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Abstract: Sign Language (SL) is the primary communication method for deaf and hard-of-hearing individuals. This underscores the
need for advanced technologies that bridge the communication gap between SL users and the hearing community. Saudi Sign Language
(SSL), the main SL used in Saudi Arabia, lacks large-scale isolated datasets, posing challenges in developing recognition models
that perform well on small to medium-sized data. Most state-of-the-art approaches for Arabic Sign Language (ArSL) in general, and
SSL in particular, rely on Convolutional Neural Networks (CNNs) architectures, which often struggle to capture long-range temporal
dependencies. In contrast, this paper establishes a benchmark for isolated SSL recognition using transformer-based video models.
Specifically, we evaluate three state-of-the-art architectures—Swin Transformer, VideoMAE, and TimeSformer—on the King Saud
University Arabic Sign Language (KSU-ArSL) dataset. All models are pre-trained on the Kinetics-400 dataset and fine-tuned using 16-
frame RGB clips. The Swin Transformer achieved the highest accuracy at 97.50%, followed by VideoMAE at 95.25% and TimeSformer
at 93.44%. Despite challenges posed by visually similar signs, these results demonstrate the superior effectiveness of transformer
networks over CNNs in sign language recognition. Future work will focus on signer-independent evaluation and continuous SSL
recognition to build more generalizable systems and improve accessibility for the Saudi deaf community.

Keywords: Sign Language Recognition, Isolated Sign Language, Saudi Sign Language, Video Transformers, Swin, TimeSformer,
VideoMAE, Transfer Learning, KSU-ArSL Dataset.

1 Introduction Despite SSL’s importance, research in this domain
remains limited compared to ArSL and other sign

Sign Language (SL) serves as the primary means of  languages, resulting in a scarcity of SSL-specific datasets

communication for the deaf and hard-of-hearing
community  worldwide, highlighting its  global
significance [1]. In Saudi Arabia, Saudi Sign Language
(SSL) is the main SL used by this community, featuring a
unique cultural vocabulary, while also sharing some
elements with Arabic Sign Language (ArSL) [2]. SSL
inherits several linguistic challenges from Arabic, such as
multiple terms for a single concept and complex sentence
structures, making it a significant area of study [2, 3].

An estimated 720,000 individuals in Saudi Arabia
have a hearing disability [3], emphasizing the urgent need
for advanced technologies to facilitate communication
between the deaf and hearing communities. These
technologies are critical for enabling equitable access to
services in education, healthcare, and social integration.

[4, 5]. Most existing resources are image-based datasets,
which constrain model performance in capturing the
dynamic, continuous nature of sign language gestures in
video data [1, 6]. Moreover, many existing solutions rely
on Convolutional Neural Networks (CNNs), which are
inadequate  for  modeling long-term  temporal
dependencies in video-based Sign Language Recognition
(SLR) tasks [7, 8].

To address this, our research proposes the use of
transformer-based models, which have shown promise in
capturing global temporal context and improving video
understanding [9, 10, 11]. Specifically, this paper
investigates the fine-tuning of three pre-trained video
transformer architectures — Swin Transformer [12],
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VideoMAE [13], and TimeSformer [14] — on the King
Saud University Arabic Sign Language (KSU-ArSL)
dataset [3] for isolated sign language recognition. These
models leverage self-attention mechanisms to effectively
capture spatio-temporal features critical for interpreting
complex hand and body gestures. VideoMAE utilizes
masked autoencoding for robust feature learning, Swin
Transformer employs a hierarchical architecture with
shifted window attention for multi-scale representation,
and TimeSformer implements divided space-time
attention to enhance computational efficiency
[12, 13, 14, 15].

Given the low-resource nature of SSL datasets, we
adopt transfer learning to mitigate data scarcity, utilizing
pre-trained weights from large-scale video datasets. This
approach enhances model robustness and generalization
[16]. Our results demonstrate that transfer learning yields
competitive performance across all models, with distinct
variations that offer insights into the most effective
transformer architectures for sign language tasks.

The contributions of this paper are as follows: (1)
Evaluate the accuracy and robustness of Swin,
VideoMAE, and TimeSformer for isolated SSL
recognition; (2) Establish a benchmark for the KSU-ArSL
dataset to support future research on SSL; (3) Analyze the
strengths and limitations of transformer-based models and
their implications for improving accessibility for the deaf
community in Saudi Arabia.

The remainder of this paper is organized as follows.
Section 2 reviews related work on SLR and Section 3
provides a summary of the dataset used. Section 4 details
the methodology, including the dataset and model
descriptions, Section 5 shows pretraining and fine-tuning
strategy, and Section 6 presents the experiments and
results and discusses the findings, followed by Section 7
which concludes the paper with future research
directions.

2 Related Work

SLR has progressed significantly, evolving from early
hand-crafted feature extraction methods — such as
Histogram of Oriented Gradients (HOG) [6]— to modern
deep learning approaches [7, 18]. Traditional SLR
systems relied on manual feature engineering, which was
time-consuming and poorly adapted to gesture variability
and lighting conditions. The advent of deep learning,
particularly CNNs, enabled end-to-end learning directly
from video data, significantly improving SLR
performance [7, 8].

SLR is typically categorized into isolated SLR, which
involves word-level classification, and continuous SLR,
which focuses on sentence-level gesture recognition
[8, 11]. This study focuses on isolated SLR, which,
although simpler in structure, remains challenging due to
intra-class variability in signs [18]. CNN-based models,
including 3D-CNNs, have achieved promising results on

datasets such as American Sign Language (ASL)
Lexicon, yet they struggle to capture long-term temporal
dependencies required for dynamic gesture modeling
[7, 19]. This has led to increasing interest in
transformer-based architectures that offer improved
spatio-temporal modeling.

In the context of ArSL and SSL recognition, research
is growing, driven by the availability of datasets such as
KArSL [4] and KSU-ArSL [3]. These datasets capture
regional linguistic variation and provide isolated signs for
experimentation. Specifically, KArSL includes 502 signs
collected from multiple signers, providing a
heterogeneous foundation for recognition tasks [4]. Most
models applied to ArSL/SSL, however, have employed
CNNSs or a combination of CNNs with Recurrent Neural
Networks (RNNs), which are effective for simple or static
signs but insufficient for modeling complex dynamic
gestures [9, 20]. For example, CNN models on KArSL
performed well for basic gestures but failed to capture
temporal relationships in complex sequences [4],
emphasizing the need for architectures that model
long-range temporal dependencies [15, 21].

KSU-ArSL, which focuses on SL-specific features,
remains underutilized with regard to advanced
architectures. Transformer-based models, leveraging
self-attention to capture spatio-temporal dependencies,
have shown success on large-scale datasets like WLASL
[19], surpassing CNN performance for isolated sign
recognition [21]. These gains are attributed to
transformers’ ability to model long-term dependencies
crucial for dynamic signs [23, 24]. However, transformer
applications in SSL remain rare, motivating this work’s
evaluation of Swin, VideoMAE, and TimeSformer for
SSL in low-resource settings.

Transfer learning has become a key strategy in SLR to
address data scarcity, particularly in low-resource
languages such as SSL [16, 25]. Pre-training on
large-scale video datasets like Kinetics-400 provides
robust initial weights that can be fine-tuned on smaller
SLR datasets [22, 26]. Studies on WLASL and similar
corpora have demonstrated that transfer learning
significantly  improves accuracy by leveraging
generalizable video representations [16, 19]. However,
limited research has applied pre-trained transformer
models to ArSL or SSL datasets [17, 21]. This study aims
to bridge this gap by applying Swin, VideoMAE, and
TimeSformer to the KSU-ArSL dataset, establishing a
performance benchmark for transformer-based models in
SSL recognition.

3 Dataset

KSU-ArSL dataset [3] is an isolated SL dataset. This
dataset comprises 16,000 videos covering 80 isolated
signs, including the Arabic alphabet, numbers, and
common daily-use signs, performed by 40 signers with
five repetitions each. The signs are categorized into static
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Fig. 1: Sample of KSU-ArSL Dataset

signs (e.g., numbers and most letters) and dynamic signs
(e.g., words requiring continuous hand movements), as
detailed in the ground truth shown in Table 1. The dataset
was recorded using Microsoft Kinect V1, Kinect V2, and
Sony handheld cameras. The dataset includes RGB,
depth, and skeleton data, capturing diverse modalities
under varied conditions, such as different lighting,
distances (1-2 meters), and signer attire. A sample frame
from the dataset, illustrating a signer performing a static
sign with annotated hand and body keypoints, is shown in
Figure 1. The comprehensive coverage of the KSU-ArSL
dataset of 80 signs and diverse recording modalities
makes it a robust benchmark for evaluating deep learning
models, supporting both  signer-dependent and
signer-independent experiments.

4 Methodology

This section describes how three transformer-based video
architectures (Swin Transformer, VideoMAE, and
TimeSformer) are fine-tuned on the KSU-ArSL dataset to
perform isolated Saudi Sign Language (SSL) recognition.
This can be broken down into four main parts: (1)
problem formulation, (2) training objective, (3) transfer
learning and preprocessing, (4) transformer architectures,
and (5) training setup.

4.1 Problem Formulation

The recognition task is treated as a video classification
problem. Each sign language video is uniformly sampled
into 7 = 16 frames, where each frame is a 224x224 RGB
image:

224x224x3
x:{xlaxZa"'axT}a x€R e (D

The model fg, parameterized by weights 0, takes this
sequence and projects it into a feature space that is then
mapped to a probability distribution over K = 80 gesture
classes:

f9 :RTXHXWXC — AK_l (2)

where AX~! is the probability simplex over 80
classes, and H is the frame’s height, W is width, and C is
the number of channels. The final predicted class is
chosen by the maximum likelihood criterion:

y=arg max

‘ 3
j€{0,...K—1} pe(yj |x) 3)

4.2 Training Objective

To train the models, the paper uses the cross-entropy loss
function, which penalizes the difference between predicted
probabilities and the ground truth class label:

K
Leg=— Y yjlog; )
j=1
where y; is a one-hot encoded true label. To improve
generalization and reduce overfitting, an Ly-norm
regularization term (weight decay) is added:

Liotal :LCE‘FAHOH% (5)

The optimization process minimizes this objective
over all training samples:

. L i i
6" = argmin Nthotal(fG(x())?y()) ©)
i=1

This ensures the learned parameters are those that best
generalize across the dataset.

4.3 Transfer Learning and Preprocessing

To address the low-resource nature of SSL datasets, all
models were pretrained on the large-scale Kinetics-400
action recognition dataset (240,000 clips) to acquire
robust spatiotemporal representations before fine-tuning
on KSU-ArSL. During adaptation, the early layers
responsible for generic motion feature extraction were
frozen, while higher layers including the classification
head were retrained to capture SSL-specific patterns.
Preprocessing steps ensured data consistency by
normalizing videos to 16 frames per second, resizing
frames to 224x224, and applying augmentation
techniques such as random cropping, horizontal flipping
with a probability of 0.5, and temporal subsampling. The
dataset was split into 80% training, 10% validation, and
10% testing, a configuration that balances learning and
evaluation while mitigating overfitting and enhancing
model  generalization across  different  signers,
environments, and lighting conditions.
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Table 1: Sample of ground truth

classes for the KSU-ArSL dataset [3]

Sign Type | Category Type

Classes

Static Numbers (11)

0,1,2,3,..,8,9,10

Static Letters (28)

Alf, Ba, Taah, Daah, Gim, Haa, ...,
Waw, Ya, Ha

Static Common Words (13)

Father, Feel, Hospital, King, Sorry, ...,

University, Where

Dynamic |Common Words (28)

Alslam Alikom, Arabic Language, ...,

Sign Language, Evening, Morning

4.4 Transformer Architectures

The three transformer architectures contribute uniquely to
SSL recognition by capturing spatiotemporal features in
different ways.

Swin Transformer: Employs Shifted Window
Multi-Head Self-Attention (SW-MSA), where attention is
computed locally within windows of size M, reducing
computational complexity as shown in Equation (7):

O(N*d) — O(M?d) (7

thus enabling efficient learning of both fine-grained hand
shapes and broader gesture context.

VideoMAE: Adopts a masked autoencoding
pretraining strategy in which approximately 75% of video
patches are randomly masked, forcing the model to
reconstruct missing patches:

xm[i]={gf[i]’ i;% ®)

This encourages the capture of robust spatiotemporal
dependencies. During fine-tuning, the decoder is replaced
with a classification head.

TimeSformer: Introduces divided space-time
attention by applying spatial attention within individual
frames and temporal attention across frames:

KT

Aspatia] = Softmax ( Qiihs ) Vs )
KT

Atemporal = Softmax < Qtdhl > Vi (10)

which reduces computational cost as shown in Equation

(11):
O(THW)?) — O(T*HW +TH*W) (11)

Collectively, these designs allow the models to
efficiently balance local feature extraction with
long-range temporal modeling, making them well-suited
for sign language recognition.

4.5 Training Setup

All models are fine-tuned on the KSU-ArSL dataset using
a transfer learning optimization strategy with
hyperparameters carefully selected for stability and
generalization. The learning rate is initialized at
Mmax = 3 X 107>, with a batch size of 4 due to GPU
memory limitations, and a weight decay parameter
A =0.01 is applied to penalize large weights and improve
generalization. The total loss, as defined in Equation (5),
combines cross-entropy with weight decay where Lcg is
the cross-entropy loss and |63 is the squared Euclidean
norm of the parameters.

A cosine annealing learning rate scheduler with
warmup is employed to gradually adjust the step size
during training. For iteration ¢, the learning rate is
computed as:

(t - Twarmup)ﬂ>:|

- Twa.rmup

(12)
where N, is the minimum learning rate, Mmax is the
peak learning rate, T is the total number of training steps,
and Tyarmup is the number of warmup steps. This schedule
ensures that the learning rate starts small, gradually
increases during warmup to stabilize convergence, and
then decreases smoothly, preventing overshooting in later
epochs.

To enhance training efficiency and model robustness,
early stopping is applied: if the validation loss does not
improve for three consecutive epochs, training is halted.
Formally, if

Nt = Nmin + % (nmax - nmin) |:1 + COS(

Lya(e) > minLyy(j) for three consecutive epochs e
Jj<e

13)

then optimization is stopped and the best-performing

model checkpoint is retained. This prevents unnecessary
computation and mitigates overfitting to the training set.

In addition, gradient-based optimization is carried out

with the AdamW optimizer, which decouples weight
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decay from the gradient update. For model parameters 0,
the update at step ¢ is:

A

ny
Vii+e

where 77, and 7; are the bias-corrected first and second
moment estimates of the gradients, and & is a small
constant for numerical stability.

This training setup—combining transfer learning,
regularization, adaptive learning rate scheduling, and
early stopping—ensures stable convergence, efficient use
of computational resources, and strong generalization to
unseen signers and signing conditions.

6 1=6—1n,- —niA 6 (14)

5 Pretraining and Fine-Tuning Strategy

This section outlines the complete pipeline used to adapt
transformer-based video models for isolated SSL
recognition. The process begins with dataset
preprocessing to standardize inputs and apply
augmentation for robustness. Next, models are pretrained
on the large-scale Kinetics-400 dataset to learn
transferable spatiotemporal representations. Finally, the
pretrained models are fine-tuned on the KSU-ArSL
dataset, adapting them to SSL-specific gesture dynamics.

The following subsections describe each stage in
detail, along with model-specific  architectural
considerations.

5.1 Dataset Preprocessing

The KSU-ArSL dataset contains videos of varying lengths
and signer styles, requiring preprocessing for consistency
and robustness. Each video is resampled to a fixed frame
rate of 16 FPS and resized to 224 x 224 pixels. For a video
of duration D, the total number of sampled frames is

T=16-D| (15)

from which exactly 16 frames are uniformly selected,
as defined in Equation (1). The dataset is split into 80%
training (12,800 clips), 10% validation (1,600 clips), and
10% testing (1,600 clips), ensuring generalization to
unseen data. Augmentation techniques are applied,
including random cropping, horizontal flipping with
probability p = 0.5, and temporal subsampling, to
enhance variability and prevent overfitting.

Each frame is also normalized per channel:
’ _ Xije— He

LeT T o (16)

X

where U, and o, denote the mean and standard
deviation of RGB channels.

These preprocessing steps expose the model to
diverse visual variations, enabling improved classification
accuracy and robustness during testing.

5.2 Pretraining Phase

To address the scarcity of annotated SSL data, all models
are pretrained on Kinetics-400, a large-scale dataset
containing 240,000 video clips across 400 human action

classes. This pretraining step provides strong
spatiotemporal representations transferable to SSL
recognition.

Formally, given a video input x € RT*H>WxC and jts
corresponding action label y € {l,...,400}, the
pretraining objective is defined using the cross-entropy
loss:

400
Lpretrain == Zy;' 10gij (17)
Jj=1

where y; is the one-hot encoded ground-truth label,
and y; is the predicted probability for class j.

Through minimizing Lprewrain, the model learns
generalizable spatiotemporal features such as motion
patterns and contextual dependencies, which can later be
adapted to the SSL domain via fine-tuning.

5.2.1 Swin Transformer

Swin Transformer (Shifted Window) is pretrained in a
supervised manner using 16-frame video clips divided
into non-overlapping 16 x 16 patches, producing 3,136
tokens embedded in a 96-dimensional space:

x, = PatchEmbed(x), x, € R3136x96 (18)

Its hierarchical structure comprises four stages with
feature dimensions (96, 192, 384, 768), and attention is
computed locally in 7 x 7 windows. Shifted windows
capture cross-window dependencies efficiently. The
attention mechanism is expressed as:

oK'
SW-MSA(Q,K,V) = Softmax - +B|V (19
h

5.2.2 VideoMAE

VideoMAE is pretrained in a self-supervised manner using
masked autoencoding, where approximately 75% of video
patches are masked (m = 0.75). Let M C {1,...,N} denote
the indices of unmasked patches, with |M| = (1 —m)N.
The masked input is defined in Equation (8).

The encoder processes unmasked tokens X € R
through L = 12 transformer layers with multi-head self-
attention:

|M|xd

MHSA(Q,K,V) = Concat(heady, ... ,head;,)Wp  (20)

KT
head; = Softmax ( Qldhl ) Vi (1)
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A lightweight decoder reconstructs masked patches,
encouraging robust spatiotemporal feature learning.

5.2.3 TimeSformer

TimeSformer adopts supervised pretraining with divided
space-time attention. Spatial attention is first computed
frame-wise, followed by temporal attention across frames
as shown in Equations (9) and (10).

The model contains 12 transformer layers with 768
hidden dimensions and 12 heads, enabling it to capture
long-range temporal dependencies critical for dynamic
sign gestures.

5.3 Fine-Tuning Phase

After pretraining, all models are fine-tuned on KSU-ArSL
to classify 80 isolated signs. Fine-tuning uses a learning
rate of 3 x 1072, batch size 4, weight decay A =0.01,and a
warmup ratio of 0.1. The total loss combines cross-entropy
with regularization:

Low =Lce+AY w} (22)
i

where Lcg is categorical cross-entropy. Training
employs cosine annealing for learning rate scheduling as
defined in Equation (12).

Early stopping halts training after three epochs
without validation improvement, ensuring efficiency and
preventing overfitting. Training is conducted on the Aziz
supercomputer of King Abdulaziz University, leveraging
parallel GPU resources.

5.3.1 Swin Transformer

The fine-tuned Swin Transformer averages frame-level
features temporally before feeding them into a linear
classifier, outputting logits over 80 classes. Its
hierarchical design enables effective extraction of both
local (hand shapes) and global (gesture context) patterns.
Swin Transformer Architecture is fully explained in
Figure 2.

5.3.2 VideoMAE

For fine-tuning, the pretraining decoder of VideoMAE is
replaced by a classification head. Each frame is divided
into 196 patches, resulting in 3,136 patches across 16
frames, which are embedded and passed through the
transformer encoder. VideoMAE  Architecture is
illustrated in Figure 3. Outputs are averaged:

1 N
@MZN;Z (23)

and mapped to class logits via a linear layer:

logits = W.zpool +be, W, € RF¥ (24)
The predicted class is:
y=arg max p(y;|x) (25)

j€40,...,79}
with training objective:
K—1

y;log (Softmax(logits) ;) (26)
=0

Leg = —

5.3.3 TimeSformer

TimeSformer processes each video through divided
attention to model spatial and temporal dependencies,
then pools frame-level features into a linear classification
head. Pretrained for 400 actions on Kinetics-400, it is
fine-tuned for 80 SSL signs, producing logits for
classification as shown in Figure 4.

5.4 Model Comparison

All three models share a common pipeline of dataset
preprocessing, Kinetics-400 pretraining, and KSU-ArSL
fine-tuning, but their architectural differences influence
their SSL performance. Swin Transformer’s hierarchical
attention excels in multi-scale feature extraction, making
it well-suited for complex gestures. VideoMAE, with its
self-supervised masked autoencoding, demonstrates
strong robustness to noise and signer variability,
improving generalization under real-world conditions.
TimeSformer, with divided space-time attention, captures
long-range temporal dependencies, making it particularly
effective for dynamic gestures.

Table 2 summarizes the comparative strengths of the
models: Swin is best for complex gestures, VideoMAE
for noisy environments, and TimeSformer for temporal
modeling. Together, they provide a comprehensive
benchmark for transformer-based SSL recognition.

6 Results and Discussion

The transformer-based models were evaluated on the
KSU-ArSL test subset using multiple performance
metrics, including overall accuracy, precision, recall,
Fl-score, and class-wise results derived from the
confusion matrix. These metrics are defined as:

TP+TN
Accuracy = + 27
TP+TN+FP+FN
TP
Precision = — (28)
TP+ FP
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-

SW-MSA

3
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4
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Fig. 2: Swin Transformer Architecture for Isolated SLR. The pipeline processes KSU-ArSL video frames through
hierarchical stages with SW-MSA, followed by temporal averaging and classification.

TP
Recall = ———— 29
= TPIFN 29
Fi— 2 - Precision - Recall (30)

Precision + Recall

where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respectively.

This evaluation framework enables not only overall
performance assessment but also identification of
class-specific weaknesses and generalization ability
across signer variation. Precision and recall scores ranged
from 85%-100% across most signs, though -certain
gestures such as “fa” and “kha” showed reduced accuracy
(62-65%), likely due to limited training samples and
strong visual similarity with other signs. Table 3 shows
accuracy comparison per class on the three models.
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KSU-ArSL Frames

Preprocessing

(Sample, Resize, Patch)

Patches
3136 x 768

Pretraining Phase

Fine-Tuning Phase

_____________________________

Masked Patches
~75% Masked,
M| =784 x 768

Reconstructed Video
16224 224'x 3

Full Patches
3136 x 768

Classification Head
Pool, Linear

Fig. 3: VideoMAE Architecture for Isolated SL Recognition. The pipeline starts with KSU-ArSL dataset frames,
followed by preprocessing. Pretraining uses masked autoencoding to reconstruct videos, while fine-tuning classifies 80
isolated SL gestures.

6.1 Model Performance

Among the three transformer models, Swin Transformer
achieved the highest performance, reaching 97.50%
accuracy, 97.69% precision, and 97.50% recall. Its
hierarchical architecture and Shifted Window Multi-Head
Self-Attention (SW-MSA) enabled strong multi-scale
representation learning, excelling at both static and

dynamic gestures. Table 4 summarizes the performance
of Swin, VideoMAE, and TimeSformer.

VideoMAE followed with 95.25% accuracy,
benefiting from its masked autoencoding strategy, which
enhances robustness to signer variation (across 40 signers
in the dataset) and noisy frames, though at higher
computational cost.
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KSU-ArSL Frames

Pretraining Phase

Preprocessing
(Sample, Resize, Patch)

Patches
3136 x T68

Fine-Tuning Phase

U or e s R T
Space-Time Attention
12 Layers
Spatial. Temporal

Classification Head
400 Classes (Kinetics-400)
Class Probabilities
400 Classes

Space-Time Attention
12 Layers

Spatial, Temporal

Classification Head
Pool, Linear
Class Probabilities
80 Classes

Fig. 4: TimeSformer Architecture

TimeSformer achieved 93.44% accuracy, leveraging
divided space-time attention to capture long-range
dependencies efficiently, though it performed slightly
worse on static signs compared to Swin.

Training and validation loss curves, as depicted in
Figure 5, showed smooth convergence across models,
confirming stable optimization with minimal overfitting.
This validates the effectiveness of the
pretraining—fine-tuning  strategy, where pretrained
spatiotemporal representations from Kinetics-400 were
successfully adapted to SSL recognition.

6.2 Comparison with Prior Work

Table 5 presents a comparison between transformer-based
approaches and previous CNN-based baselines on the
KSU-ArSL dataset. Swin Transformer achieved 97.50%
accuracy, surpassing Al Khuzayem et al. [27]s
CNN-BIiLSTM (94.46%) and Bencherif et al. [3]’s 3D
CNN + Point CNN (89.62%), both of which were more
sensitive to signer dependency and gesture variability.
VideoMAE also outperformed CNN-based models,
demonstrating the effectiveness of self-supervised
pretraining in low-resource sign language tasks.
TimeSformer, while slightly lower in accuracy, still
exceeded prior CNN-based approaches due to its efficient
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Table 2: Comparison of Models for Isolated SL. Recognition

Swin Transformer

VideoMAE TimeSformer

Architecture Hierarchical, 4 stages (96, 192, 384, 768 dim)

Encoder-decoder, 12 layers (768 dim)

12 layers (768 dim, 12 heads)

Pretraining Strategy Supervised (Kinetics-400)

Self-supervised (Masked Autoencoding)

Supervised (Kinetics-400)

Attention Mechanism Shifted Window (SW-MSA)

Multi-Head Self-Attention (MHSA)

Divided Space-Time Attention

SL Suitability

Multi-scale feature extraction for complex gestures | Noise-robust generalization for real-world SL | Long-range temporal dependencies for dynamic gestures

modeling of temporal dependencies. Figure 5 illustrates
the training and validation loss curves for all three
models, confirming convergence and stable learning
dynamics across epochs.
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Fig. 5: Training and validation loss curves for Swin,
VideoMAE, and TimeSformer on KSU-ArSL.

These findings confirm that transformer architectures
outperform traditional CNN-based methods for isolated
sign language recognition. The success of Swin
Transformer is attributed to its hierarchical design and
supervised pretraining on large-scale video datasets,
while VideoMAE benefits from masked autoencoding,
which improves resilience to occlusion and signer
variability. In contrast, CNN-based approaches lack the

ability to model long-range temporal dependencies and
complex spatial features as effectively as transformers.

6.3 Discussion

The results highlight that transformer-based SSL
recognition models generalize well across unseen signers
and environments, making them strong candidates for
real-world deployment. However, class imbalance and
visual similarity remain challenges, as shown by reduced
performance on certain underrepresented or visually
overlapping signs. Addressing these limitations may
involve class-balancing strategies, focal loss functions, or
synthetic data augmentation to strengthen representation
of difficult signs.

Looking  forward, we plan to  conduct
signer-independent  evaluations to  further  test
generalizability, and to explore cross-lingual transfer
learning from other sign language datasets such as ASL,
British Sign Language (BSL), and Chinese Sign
Language (CSL), leveraging shared spatiotemporal
features across sign languages. Another promising avenue
is to investigate hybrid architectures combining CNNs
and RNNs with transformers model, to capture
complementary strengths: transformers for global
dependencies and BiLSTMs for fine-grained temporal
modeling. Ultimately, these advances aim to contribute
toward real-time, robust SSL recognition systems,
supporting accessible communication technologies for the
deaf and hard-of-hearing communities.

7 Conclusion and Future Work

This study establishes a benchmark for isolated Saudi
Sign Language (SSL) recognition using three
transformer-based architectures (Swin Transformer,
VideoMAE, and TimeSformer) applied to the KSU-ArSL
dataset. By adopting a transfer learning approach, the
models were able to deliver high recognition accuracy
despite the limited availability of SSL-specific training
data. The Swin Transformer emerged as the strongest
performer, achieving 97.50% accuracy, followed by
VideoMAE at 95.25%, and TimeSformer at 93.44%.
These results demonstrate the advantage of transformer
architectures in modeling complex spatiotemporal
patterns and underline the importance of pretraining on
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Table 3: Per-class Accuracy Comparison of Swin
Transformer, VideoMAE, and TimeSformer Models on
the KSU-ArSL Dataset

Class Swin Transformer | VideoMAE | TimeSformer
0 80% 90% 70%
I 100% 95% 90%
10 100% 85% 75%
2 100% 90% 100%
3 90% 80% 100%
4 95% 100% 80%
5 100% 95% 85%
6 100% 95% 100%
7 100% 90% 95%
8 95% 90% 90%
9 95% 85% 85%
ain 100% 100% 100%
alf 100% 100% 100%
alslam-aliukom 100% 100% 100%
arabic-language 100% 80% 100%
ba 100% 90% 95%
brother 95% 95% 100%
cold 100% 100% 100%
come-in 100% 100% 100%
daah 95% 95% 85%
dal 95% 100% 90%
deaf 100% 100% 100%
death 95% 95% 100%
doctor 95% 100% 100%
english-language 95% 100% 100%
evening 95% 100% 65%
fa 95% 90% 55%
Tamily 100% 100% 100%
father 100% 100% 100%
feel 100% 100% 95%
file 100% 100% 100%
gim 100% 90% 100%
gin 100% 95% 90%
ha 95% 80% 60%
haa 100% 95% 100%
hello 100% 100% 100%
hospital 100% 100% 100%
hot 100% 100% 100%
how-are-you 95% 100% 85%
job 80% 100% 100%
kaf 95% 100% 90%
kha 90% 65% 80%
king 100% 100% 90%
Tam 100% 100% 100%
manager 95% 100% 100%
medication 100% 100% 100%
meeting 100% 100% 100%
mem 95% 95% 100%
morning 95% 100% 100%
mosque 100% 100% 100%
mother 100% 100% 95%
name 95% 100% 95%
non 100% 100% 65%
pain 95% 100% 100%
pharmacy 100% 100% 100%
prayer 95% 100% 100%
qaf 100% 65% 100%
ra 100% 95% 85%
reason 100% 100% 100%
sad 100% 65% 75%
saud 100% 100% 100%
shin 100% 100% 100%
sign-language 100% 100% 100%
sin 95% 90% 95%
sister 95% 100% 100%
soITy 100% 100% 100%
surgery 100% 100% 100%
ta 100% 90% 95%
taah 95% 80% 75%
tha 100% 100% 90%
thad 100% 100% 95%
thal 95% 100% 100%
thank 100% 100% 100%
tired 95% 95% 85%
university 95% 100% 95%
vacation 100% 100% 100%
waw 100% 95% 100%
where 100% 95% 100%
ya 100% 100% 95%
zal 90% 90% 85%

large-scale action datasets to address the challenges of
data scarcity in sign language research.
Beyond their technical performance, these findings

represent an important step toward advancing accessible
communication technologies for the deaf and

Table 4: Comparison of Model Performance

Model Accuracy (%) Precision (%) Recall (%)
Swin 97.50 97.69 97.50
VideoMAE 95.25 95.71 95.25
TimeSformer 93.44 94.34 93.44

hard-of-hearing community in Saudi Arabia. Automatic
SSL recognition systems can be integrated into real-time
translation tools, inclusive educational platforms,
healthcare services, and public service interfaces,
reducing barriers between signers and the wider hearing
population. In educational contexts, such systems can
support bilingual learning environments and provide
greater access to instructional content. Likewise,
integration into broadcasting and public communication
systems can improve accessibility through automated
captioning and  sign-to-text translation.  These
contributions align closely with the United Nations
Sustainable Development Goal 10 (Reduced
Inequalities), reinforcing the societal relevance of this
research in promoting inclusivity and equal access to
information.

Looking ahead, future research will focus on several
directions. First, extending recognition from isolated
signs to continuous signing remains a critical challenge,
as it involves handling gesture coarticulation and
segmentation. Second, there is a growing need to
optimize transformer architectures for real-time and
resource-constrained environments, particularly  for
deployment on mobile and wearable devices. Third,
multimodal fusion approaches, which combine visual
input with skeletal, depth, or motion data, offer a
promising path to enhanced robustness. Finally,
cross-lingual transfer learning, leveraging resources from
sign languages such as ASL, BSL, and CSL, may provide
further improvements in generalization and adaptability.
Collectively, these avenues will not only refine SSL
recognition systems but also contribute to building
practical, scalable, and inclusive technologies that
empower diverse signing populations.
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Table 5: Accuracy Comparison of Models for Isolated Saudi Sign Language Recognition on KSU-ArSL Dataset

Approach Architecture Pretraining Strategy Accuracy (%)
Bencherif et al. [3] 3D CNN + Point CNN Supervised learning 89.62
Al Khuzayem et al. [27] CNN-BiLSTM Supervised learning with augmentation 94.46
TimeSformer (Ours) Transformer Supervised video classification 93.44
VideoMAE (Ours) Transformer Self-supervised video reconstruction 95.25
Swin Transformer (Ours) Transformer Supervised video classification 97.50
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