.0602 0.0256 -0.007 0.0255
υ1 0.1913 0.5848 0.0157 0.035 0.0273 0.0366 0.004 0.0338
υ2 0.0955 0.1301 0.0199 0.0254 0.0303 0.0264 0.0095 0.0247
η -0.0013 0.0051 -0.0163 0.0008 -0.0021 0.0008 -0.0011 0.0008

6

ϑ 0.0181 0.0585 -0.0037 0.0169 -0.0102 0.0165 -0.0065 0.0157
υ1 0.0851 0.3629 0.0067 0.0234 0.0087 0.0234 -0.0037 0.0214
υ2 0.0768 0.1069 0.0103 0.0198 0.0181 0.0205 0.0024 0.0193
η -0.0011 0.0048 -0.0148 0.0006 -0.0019 0.0006 -0.001 0.0006

SRS

2

ϑ 0.1271 0.1667 0.0245 0.0552 0.048 0.0595 0.1271 0.0523
υ1 0.4012 1.3552 0.0231 0.0747 0.053 0.0759 0.4012 0.0681
υ2 0.1152 0.2443 0.028 0.0593 0.0453 0.0632 0.1152 0.0572
η 0.0057 0.0093 -0.0083 0.0018 -0.0019 0.0017 0.0057 0.0018

3

ϑ 0.0535 0.0715 0.0125 0.0247 0.0102 0.0251 0.0535 0.0246
υ1 0.2045 0.5085 0.018 0.0348 0.0307 0.0366 0.2045 0.0334
υ2 0.0693 0.08 0.0226 0.0236 0.0327 0.0249 0.0693 0.0227
η 0.0017 0.0041 -0.0019 0.0008 -0.0018 0.0008 0.0017 0.0008

4

ϑ -0.0216 0.0337 -0.0016 0.0041 0.0011 0.0041 -0.0216 0.0042
υ1 0.0924 0.1674 0.0091 0.0053 0.0031 0.0054 0.0924 0.0053
υ2 0.0514 0.0395 0.0056 0.0049 0.0074 0.0049 0.0514 0.0048
η -0.0015 0.0018 -0.0007 0.0003 -0.0008 0.0002 -0.0015 0.0001

6

ϑ -0.0136 0.0245 -0.0014 0.0032 -0.001 0.0032 -0.0136 0.0032
υ1 0.0779 0.1002 0.0009 0.0036 0.0026 0.0034 0.0779 0.0034
υ2 0.0304 0.025 0.0026 0.0033 0.0038 0.0033 0.0304 0.0033
η 0.0012 0.0011 0.0004 0.0001 -0.0003 0.0001 0.0012 0.0001

6

SRS

2

ϑ 0.0498 0.0886 0.0289 0.0733 0.0849 0.0868 -0.0254 0.0676
υ1 0.2258 0.8515 0.0752 0.3323 0.1988 0.4204 -0.0467 0.2844
υ2 0.0586 0.159 0.0611 0.1312 0.1362 0.1604 -0.0128 0.1153
η 0.0017 0.0074 -0.0056 0.0051 -0.0057 0.0051 -0.0055 0.0051

3

ϑ -0.0092 0.0502 -0.0125 0.041 0.0128 0.0425 -0.0238 0.0409
υ1 0.1034 0.3494 0.0227 0.1441 0.0747 0.1591 -0.0302 0.1351
υ2 0.0479 0.1003 0.0524 0.0761 0.0888 0.0871 0.0116 0.0682
η -0.0016 0.0041 -0.0047 0.0026 -0.0047 0.0027 -0.0046 0.0026

4

ϑ -0.0021 0.0327 -0.0102 0.0188 -0.0124 0.0185 -0.021 0.0179
υ1 0.0299 0.2249 0.0027 0.0304 0.0143 0.0308 -0.009 0.0303
υ2 0.0398 0.0599 0.0112 0.0228 0.0206 0.0235 0.0016 0.0224
η -0.0015 0.0029 -0.0015 0.0008 -0.0018 0.0008 -0.0011 0.0008

6

ϑ -0.0019 0.026 -0.0101 0.0132 -0.0123 0.0131 -0.0204 0.013
υ1 0.0235 0.1584 -0.0019 0.0196 0.0056 0.0196 -0.0089 0.0196
υ2 0.0358 0.0501 0.0092 0.0165 0.0154 0.0167 0.0013 0.0164
η -0.0012 0.0022 -0.0015 0.0006 -0.0018 0.0006 -0.0009 0.0005

SRS

2

ϑ 0.0381 0.0704 0.0215 0.0407 0.0198 0.0419 0.0381 0.0405
υ1 0.1576 0.4308 0.0129 0.0723 0.04 0.0755 0.1576 0.0708
υ2 0.0565 0.0887 0.0138 0.0439 0.0336 0.0454 0.0565 0.0434
η 0.0062 0.004 -0.0013 0.0016 -0.0018 0.0016 0.0062 0.0015

3

ϑ -0.0231 0.0322 -0.0162 0.0163 -0.0084 0.0162 -0.0092 0.0157
υ1 0.0757 0.1435 0.0124 0.0284 0.025 0.0294 0.0757 0.0278
υ2 0.0252 0.0332 0.0015 0.0179 0.0102 0.0184 0.0252 0.0177
η 0.0012 0.0015 0.0009 0.0006 0.0006 0.0006 0.0012 0.0006

4

ϑ -0.0203 0.0174 -0.0156 0.0041 -0.0082 0.004 -0.001 0.0039
υ1 0.0396 0.0781 0.0015 0.0052 0.0034 0.0052 0.0396 0.0052
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Table 4 – Continued from previous page
MLE SQLF LLF-I LLF-II

υ2 0.024 0.018 0.0013 0.0049 0.0074 0.0049 0.024 0.0048
η -0.0011 0.0009 -0.0007 0.0002 -0.0005 0.0002 -0.0011 0.0002

6

ϑ -0.0194 0.0126 -0.012 0.0031 -0.0071 0.0031 -0.0009 0.0029
υ1 0.0342 0.0442 0.0011 0.0034 0.003 0.0035 0.0342 0.0034
υ2 0.0205 0.012 0.0009 0.0029 0.0059 0.0029 0.0205 0.0028
η -0.0005 0.0005 -0.0005 0.0001 -0.0005 0.0001 -0.0005 0.0001

7 Data Application

In this segment, we examine eight authentic datasets to demonstrate the application of the proposed techniques.

1.First Dataset

The breaking strengths of jute fiber at two distinct gauge lengths are displayed as follows:
Z (length 10 mm) is “693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16, 671.49, 183.16,
257.44, 727.23, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93, 590.48, 212.13, 303.90,
506.60, 530.55, and 177.25”, and
W (length 20 mm) is 71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58, 578.62, 756.70,
594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16,
36.75, 244.53, 83.55”. These data sets have been used by Xia et al. [57] and Saraçoğlu et al. [58].
Second Dataset
This set of data involves rainfall recordings documented at the Los Angeles Civic Center spanning from 1943 to 2018, as
detailed by Nadar and Kizilaslan [59]. This dataset is structured as follows:
Z (rainfall in February) is “3.07, 8.65, 3.24, 1.52, 0.86, 1.29, 1.41, 1.67, 1.48, 0.63, 0.33, 2.98, 0.68, 0.59, 1.47, 6.46, 3.32,
2.26, 0.15, 11.57, 2.88, 0.23, 1.51, 0.11, 0.49, 8.03, 2.58, 0.67, 0.13, 7.98, 0.14, 3.54, 3.71, 0.17, 8.91, 3.06, 12.75, 1.48,
0.70, 4.37, 2.84, 6.10, 1.22, 1.72, 1.90, 3.12, 4.13, 7.16, 6.61, 3.21, 1.3, 4.94, 0.08, 13.68, 0.56, 5.54, 8.87, 0.29, 4.64,
4.89, 11.02, 2.37, 0.92, 1.64, 3.57, 4.27, 3.29, 0.16, 0.20, 3.58, 0.83, 0.79, 4.17, and 0.03”, and
W (rainfall in March) is “4.55, 2.47, 3.43, 3.66, 0.79, 3.07, 1.40, 0.87, 0.44, 6.14, 0.48, 2.99, 0.56, 1.02, 5.30, 0.31, 0.57,
1.10, 2.78, 1.79, 2.49, 0.53, 2.5, 3.34, 1.49, 2.36, 0.53, 2.70, 3.78, 4.83, 1.81, 1.89, 8.02, 5.85, 4.79, 4.10, 3.54, 8.37, 0.28,
1.29, 5.27, 0.95, 0.26, 0.81, 0.17, 5.92, 7.12, 2.74, 1.86, 6.98, 2.16, 4.06, 1.24, 2.82, 1.17, 0.32, 4.32, 1.47, 2.14, 2.87,
0.05, 0.01, 0.35, 0.48, 3.96, 1.75, 0.54, 1.18, 0.87, 1.60, 0.09, and 2.69”. This data set has been used by Pak et al. [60].

1.Third Dataset

This data set showcases empirical data sourced from Lawless [61]. These data sets entail failure times, measured in
minutes, from an experiment conducted on two varieties of electrical insulation. The experiment involved subjecting the
insulation to an incrementally rising voltage stress. Each type of insulation was tested twelve times, with the corresponding
failure times recorded. For the first type, denoted as ”W,” the failure times were observed as follows: “21.8, 70.7, 24.4,
138.6, 151.9, 75.3, 12.3, 95.5, 98.1, 43.2, 28.6, and 46.9”. Conversely, for the second type, denoted as “Z” the failure
times were: “219.3, 79.4, 86.0, 150.2, 21.7, 18.5, 121.9, 40.5, 147.1, 35.1, 42.3, and 48.7”. This data set has been used by
Mokhlis et al. [62].

1.Fourth dataset

In this real-world data, we explore the monthly levels of sulphur dioxide concentration in Long Beach, California,
spanning from 1956 to 1974. This dataset was documented by Roberts [63] and scrutinized by Wang and Ye [64] to
contrast two different models. In this context, let w1 through w20 represent the concentrations of sulphur dioxide in
March, and z1 through z20 represent those in August. The specific data are presented below: W is “21, 16, 20, 15, 9, 10,
10, 4, 25, 18, 18, 26, 25, 17, 40, 55, 19, 16, 9, and 19.6”, and Z is “44, 20, 20, 20, 23, 20, 15, 27, 3, 9, 25, 32, 18, 55, 10,
20, 18, 8, 9, and 20.8”, respectively. This data set has been used by Pak et al. [60].
Initially, an assessment was made to ascertain whether the IPHLD is suitable for analyzing these datasets. Table 5 presents
the MLEs alongside standard errors (StEr) and KS distances with associated P-Values, which were utilized to evaluate
goodness-of-fit. Based on the obtained P-values, there is no evidence to reject the hypothesis that the data adhere to
IPHLD. All data sets have fitting of IPHLD where P-Value is more than 5%.

The model comparison between IPHLD variants is summarized in Table 5 (“MLEs with StEr for parameters of IPHLD
and KS test for each data set”). The KS test statistics reported there indicate the preferred model for each dataset; smaller
KS values correspond to better empirical fit.

© 2025 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 14, No. 5, 761-785 (2025) / www.naturalspublishing.com/Journals.asp 779

Table 1: Efficiencies between RSS and SRS by using different estimation method

(υ1, υ2, ϑ ) (1.2, 0.6,1.5) (3,1.2,2) (3,1.8,2)
s h E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

3

2

ϑ 1.3082 1.5319 1.6429 1.434 1.2473 2.9593 3.6105 2.5124 1.9717 3.2277 3.7623 2.8739
υ1 2.172 1.8302 2.0005 1.679 1.6963 4.951 6.1099 4.0906 1.6199 5.3877 6.5756 5.1472
υ2 1.9649 2.2181 2.5411 1.9218 2.0587 3.396 4.106 2.8322 2.6014 4.2153 5.1393 3.5287
η 1.6402 1.7321 1.7661 1.6924 1.5796 3.2564 3.2964 3.2393 1.4855 4.1218 4.1828 4.0959

3

ϑ 1.8405 1.7806 1.8691 1.7018 1.6182 3.2652 3.5533 3.0642 1.8008 3.3737 3.7297 3.1313
υ1 3.0314 2.6764 2.8108 2.5643 2.534 5.4453 6.1864 4.9391 2.0024 5.3474 5.8581 4.9644
υ2 2.6011 2.7536 2.9351 2.591 2.6754 4.3728 4.7703 4.0318 2.5666 4.1019 4.4938 3.8598
η 2.4549 2.3847 2.405 2.3567 2.3245 4.2813 4.3583 4.2024 1.9569 4.2046 4.1312 4.2078

4

ϑ 2.2382 1.9288 1.9423 1.9231 2.2106 4.0893 4.1523 4.074 2.1934 6.1556 6.223 6.1421
υ1 4.1145 2.6193 2.6275 2.6217 3.67 6.8771 7.1436 6.6939 3.4926 6.5665 6.7915 6.3922
υ2 3.7828 3.0604 3.181 2.9568 3.5708 5.3621 5.5414 5.2387 3.2966 5.1848 5.3266 5.0921
η 3.5598 3.0693 3.0821 3.0601 3.0424 5.6206 5.6671 5.5959 2.7627 2.6994 5.3763 5.3511

6

ϑ 2.6957 1.964 2.0202 2.0769 2.6602 5.1693 5.1851 5.0452 2.3857 5.2668 5.16 4.8963
υ1 3.7785 2.4632 2.4642 2.4784 3.428 6.0245 7.1891 6.9033 3.6214 6.4389 6.8547 6.3003
υ2 4.1553 3.0511 3.0903 3.0213 5.161 6.1283 6.2531 6.0383 4.2751 5.9589 6.1406 5.8315
η 3.849 2.858 2.8468 2.8732 4.3454 6.3952 6.4036 6.3999 4.5446 6.5607 6.6209 6.5248

6

2

ϑ 1.6196 1.7217 1.8545 1.6205 1.5819 2.2836 2.6597 2.0561 1.2572 1.7988 2.0694 1.6682
υ1 2.1694 2.1246 2.3399 1.9826 2.0711 3.9115 4.7051 3.5818 1.9766 4.599 5.5705 4.0171
υ2 2.1257 2.011 2.1424 1.911 1.5917 2.142 2.4808 1.9216 1.7925 2.99 3.5353 2.66
η 1.6158 1.6684 1.6761 1.666 1.3934 2.4206 2.4232 2.3657 1.8312 3.2342 3.2893 3.3699

3

ϑ 2.0116 2.0805 2.128 2.0636 1.626 2.4604 2.615 2.4255 1.5599 2.5163 2.625 2.6147
υ1 2.3798 2.186 2.2611 2.1586 2.4388 4.3352 4.5826 4.2446 2.4345 5.0637 5.4067 4.8502
υ2 2.0226 1.9981 2.05 1.9731 3.0914 3.3375 3.6409 3.1098 3.025 4.2477 4.7461 3.8558
η 2.2324 2.2476 2.2451 2.2556 2.563 3.656 3.7101 3.6233 2.7646 4.2465 4.3678 4.1305

4

ϑ 2.2414 2.0742 2.1576 2.2721 1.8864 4.2995 4.2705 4.2927 1.8833 4.5383 4.5909 4.5469
υ1 3.3476 2.6204 2.6181 2.6347 2.3373 5.6756 5.6044 5.7214 2.8818 5.84 5.8987 5.8324
υ2 2.5288 2.2965 2.3065 2.2995 3.7168 4.6438 4.8117 4.5158 3.3292 4.6909 4.7521 4.6658
η 2.9841 2.6846 2.6642 2.7096 2.8607 5.0853 5.1157 5.0669 3.3282 4.9503 4.9188 4.9878

6

ϑ 2.308 2.2446 2.2685 2.2203 2.2436 4.6485 4.7535 4.7226 2.0618 4.2693 4.269 4.4511
υ1 4.0744 3.1638 3.1312 3.2089 3.0807 6.1405 6.1827 6.7916 3.5821 5.7144 5.6252 5.7801
υ2 3.6141 3.9804 4.0677 3.8992 3.6376 4.4249 4.5157 4.3541 4.1896 5.7549 5.764 5.7668
η 3.6877 3.3048 3.3035 3.3097 3.1498 4.831 5.2803 4.816 4.1215 6.3223 6.2247 5.671

Table 5: MLEs with StEr for parameters of IPHLD and KS test for each data set

W Z
Data Application Estimate StEr KS test Estimate StEr KS test

First ϑ 0.8714 0.12 0.1789 0.9856 0.1355 0.1853
υ 117.8202 66.333 0.2599 265.092 177.5901 0.2248

Second ϑ 0.5473 0.0469 0.1602 0.5163 0.0404 0.2217
υ 1.3531 0.1488 0.0447 1.3503 0.1466 0.0017

Third ϑ 1.1183 0.2562 0.1716 1.1993 0.2832 0.1567
υ 79.798 67.7276 0.8147 135.8565 135.5228 0.8862

Fourth ϑ 1.3554 0.2167 0.2033 1.1214 0.1774 0.226
υ 48.1963 25.0902 0.3804 26.3423 11.26 0.2585

Next in Table 6, we calculate the MLEs and BEs using the SQEL approach for the parameters and η based on the
complete sample for each dataset. As shown in Table 6, the estimated value of the SSR P (W < Z) for the first dataset
is approximately 0.5661 and 0.5969 for MLEs and BEs, respectively. This suggests that the probability of the coverage
percentage (0.5661 and 0.5969) of the breaking strengths of jute fiber at a length of 20 mm being less than the breaking
strengths of jute fiber at a length of 10 mm. As shown in Table 6, the estimated value of the SSR P(W < Z) for the second
dataset is approximately 0.5050 and 0.5088 for MLEs and BEs, respectively. This suggests that the probability of the
coverage percentage of the involves rainfall recordings in February more than involves rainfall recordings in March. As
depicted in Table 6, the estimated SSR value P(W < Z) for the third dataset is approximately 0.5783 and 0.5905 for MLEs
and BEs, respectively. This indicates that the probability of the coverage percentage of failure in electrical insulation in the

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


780 A. S. Hassan et al. : Efficient Inference

first type of experiment being less than that in the second type of experiment. As indicated in Table 6, the calculated SSR
estimate P (W < Z) for the third dataset is around 0.5267 for MLEs and 0.5302 for BEs. This implies that the probability
of the coverage percentage of monthly concentration of sulphur dioxide in Long Beach for March is lower than that of the
August.

Table 6: ML and Bayesian estimation of η = P[W < Z] for complete sample

ML Bayesian
Data Application Estimates StEr Estimates StEr

First

ϑ 0.9575 0.0982 1.079 0.0856
υ1 232.9864 116.969 457.7096 190.8058
υ2 175.2578 81.9205 315.6849 102.0549
η 0.5661 0.5969

Second

ϑ 0.5297 0.0305 0.5293 0.0425
υ1 1.3767 0.1419 1.4087 0.2006
υ2 1.33 0.1403 1.3428 0.204
η 0.505 0.5088

Third

ϑ 1.1703 0.1966 1.5396 0.144
υ1 123.6762 89.0012 461.2735 204.2323
υ2 94.2152 62.8634 338.1461 132.7952
η 0.5783 0.5905

Fourth

ϑ 1.2239 0.1382 1.3747 0.2129
υ1 35.866 13.2656 56.5999 31.6601
υ2 32.7342 11.317 51.0811 28.4148
η 0.5267 0.5302

Figure 3 displays the profile log-likelihood for each parameter (panels are ordered left to right). The blue points
indicate the MLEs at the modal peaks. The curvature of each profile near its maximum reflects estimator precision:
narrower, more sharply peaked profiles correspond to smaller standard errors (higher precision), whereas broader, flatter
profiles indicate greater uncertainty.
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Fig. 3: Profile likelihood for data 2

Figure 4 presents MCMC diagnostics for the three model parameters (left panels: trace plots; right panels: posterior
histograms). The trace plots fluctuate around stable central values with no visible drift, indicating stationarity and adequate
mixing; the posterior histograms are unimodal and approximately symmetric, supporting the use of posterior means and
credible intervals.
Table 7 discussed sample data for SRS and RSS for each data set. Table 8 obtained MLE and BE based on SRS and RSS.
The results confirmed the suggest comment of the reliability of the strength of the stress in Table 8.
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Table 7: SRS and RSS data

SRS RSS
Data 2

W Z h = 1 h = 2 h = 3 h = 4
36.75 350.7 43.93 262.9

W

s = 1 36.75 99.72 284.64 419.02
36.75 375.81 108.94 303.9 s = 2 145.96 113.85 166.49 419.02
48.01 375.81 108.94 303.9 s = 3 244.53 83.55 578.62 756.7
71.46 419.02 108.94 303.9 s = 4 71.46 578.62 83.55 756.7
83.55 419.02 123.06 353.24 s = 5 187.13 187.13 456.6 707.36
99.72 688.16 123.06 383.43

Z

s = 1 183.16 323.83 383.43 530.55
113.85 688.16 163.4 506.6 s = 2 123.06 506.6 590.48 704.66
119.86 707.36 212.13 530.55 s = 3 50.16 323.83 212.13 671.49
145.96 756.7 212.13 727.23 s = 4 291.27 183.16 700.74 671.49
187.13 765.14 257.44 727.23 s = 5 101.15 141.38 700.74 778.17

Data 3
Z W h = 1 h = 2 h = 3 h = 4

3.29 2.98 3.96 8.37

Z

s = 1 1.41 3.06 4.17 4.17
0.17 3.12 0.48 2.49 s = 2 0.49 0.7 3.21 4.64
0.11 3.06 0.87 2.47 s = 3 0.13 3.32 2.26 13.68

11.02 5.54 4.83 4.32 s = 4 0.17 3.07 4.27 6.61
3.54 3.71 3.43 0.87 s = 5 0.86 4.17 1.41 13.68
0.7 1.64 0.57 5.27

W

s = 1 0.17 0.32 4.79 5.3
6.1 0.11 0.32 0.05 s = 2 0.44 0.28 0.57 5.85

11.02 3.54 1.4 5.27 s = 3 1.86 0.28 2.47 5.85
0.67 8.03 6.98 1.47 s = 4 0.09 1.47 1.81 2.78
4.64 11.57 8.02 0.17 s = 5 1.1 1.4 0.53 6.14

Data 1
W Z h = 1 h = 2 h = 3

12.3 95.5 121.9 219.3 W s = 1 12.3 43.2 75.3
46.9 43.2 150.2 48.7 s = 2 28.6 46.9 95.5
75.3 70.7 35.1 150.2 Z s = 1 121.9 48.7 219.3

s = 2 40.5 150.2 150.2
Data 4

W Z h = 1 h = 2 h = 3 h = 4
25 10 32 20 W s = 1 9 17 18 40
20 18 10 15 s = 2 9 15 17 26
16 17 9 44 Z s = 1 3 18 20 23
16 25 55 18 s = 2 8 18 20 55

Table 8: MLE and BE based on different loss functions for SRS and RSS

SRS RSS
Data MLE SQEL LLF-I LLF-II MLE SQEL LLF-I LLF-II

2

ϑ 0.9823 1.0461 1.0482 1.0472 0.9756 1.0031 1.004 1.0004
υ1 235.7846 360.2839 798.7612 784.618 297.8361 356.9983 777.9867 111.7332
υ2 154.71 207.4927 473.2082 455.1502 189.0029 224.379 395.6428 68.265
η 0.6079 0.6452 0.6241 0.6299 0.6124 0.6163 0.6518 0.6198

3

ϑ 0.5212 0.5210 0.5238 0.5215 0.6421 0.6398 0.6423 0.6372
υ1 1.5418 1.5681 1.6493 1.5809 1.7338 1.7454 1.7837 1.7098
υ2 1.3766 1.3962 1.4654 1.4067 1.0761 1.0941 1.1100 1.0787
η 0.5271 0.5278 0.5283 0.5280 0.6346 0.6319 0.6339 0.6301

1

ϑ 1.1384 1.2385 1.2453 1.2419 1.2629 1.2857 1.2900 1.2881
υ1 196.9542 349.3407 1006.096 991.909 339.2356 404.0409 1514.547 1498.219
υ2 80.3071 108.3084 261.6068 248.3473 114.196 134.4084 368.6643 353.9674
η 0.7382 0.7945 0.8215 0.8274 0.7794 0.7817 0.8319 0.8363

4

ϑ 2.0584 1.6242 1.6590 1.6300 1.2845 1.3350 1.3505 1.3376
υ1 457.1219 154.7478 428.6469 406.4528 44.6493 54.7926 120.514 100.240
υ2 353.6045 101.4375 236.4255 215.4917 31.8456 36.9067 84.2469 62.5412
η 0.5749 0.6203 0.6682 0.6784 0.5777 0.6289 0.6638 0.6835
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Fig. 4: MCMC plots for data 2

8 Concluding Remarks

A vital statistical technique for modeling different properties is the lifespan distribution. In order to analyze these sorts of
data sets, extremely complicated distributions are available in the statistical literature. However, the estimating procedure
is challenging due to the enormous number of factors in these distributions. A novel inverted model called the IPHLD is
introduced to provide additional avenues for modeling these types of data sets. Statistical properties, such as moments,
PWMs, entropy measures, quantile function, incomplete moments, Bonferroni and Lorenz curves are acquired. The
Bayesian and non-Bayesian estimation of η = P[W < Z] assuming stress (W) and strength (Z) random variables follow
the IPHLD with different scale parameters are regarded. The estimators of η = P[W < Z] are determined based on SRS
and RSS. The Bayes estimates of η under symmetric and asymmetric loss functions are achieved using gamma priors. It
is clear that the Bayesian estimators do not exist in their explicit form. Therefore, the MCMC method is used to get the
Bayesian estimate. The Monte Carlo simulation is used to assess how well the suggested estimates perform. Finally,
eight data sets are analyzed to illustrate the proposed estimation methods. Future study involves estimating the SSR,
assuming that stresses and strength random variables THAT follow the IPHLD under more advanced RSS scheme.
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