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Abstract: This work aims to develop more efficient conditions for evaluating the oscillatory performance of solutions to a class of
functional differential equations. We employ the Riccati method and a comparison method with several different approaches. These
improved approaches enable us to obtain different criteria that are suitable for different constraints on the parameters. Furthermore,
we use some recurrence relations that allow the oscillatory criteria to be applied iteratively. We support the theoretical results and
demonstrate their novelty by applying our results to specific cases and comparing the results with previous results in the literature.
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1 Introduction (AF € C' (R, [k, k2]) and k1, &, € RT.

This paper focuses on investigating the oscillatory However, the following additional conditions would be
behavior of all solutions of the following canonical ~ needed in certain results,

half-linear neutral differential equation with multiple = ,
delays AN@(p) =p (@) and @' > @y > 0;

ey " (Ay)p’ > 0.
() F (o) (X @) ) + e () (o1 () + | i |
u o The function x € C=([up,*),R), is defined as a
¢ (u)x* (P2 (u)) + -+ - +cn () x* (Pn (w)) = 0, (1) solution  of  equation (1) if it  satisfies

foru > up,n € Z*, and aF (x)[X']% € C' ([ug,),R), x fulfills (1) on the interval
[ug,o0), and for every u; > ug, sup {|x(u)|:u>u;} > 0.
X (u) = x () +b (u) x (@ (u)). Such a solution is termed oscillatory if it possesses zeros

that are arbitrarily large; otherwise, it is referred to as

We propose the following conditions as necessary, - ’ " . -
nonoscillatory. The equation (1) itself is called oscillatory

(A1) is a ratio of any to positive integers; if every solution exhibits oscillatory behavior; if not, it is
(A2)a, b, c; € C([ug, ) ,RT) where i =1,2,--- ,n,n €N, classified as nonoscillatory.

d (u) >0, b(u) < by, b € RT, and Second-order differential equations (DEs) are

u frequently used in mathematical modeling in a variety of

A(u) :/ a_l/a(é)dé o0 as U oo scientific domains [1, 2]. For the purpose of precisely

1o describing primary and secondary changes in natural

(A3)@, p; € C' ([ug,),R) with processes, these equations are essential. For example,

they are used to simulate the rates at which epidemics

p(u)= 112.12 {pi(u)}; spread in biology and to describe motion and acceleration

= in physics. They are also used in environmental studies to

p (1) <u, and limy_seo @ (4) = limy_yeo p (1) = oo} comprehend the dispersion of contamination, for a
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thorough analysis of these applications [3, 4], and for
results concerning the existence and positivity of
solutions in neutral delay models, see [5, 6].

The oscillatory behavior of functional differential
equations (FDEs) has attracted a lot of attention lately.
Sharp oscillation conditions for second-order FDEs have
been established in several investigations, see for
instance [7, 8]. The linkages and inequalities employed in
the study of oscillation have been improved by other
research, such as [9, 10]. Higher-order equations have also
been the subject of some study and analysis, see [11, 12].
Moreover, By expanding the findings of second order, the
research of oscillation for solutions of even order
equations has also advanced, this development is seen
in [13, 14].

The primary motivation behind this study is to address
the challenges in understanding the oscillatory behavior
of solutions to neutral functional differential equation (1)
with delays. The goal is to provide a comprehensive set of
conditions for the oscillation of solutions of (1), thereby
extending the applicability of existing theorems. By
leveraging powerful comparison techniques and the
Riccati method, our results offer a broader and more
flexible framework for analyzing the oscillatory nature of
solutions, which is essential for both theoretical
advancements and practical applications in various areas
of mathematical modeling.

This paper is organized as follows: The following
section discusses the preliminary definitions, notations,
and the key lemmas used in deriving the oscillation
criteria for these equations. In Sections 3 and 4, we
present the main theoretical results, where we establish
several oscillation criteria by applying comparison
techniques and the Riccati method. Section 5 presents a
detailed comparison between the different criteria,
highlighting the strengths and conditions for their
applicability, as well as how they compare to previous
work in the literature. Furthermore, it provides several
illustrative examples and discuss the practical
implications of our results.

2 Preliminaries and Lemmas

In this section, we set up the necessary notation and
establish the main and auxiliary lemmas that describe the
relationships between the solution, its derivatives, and the
associated neutral terms, providing the foundation for the
oscillation criteria developed later. So, let

Moreover, let @ (u) = u,
ol () =@ (ml—JHJ (u)) ,and

A¥ (@27 (p (u) )
b (@21 (p () A% (@211 (p (w)))

for j=1,2,....kand k€ Z™.

Lemma 1. [15] Consider the functions G1, G, € R*. The
following inequality holds:

1
Gy +GS > m—l(G1+G2)°‘,

for a defined as in (A1) and my is a positive constant
defined as

e — { 1, a<l,
! 201 o> 1.

Lemma 2. [16] Consider the function

G3 (&) =mpk —myE 1/,

for E e R, my € R, m3 € RT, and « defined as in (A}).
This function attains its maximum at the critical value

G3(g*):?§§(63): <anjr21>a+1 (n(z)a
argr= ()"

Lemma 3.Under the canonical condition in (A3), positive
decreasing solutions of (1) are excluded. Consequently,
only one class of positive solutions to (1)
remains—namely, positive increasing solutions, for which

x, X' > 0, while (aF (x) [X’]a)/ <0.

Proof.Assume that x is an eventually positive solution of
(1) for u € [ug,o0). The definition of (1) and conditions
(A1)-(Ag) imply that

(aF (x) [X'] a),
= —[c1x* (p1) + c2x* (p2) + - - - + cnx® (pn)] <O0.

Then, x has a fixed sign, i. €., x' > 0 or ¥’ < 0. But the
canonical condition in (A,) excludes the existence of any
positive decreasing solutions. And this completes the
proof.

Lemma 4.Assume that x is an eventually positive solution

and of (1). Under the satisfaction of (A1)-(A4), the following
1 monotonic characteristics arise, X, X' > 0 and
(1) = o (pu), uza(u)=>pu), 2\
p(u), u < @ (i) (X/A ) <0.
© 2025 NSP
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Proof.Assume that x is an eventually positive solution of
(1) for u € [up,o°). Since X is a positive function and
(aF (x) [X’]a)/ is nonpositive, then X’ has fixed sign.
Assume, on contrarily, that X’ < 0, then the nonincreasing
monotonicity of  aF (x)[X]* implies that
(aF (x))/*X’ < —mi/a for my € RT. As a result, we
have

/o
X/S—m}‘/a(aF(x))l/aS—(m“) a*]/a,

for F~1/% (x) > K{l/a arises from (A4). By integrating the
last inequality over [uj,o°), u; > up, and taking the limits
for both sides as u — oo, we have

m 1/a
XSms—(4) A= —c as u—oo,
K

for ms = X (u1), which is a contradiction. So, we obtain
that X’ > 0.

Now, again from the nonincreasing monotonicity of
aF (x) [X']%, one can conclude that

[a(E)F (x(€))]"/* X' (€)dE

\Y
=
- =
B
—
U
~—
~
—
= —
—
e
S~—
=
=
R

dé

Y
Kyl

e P @)X w) [

<2> 1/aa1/a (WX’ () /l: al/‘i(&)dé

1 o !
= ;al/ () A (u) X" (u),

Y

for F1/% (x) > Kll/a. And so,
L ) L T e
du | AX al/eAx+L |

And this completes the proof of this Lemma.

Lemma 5.Assume that x is an eventually positive solution

of (1). Under the satisfaction of (A1)-(As) and (A1), we
obtain

@] s L e o)y <0, @
z GTOZ lezzc p)z(p) <0,

eventually, where 7 = aF (x) [X']%.

Proof.Assume that x is an eventually positive solution of
(1) for u € [ug, ). It is clear that (1) can be written as

(aF (x) [X']a)/ <—x*(p) Y ci. 3)

i=1

Multiplying both sides by b§ and using (Xl) implies that

s (a(w)F(x(w)) [X,(wﬂa>

@
<% (a(@)F (x(@) [X' (@))%
= —bix*(p (@)) ;ci(w» 4)
But

X (p) Y. ci+ b (p (@) Y. i (@)

i=1

/

/

Then applying Lemma 1 gives

@ <p>ic,»+b8‘x“ (0 (@) Y. (@)

> Lot x(p) +bx(p (@) ©
. milaxa(p).
Using (3), (4), and (5) we get

@) Ba@r @) K@) ©
= (aF @ X)) + & (a(@)F (@) [¢ @] )

< 2% (p) Y. i~ b (p (@) Y. i (@)

~Laxe(p).

mi

IN

From Lemma 4, we obtain that

o

X% (p) < —LgA%(p)a(p) (X' (p))

Leading to

o !/
o bf() o

aF (x) [X']" +

< *LA

- le(x
1 1 ~a !

" ) P D ECRD

1 1

ca(p)A®(p) (X' (p))”

o

i,e
1 1.
—— 1A% (p)z(p),

b& !
[z—koz(ﬁf)} < 5
(o)) my K5

for z = aF (x) [X']*. Then, the proof is complete.
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Lemma 6.Assume that x is an eventually positive solution
of (1). If @ (u) <u, @ >0, and by > A* (u) JA* (@ (u)),
then the following inequalities arise

k 2j—1 A%<w[72/‘])
J— 1 m
x>j=Z’1 (H CED (aﬂ—%) 17717 (6[—2/]) X
and )
(aF () [X]%) +BX*(p) <0 ®)

eventually, for j=1,2,....kand k € 7.

Proof.Assume that x is an eventually positive solution of
(1) for u € [ug, ). Proceeding as in the proof of Lemma 4
in [17], we obtain that

K /2j-1 . X (ol=2/]
=1 (M) X("””J”*M

(=1
, . )
But u < @2 (u) < @!~2//(u), then, the increasing

monotonicity of X in Lemma 4 gives X < X (w[*21'+1])
and

X (w[—Zﬂ) < mx (m[—zm) ,

And so, (7) holds. From (3) we obtain
!/
(aF (x) [X] a)

IA
&
R
=
yg!
o

IN
|
TR
[ agle
S
[empj
S
—
a
L
—
o)
=
=
N———

e (ariew)
b (@127 (p (u))) A% (@121 (p (u)))

X% (p) Y.
/=1
=—BX%(p).

The proof is complete.

3 Comparison-Based Theorems

This section develops new oscillation criteria using the
comparison theorem method, which enables us to
determine the oscillatory behavior of our equation by
comparing it with first-order equations.

Theorem 1.Let (Xl) holds. If the following delay
differential equation

I @ &1
4+ — —CA% 7)=0 10
g TP =0 (10

oscillates. Then (1) is oscillatory.

Proof.Assume, on the contrary, that x is an eventually
positive solution of (1) for u € [ug,o°). Let, @ (u) > u.
Since aF (x) [X']* < 0, then

o

aF (x) [X'] + %ia(w)F(x(w)) X' (@)]

< (1 + bg) aF (x) [X']%.
< @
Substituting into (2), we have
’ 1 k1

y < ———=cA%(p)a(p)F (x(p)) [X'(p)]
mp K‘2
Kl <«

1 [}
< - 2
S G bR (P)y(p),

o

Y

where

y = aF (x) [X/]a—l— ﬁa(w)F(x(a)')) [X/ (CU)]

o
> 0.

o

According to Theorem 1 in [18], the differential
inequality (11) admits a positive nonoscillatory solution
under the given conditions, which leads to a contradiction
with the oscillatory nature of (10) and completes the
proof of this part.

For the remaining case, letting p (¢) < @ (1) < u, then

aF (x) [X']" + ga(w)F(x(w)) X' (@)]”

< (1 + i’f) a(®)F (x(@)) [X' (@)]".

0
Substituting into (2), yields

, 1 (o)}

K1 <
y < LA

e B - -1
m 670+b8‘ Kzzc (p))’(w (P)),

and this inequality also has a positive solution according

to Theorem 1 in [18], which leads to a contradiction with
the oscillatory nature of (10) and completes the proof.

Corollary 1.Let (A;) holds. If

Lo u m1K22(G70+b8‘)
liminf c(&)A” dé > ——— =
mint [* 26)4% (p (£)) 5 > "2

, (12)

then (1) is oscillatory.

Proof.By Theorem 2 in [19], (10) is oscillatory under
condition (12). Thus, applying Theorem 1, we conclude
that (1) is oscillatory as well, thereby completing the
proof.
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Theorem 2.Let ou < wo > 0, and
bo > A* (u) /A® (@ (n)). If the delay differential equation

¢+ LBA%(p) 2(p) =0 (13)
K

oscillates, then (1) is oscillatory.

Proof.Assume, on the contrary, that x is an eventually
positive solution of (1) for u € [up,). Letting
z=aF (x)[X']* in (8) and using Lemma 6, then we have

7 < —BX%(p)
< —%BA“(p)a(p) X' (p)]"
< %Kiz *(p)z(p)
Ki

I
|
)
T
S
=
[\l
=

However, this inequality also admits a positive solution
according to Theorem 1 in [18], which contradicts the
oscillatory behavior of (13) and thereby completes the
proof.

Remark.As demonstrated in the previous theorem, by
applying the nonincreasing monotonicity of X /Af in
Lemma 4, we have derived an oscillation criterion that
does not rely on the monotonic constraints (A1), and (Aj).
This establishes a more general framework for analyzing
oscillatory behavior.

Corollzlry 2.Lej ou) < wo > 0, and
bo > A* (u) JA* (@ (u)). If
timinf [ B(E) A%( (5))d‘g’>K—22 (14)
u=e Jp(u) P ek’

then (1) is oscillatory.

Proof.By Theorem 2 in [19], (10) is oscillatory under
condition (14). Thus, applying Theorem 2, we conclude
that (1) is oscillatory as well, thereby completing the
proof.

4 Riccati-Based Theorems

In this section, we apply the Riccati substitution
technique to develop additional oscillation criteria for (1).
The results obtained here complement those of the
previous section and provide a broader framework for the
study of oscillatory behavior for (1).

Theorem 3.Let p (u) < @ (u) < u, (Kl), and (Xz) hold.
If there exists a positive function & (u) € C' ([ug,),RT)
such that

fimsup "[16@)6@)4’(5) dE =, (15)

U—roo u M1

then (1) is oscillatory, where
(&))" alp(€))
a

Y e
T<§)_<1+wo> G %@ (P e

Proof.Assume, on the contrary, that x is an eventually
positive solution of (1) for u € [ug, ). Let the following
generalized Riccati functions

aF (x) [X']"

% =0"%ap)

and
a(@)F (x(@)) [X’(w)]“.

X*(p)

It is obvious from Lemmas 3 and 4 that 6;, 6, > 0.
Differentiating 0; and using (3) and Lemma 3, we get

6,=9

/

(aF (x)[X%)
X*(p)
o' ,aF (x) [X/}a /

+§91 —adp WX ()

(aF @ [x1%)" &
S e T
,aF (x)[X']* (aF (x) [X']%)
X%+ (p) al/@(p)F1/%(x(p))

o =5

1/a

—adp

Then,

(aF WX &
Xe(p) o

a8 (aF(x)[X’]“)‘*‘/“
K/’ (p) \" X% (p)

(aF (x)[x1*)" &

6 <& 0

N o P/ 1+1/o
—F0, .
K% (8a(p))"
Applying Lemma 2 with
/ o p/
m=— and m3=—————,
8 K% (a(p))"*

implies that

(aF (x) [X/]a), K

(R 1S
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Analogously, for 6>, using p (¢) < @ (u) < u and Lemma

3, we derive
o) — 5@F <X<f(>ﬁ>))[x< Y, 3,
sy <w>F)<;a<§>(>p[) @) ()
(a(@)F x(@) X' (@)%) &
=0 X%(p) 5%
o &y (a(w>F(x<w)>[X’(w)}“
K/ all* (p) X(p)
Thus,
eégé(a(w)F();(?();gX @) % 6,
o p’ 1+1/a

1/ (8a(p)
Applying Lemma 2 again yields
(a(@)F (x(@)) X' (®)]")

X*(p)
K ()" a(p)
(a+1)a+l S (p/)a'
Combining (16) and (17), we obtain

!/

0, <38

/

(aF (x) [X']%)
X*(p)
Lk (@)™ alp)
(Ol—i—l)OHl Sa (p/>05

) /

boc
6 +-26,<§
()

i.e. with (6), becomes
o] +ﬁ92
: (1 +1;8(‘]> (a+K12)°‘+' (62:+1 (a;gz‘
+X°‘8(p) (aF () [X’]“)’
s o (a(@)F () [ (@)]")
(” o) o - Gk
7—5\5.

mq

a7)

By integrating the last inequality over [uj,u], we get

[[Es@eer-we)] s <m

mi

with mg = 0y (u) +
completes the proof.

%0062 (u1). A contradiction with (15)

Theorem 4.Let o (u) < o > 0
by > AX (1) JAX (@ (), and (Ay) hold. If there exists a

positive function & (u) € C' ([ug,0) ,RT) such that

timsup ["5(6) B(E) -

P(E)]dE =0,  (18)
then (1) is oscillatory, where

K (8(E)* alp(e)
(a+ 1) 8%(8)  (p'(&)*

Proof.Assume, on the contrary, that x is an eventually
positive solution of (1) for u € [ugp,o0). Proceeding as in
the proof of Theorem 3 with (8), we arrive at

(aF (x)[x*) &

®(6) =

s aF X%
o' o p’ 141/a
< — -
6B+ 661 I/Ot (Sa(p))l/a 1

Applying Lemma 2, yields

K (8) alp)
(a+1)a+1 S (p/)a'

By integrating the last inequality over [u;,u], we get

0 < -8B+

[18&)BE)-2@)dE <6 ().

up
A contradiction with (18) completes the proof.

Theorem S.Let @ (w) < u o > 0  and
by > A* (u) /A" (@ (u)) hold. If there exists a positive
function & (u) € C' ([ug,0) ,R*) such that

liinﬁs:p.: [6(5)3(5) (W) ~0(8)|dg
. (19)

then (1) is oscillatory, where

R (8(E)*!

0€) = T pelE ()
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Proof-Assume, on the contrary, that x is an eventually
positive solution of (1) for u € [ug, ). Let the following
Riccati function

aF (x)[X']*

R

which is clearly positive, and then with (8), we obtain

(aF (x)[x1%) & aF (x)[x]**!
X%*(p) & 1 1+1/a
< -8B +—0—a——
Xe T8 (gar (x) /e
X%(p) ¢ o 1 /e
§*5B X g I*Kzl/a (5a)l/a 3

The the nonincreasing monotonicity of X /A§ implies

~ [0
ARp)\“ ¥
/<_ V7 i
0; < —-d0B < T + 50]
o 1 1+1/a

K/ (Ba)

Now, applying Lemma 2, gives

(6/)a+1

~ a
A% (p) %
I« _ \f ]
93— 5B< AKX ) +(a+1)a+l S a

By integrating the last inequality over [uy,u], we get

[|s@se (AA(”((;)”> o)

A contradiction with (19) completes the proof.

dé < 6; (ul)

5 Comparisons and conclusion

In the previous sections, we derived different criteria in
Theorems 1-5 to investigate the oscillatory behavior of
solutions to the neutral differential equation (1) with
multiple delays (p; (1)). Each theorem presents a different
lens through which we can examine the solutions,
offering valuable insights based on varying conditions
and methodologies. Now, we shift our focus to
synthesizing the contributions of each theorem and
comparing them on a deeper level.

To fully appreciate the utility of each theorem, it is
crucial to examine how they diverge in their assumptions,
and where they converge in their conclusions. This allows
us to not only differentiate their practical applications but
also to highlight the unique strengths of each.

1.A key distinguishing factor among the theorems is the

use of monotonicity conditions (A;), and (A,).
Theorems 1, 3, and 4 incorporate one or both of these
conditions, making them more suited for specific
scenarios where the solutions display certain
monotonic behavior. However, this requirement is
relaxed in Theorems 2 and 5, which allows us to apply
these theorems in a wider range of non-monotonic
cases. The ability to accommodate both scenarios is
one of the strengths of our approach, offering
flexibility for dealing with more complex or irregular
solutions.

2.The next major difference lies in the methodological
approach used by the theorems. Theorems 1 and 2
follow a first-order comparison method, which is
more straightforward and intuitive for solving simpler
cases. On the other hand, Theorems 3, 4, and 5
employ the Riccati technique, a more advanced
approach that is particularly useful when dealing with
higher-order relationships or more complex
interactions between variables. The choice between
these methods depends on the specific nature of the
NDE being studied, Riccati provides deeper insights,
but may be more challenging to apply in
straightforward cases.

3.Another layer of distinction lies in the temporal
relationships between the terms in the equations. In
Theorem 1, we assume that @ (u) > p(u) and
@ (1) > u, a conditions that introduces an ordering
between time-dependent functions. In other theorems,
this constraint is relaxed, allowing more freedom to
address cases where the relationship between @ (u)
and p (u) is less strict. This flexibility in handling
time-dependent relationships is crucial for covering a
broader spectrum of possible behaviors in NDE
solutions.

Example 1.Consider the NDE

1 e\
(Hmnz(x(u)) [(x () + box (@ou))'] )
+—h " 2 (Vi) = 0, 20)
i=1

foru >0, @, v; € (0,1], kp € [0,00), co > (0,00), and
V =min{V;
min{vi},
fori=1,2,...,n, n € N. Moreover, it is obvious that k, =
1, k1 = 1/(1+ ko), and @ (u) = @Ju for £ € Z. Some
calculations gives
K

)
)

Viko+1,

C()M—oc—l7
vu

c(u
T

(u
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and
k 1 o
ooy co
B (I/l) = |:b0 — ZDO K0+1:| 7 —_—
( = bg] uo+1
- 20 uot1’

Applying Theorems 1-5, we obtain

(B _m
0 @ ) eln(1/v)ve

! 1 L5l
— — for by>® 22
O Byeln(1/vyve OF 0= % 22

b¢ o thlml
0> (1+2 ) (—— — for @Wy>vVv, (23
o (1) () v, s

1 a“ — Uit T
——— for by > O 0 24
0= Bova (41)%"! or 2o = o @Y

for @y > v, 2n

and

- 1 o’
07 Bova Vit (o+1)*H!

for by>am, VO (25)

respectively.

Remark.For a =1, Ky =0, v =1, and by = 0, equation
(20) reduces to the ordinary Euler-type

" €0
— =0.
¥ 1)+ D)

In this case, condition (23) provides the well-known sharp

criterion which is ¢g > 1/4.

Remark.For further comparison of our results with existing
works in the literature, we apply (20) with & =1, by = 0.5
and @y = 0.9 to Theorem 3 in [20], which gives

2

co > . 26
0 eln(1/v)v (1+4cov) (20)
Example 2. Take the following special case of (20)
1 9 W1\
—— [ {x(u)+2x| —u

(1—|—sin2(x(bl)) {< ) (10 )) ])

+ 9 x(viu) =0, 27)
u

where kg =1, bp =2, @y =0.9, ¢ =1, and n = 1. Table
1 shows the minimum values of ¢ for different values of
Vi.

Table 1. Comparison of the oscillation criteria of (27).

By analyzing the comparisons presented in the
previous table, we observe that our proposed criteria
outperform each other under specific conditions. For
instance, when the v; = 0.2, Criterion (21) yields better
results compared to the others. However, when v; = 0.5,
Criteria (23) and (24) provide stronger and more effective
outcomes. In all cases, it is evident that our criteria
consistently surpass those found in previous works (26),
demonstrating the overall improvement and broader
applicability of our results.

In conclusion, this study establishes comprehensive
and sufficient conditions to determine the oscillatory
behavior of all solutions to a general class of neutral delay
differential equations. Our results extend previous works
by covering both cases where by < 1 and by > 1, which
allows for a more inclusive range of scenarios. Unlike
prior studies that imposed monotonicity constraints on
delay functions, our criteria relax these restrictions,
offering a more versatile framework for analyzing NDEs.
Additionally, by reducing our results to the ordinary case,
we derived sharp oscillation conditions for the Euler
differential equation. Another key advancement is the
consideration of the delay function @ (), which was
often overlooked in previous research, but plays a crucial
role in our analysis. The combination of the comparison
and Riccati techniques in our approach ensures robust and
practical criteria for oscillation, which are applicable to
both functional and ordinary differential equations. These
contributions expand the theoretical landscape of
oscillation criteria and open avenues for future research,
particularly in exploring the effects of more complex
delay functions and their applications in diverse scientific
fields.
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