

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/190608

A Novel Limit of Bipolar K-Q Group Acting on ϑ -Subgroup, Normal Subgroup, and Homomorphism of ϑ -Fuzzy Subgroup

Suleiman Shelash Mohammad^{1,2,*}, Premkumar Munusamy³, A. Prasanna⁴, Hanan Jadallah¹, N. Raja⁵, R Selvakumari⁶, M. Venkatachalam⁷, P. Shanmugavel⁸, and Asokan Vasudevan^{9,10,11}

Received: 11 Dec. 2024, Revised: 8 Mar. 2025, Accepted: 20 May 2025

Published online: 1 Nov. 2025

Abstract: In this paper, we introduce and define the concept of a Bipolar K-Q Group acting on a ϑ -fuzzy subset, along with its associated algebraic properties. The study begins by examining the fundamental notion of a Bipolar K-Q Group acting on ϑ -fuzzy subgroups, shedding light on their structural and theoretical attributes. We then extend the discussion to Bipolar K-Q Groups acting on ϑ -fuzzy cosets, providing a detailed analysis of their algebraic properties and significance. These concepts are instrumental in exploring the interplay between group theory and fuzzy logic. Furthermore, we present a new notation: the Bipolar K-Q Group acting on a ϑ -fuzzy normal subgroup. This notion is further investigated in the context of quotient groups, particularly with respect to homomorphisms. We demonstrate various group-theoretical properties, including normality, compatibility, and structural relationships, to highlight the robustness of this framework. The paper provides a comprehensive foundation for understanding the algebraic behavior of these new group structures, offering insights into their broader theoretical and practical applications. By combining the principles of fuzzy logic and algebraic groups, this work advances the mathematical study of uncertainty and creates opportunities for future research in related areas of Mathematics.

Keywords: Fuzzy Sets, Fuzzy Subgroup, Bipolar K-Q Group Acting on ϑ -fuzzy subset, Bipolar K-Q Group Acting on ϑ -fuzzy subgroup, Bipolar K-Q Group Acting on ϑ -fuzzy normal subgroup, Bipolar K-Q Group Acting on ϑ -fuzzy coset.

1 Introduction

Let $\xi_T^{\ K}_{0}$ * be an Bipolar acting defined as Ajmal [1] described the new notation of Homomorphism of groups, Correspondence theorem and fuzzy quotient groups in 1994. In 2005, Fuzzy group theory developed by Mordeson [2]. Fuzzy normal subgroups and fuzzy cosets introduced by Mukherjee [3] in 1984. Gupta [4] initiated by the new concept of Theory of T-norms and

fuzzy inference methods in 1984. In Das [5], developed the concept of Fuzzy groups and level subgroups in 1981. Khare S S[6] described the concept of Fuzzy Homomorphism and Algebraic Structures in 1993. In 1979, Fuzzy groups redefined introduced by Sherwood H [7]. Rosenfeld A [8] first introduced by Fuzzy Groups in 1971. Abdul Salam [9] described the new notation of A new Construction of a group acting on fuzzy algebraic

¹Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan

²Faculty of Business and Communications, INTI International University, Negeri Sembilan, Malaysia

³Department of Mathematics, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, India

⁴Department of Mathematics, Jamal Mohamed College (Autonomous), Bharathidasan University, Tamilnadu, India

⁵Department of Visual Communication, Sathyabama Institute of Science and Technology, Deemed to Be University, Chennai, India

⁶Vel Tech Rangarajan, Sagunthala R&D Institute of Science and Technology, Chennai, India

⁷Department of Mathematics, Erode Sengunthar Engineering College, Perundurai, Erode, Tamilnadu, India

⁸Department of Mathematics, Selvamm Arts and Science College (Autonomous), Tamilnadu, India

⁹Faculty of Business and Communications, INTI International University, Negeri Sembilan, Malaysia

¹⁰Faculty of Management, Shinawatra University, Pathum Thani, Thailand

¹¹Business School, Wekerle International University, Budapest, Hungary

^{*} Corresponding author e-mail: dr_sliman@yahoo.com

structure in 2016. In 1982, Fuzzy Sets and Possibility theory initiated by Yager R R [10]. Tarnauceanu [11] described the new concept of Classifying fuzzy normal subgroups of finite groups in 2015. In 1965, Fuzzy Sets first introduced by Zadeh [12]. In Nagarajan [13], developed by the concept of a new structure and construction of Q-fuzzy groups in 2009.

2 Preliminaries

Definition 1

Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping μ : $X \to [0,1]$.

Definition 2

Let G be any group. A mapping μ : G \rightarrow [0,1] is a fuzzy group if

$$1.\mu(xy) \ge \min \mu(x), \mu(y)$$
$$2.\mu(x^{-1}) = \mu(x), \text{ for all } x, y \in G$$

Definition 3

Let Q and G be a set and a group respectively. A mapping $\mu\colon G\times Q\to [0,1]$ is called Q-fuzzy set in G. For any Q-fuzzy set μ in G and $t\in [0,1]$ we define the set

 $U(\mu; t) = x \text{ in } G / \mu(x,q) \ge t, q \in Q$

Which is called an upper cut of " μ " and can be used to characterize μ .

Definition 4 Let G and Q be any two nonempty sets and κ in [0,1] and A be a Q-FSb of a set G. The fuzzy set A^{κ} of G is called the κ -Q-FSb of G is defined by:

 $A^{\kappa}(\theta,q) = (A(\theta,q),\kappa), \forall \theta \in G \text{ and } q \text{ in } Q.$

3 A Novel Limit of Bipolar Group Acting on Subgroup and Normal subgroup

Definition (3.1)

Let $\xi_T{}^K{}_0*$ be an Bipolar acting defined as $\xi_T{}^{K-}{}_0*$: ([0,1] \times [0,1]) \times Q) \to [0,1] and $\xi_T{}^{K+}{}_0*$: ([0,1] \times [0,1]) \times Q) \to [0,1] by $\xi_T{}^{K-}{}_0*$ ((a_1,a_2),q)={ $\xi_T{}^{-}{}_0*$ (($1-a_1$),q),k) \wedge $\xi_T{}^{-}{}_0*$ ((($1-a_2$),q),k)} and $\xi_T{}^{K+}{}_0*$ ((a_1,a_2),q)={ $\xi_T{}^{+}{}_0*$ (($1-a_1$),q),k) \vee $\xi_T{}^{+}{}_0*$ (($1-a_2$),q),k)} Infect $\xi_T{}^{K}{}_0*$ admits the properties given below:

$$\begin{array}{l} 1.(\mathbf{a})\ \xi_{T}^{K-}{}_{0}\ast((a_{1},a_{2}),q) = \xi_{T}^{K-}{}_{0}\ast((a_{2},a_{1}),q) \\ (\mathbf{b})\ \xi_{T}^{K+}{}_{0}\ast((a_{1},a_{2}),q) = \xi_{T}^{K+}{}_{0}\ast((a_{2},a_{1}),q) \\ 2.(\mathbf{a})\ \xi_{T}^{K-}{}_{0}\ast((a_{1},1),q) = \xi_{T}^{K-}{}_{0}\ast((1,a_{1}),q) = \\ \xi_{T}^{K-}{}_{0}\ast(((a_{1},1),q),k) = 0 \\ (\mathbf{b})\ \xi_{T}^{K+}{}_{0}\ast((a_{1},1),q) = \xi_{T}^{K+}{}_{0}\ast((1,a_{1}),q) = \\ \xi_{T}^{K-}{}_{0}\ast(((a_{1},1),q),k) = 0 \end{array}$$

Definition(3.2)

Let X and Q be any two non-empty set and $k, \vartheta \in [0,1]$. Let $\xi_0^{\vartheta-}{}_k*: (X\times Q)\to [0,1]$ and $\xi_0^{\vartheta+}{}_k*: (X\times Q)\to [0,1]$ is a Bipolar K-Q Group.

$$\begin{array}{l} 1.\xi_0^{\vartheta^-}{}_k*(a_1*s,q) = \{1-\xi_0^-*((1,a_1)*s,q),k) \wedge ((1-\vartheta),q),k)\}, \forall a_1 \in [0,1], q \in \textit{Qandk} \in [0,1] \\ 2.\xi_0^{\vartheta^+}{}_k*(a_1*s,q) = \{1-\xi_0^+*((1,a_1)*s,q),k) \wedge ((1-\vartheta),q),k)\} \end{array}$$

Example(3.2.1)

Let X = Set of Young People define K-Q Group Acting ϑ -fuzzy subset of X

$$\xi_0^{\vartheta-}{}_k * (a_1 * s, q) = \begin{cases} 1, & if a_1 < 26 \\ \frac{45 - a_1}{15}, & if 26 \le a_1 \le 45 \\ 0, & if a_1 > 45 \end{cases}$$

$$*(a * s, q) = \begin{cases} 1, & \text{if } a < 30 \\ \frac{55 - a}{15}, & \text{if } 30a55 \\ 0, & \text{if } a > 55 \end{cases}$$

Take $\vartheta = 0.8$ and $a_1 = 30$, we have $\xi_0^{\vartheta}{}_k * (a_1 * s, q) = 0.8$

$$\begin{array}{c} [(i)] \\ (a)*((aa)*s),q) \ \big\{*((a*s,q),k)\ *((a*s,q),k)\big\} \\ (b)*((aa)*s),q) \ \big\{*((a*s,q),k)\ *((a*s,q),k)\big\} \\ (ii)(a)*((a^1*s),q)\ *((a*s,q),k) \\ (b)*((a^1*s),q)\ *((a*s,q),k) \end{array}$$

[Continue with Example 3.3.1]

Example 1(3.3.1). Let X and Q be any two non-empty set and * be a Bipolar K-Q Group Acting fuzzy subset of G. Let $G = \{1,a,a,aa\}$ defined as:

Define Bipolar K-Q Group Acting -fuzzy subset * of G, for = 0.6 as follows:

Clearly, * is Bipolar K-Q Group Acting -fuzzy subgroup of G.

2.Definition 2(3.2). Let X and Q be any two non-empty set and k, [0,1]. Let : $(X \times Q) \rightarrow [0,1]$ and : $(X \times Q) \rightarrow [0,1]$ is a Bipolar K-Q Group Acting subset of * of X denotes the Bipolar K-Q Group Acting -fuzzy subset of X and defined as follows that:

[(a)]

$$1.*(a * s,q) = \{1 - *((1,a) * s,q),k) ((1 -),q),k)\}, a [0,1],$$

$$q Q and k [0,1]$$

$$2.*(a * s,q) = \{1 - *((1,a) * s,q),k) ((1 -),q),k)\}$$

Example 2(3.2.1). Let $X = \{ \text{Set of Young People} \}$ define K-Q Group Acting -fuzzy subset of X

$$*(a*s,q) = \begin{cases} 1, & \text{if } a < 26 \\ \frac{45-a}{15}, & \text{if } 26a45 \\ 0, & \text{if } a > 45 \end{cases}$$

$$*(a*s,q) = \begin{cases} 1, & \text{if } a < 30 \\ \frac{55-a}{15}, & \text{if } 30a55 \\ 0, & \text{if } a > 55 \end{cases}$$

Take = 0.8 and a = 30, we have *(a * s,q) = 0.8

[Continue with Example 3.3.1]

Example 3(3.3.1). Let X and Q be any two non-empty set and * be a Bipolar K-Q Group Acting fuzzy subset of G. Let $G = \{1,a,a,aa\}$ defined as:

Define Bipolar K-Q Group Acting -fuzzy subset * of G, for = 0.6 as follows:

Clearly, * is Bipolar K-Q Group Acting -fuzzy subgroup of G.

2.Proposition 1(3.4). Let * be Bipolar K-Q Group Acting - fuzzy subgroup of (S,) in acting on S. Then the following statements holds:

Proof.[(i)]
Since *(a * s,q) = *((e * s,q),k) and also

$$*(a*s,q) = \{*((a*s,q),k) * ((a*s,q),k)\}$$

$$= \{*((a * s,q),k) * ((a * s,q),k)\} = *((a * s,q),k) * (a * s,q) = *((e * s,q),k), a [0,1], q Q and k [0,1]$$

$$(a)Since *(a * s,q) = *((e * s,q),k) and also$$

$$*(a*s,q) = \{*((a*s,q),k) * ((a*s,q),k)\}$$

$$= \{*((a * s,q),k) * ((a * s,q),k)\} = *((a * s,q),k) * (a * s,q) = *((e * s,q),k), a [0,1], q Q and k [0,1]$$

$$(ii)(a)$$

$$*(aa*s,q) = *((aa*s,q)(aa*s,q))$$

$$\{*((aa*s,q),k) * ((a*a*s,q),k)\} * (*(e*s,q),k) * ((a*s,q),k) * (*(a*s,q),k) *$$

Similarly,

$$*(a*s,q) = *(aaa*s,q)$$

$$\{*((aa^1 * s,q),k) *((a * s,q),k)\}$$
 $\{*((e * s,q),k) *((a * s,q),k)\} *(a * s,q) *((a * s,q),k)$

Note 1(3.5).

[(i)]

$$(a)*(a*(st),q) \ \big\{*((a*s,q),k) \ *((a*t,q),k)\big\}$$

(b)*(a * (st),q)
$$\{*((a * s,q),k) *((a * t,q),k)\}$$
 [Continue with remaining notes...]

Theorem 1(3.6). Every Bipolar K-Q Group Acting fuzzy subgroup is also Bipolar K-Q Group Acting -fuzzy subgroup of G.

*Proof.*Let * be a Bipolar K-Q Group Acting -fuzzy subgroup of G. Now,

$$\begin{aligned} & [(a)]^*((aa) * s,q) & \{(1 - *((aa * s,q),k)) & ((1 -),q),k)\} \\ & \{1 - (*((a * s,q),k) * ((a * s,q),k)) & ((1 -),q),k)\} = \{(1 - *((a * s,q),k)) & ((1 -),q),k)) & (1 - *((a * s,q),k)) & ((1 -),q),k))\} \\ & = \{*((a * s,q),k) * ((a * s,q),k)\} * ((aa) * s,q) \\ & \{*((a * s,q),k) * ((a * s,q),k)\} \end{aligned}$$

1.Theorem 2(3.7).

Let A and B be any two non-empty sets, G be a group, and let μ and ν be Bipolar Group Acting fuzzy subgroups of G with operators on G such that

$$\mu, \nu: G \rightarrow [0,1]$$

and let ω : $G \rightarrow [0,1]$ be defined as

$$\omega(x) = \min\{\mu(x), \nu(x)\}, \quad \forall x \in G.$$

Then ω is also a Bipolar Group Acting fuzzy subgroup of G.

Proof:

(a)Let $x, y \in G$. Then,

$$\omega(xy) = \min\{\mu(xy), \nu(xy)\}.$$

Since μ and ν are Bipolar Group Acting fuzzy subgroups, we have:

$$\mu(xy) \ge \min\{\mu(x), \mu(y)\}, \quad v(xy) \ge \min\{v(x), v(y)\}.$$

$$\omega(xy) \ge \min\{\omega(x), \omega(y)\}.$$

(b)Let $x \in G$. Then,

$$\omega(x^{-1}) = \min\{\mu(x^{-1}), \nu(x^{-1})\}.$$

Since μ and ν are Bipolar Group Acting fuzzy subgroups, we have:

$$\mu(x^{-1}) = \mu(x), \quad \nu(x^{-1}) = \nu(x).$$

Therefore,

$$\omega(x^{-1}) = \min\{\omega(x)\}.$$

Hence, ω is also a Bipolar Group Acting fuzzy subgroup of G.

[3.8] Let A and B be any two non-empty sets, G be a group, and let μ and ν be Group Acting fuzzy subgroups of G with operators on G. Then their sum

$$(\zeta_0^- k * (*))^{\vartheta -} (a_1' a_2' * s, q) \ge$$

$$\{ (\zeta_0^- k * (*))^{\vartheta -} (a_1' * s, q) \land$$

$$(\zeta_0^- k * (*))^{\vartheta -} (a_2' * s, q) \}$$

is also a Bipolar Group Acting fuzzy subgroup of G.

Proof: Let $x, y \in G$. Since μ and ν are Group Acting fuzzy subgroups of G, we have

$$\mu(xy) \ge \min\{\mu(x), \mu(y)\}, \quad \nu(xy) \ge \min\{\nu(x), \nu(y)\}.$$

Thus,

$$(\zeta_0^- k * (*))^{\vartheta -} (a_1' a_2' * s, q) \ge$$

$$\{ (\zeta_0^- k * (*))^{\vartheta -} (a_1' * s, q) \land$$

$$(\zeta_0^- k * (*))^{\vartheta -} (a_2' * s, q) \}$$

(i) For all $x \in G$,

$$(\mu + \nu)(e) = \max{\{\mu(e), \nu(e)\}} = 1.$$

(ii)(a) For all $x \in G$,

$$(\mu + \nu)(x^{-1}) = \max\{\mu(x^{-1}), \nu(x^{-1})\}.$$

Since $\mu(x^{-1}) = \mu(x)$ and $\nu(x^{-1}) = \nu(x)$, it follows

$$(\mu + \nu)(x^{-1}) = (\mu + \nu)(x).$$

(b) Since the conditions for a fuzzy subgroup hold, we conclude that

 $\mu + \nu$ is a Bipolar Group Acting fuzzy subgroup of G.

Corollary 1(3.9). The intersection of any finite number ofBipolar K-QGroup fuzzysubgroupofGisalsoBipolarK $QGroupActing\vartheta - fuzzysubgroupofG.$

Proposition 2(3.10). Let X and Q be any two set, G be a group non-empty $\vartheta, k \in [0, 1]$ and * beaBipolarK - QGroupActing ϑ $fuzzysubsetsuchthat * (a_1 * s,q)$ $*((a_1^{-1} * s, q), \forall a_1 \in G, q \in Q \text{ and } s \in S \text{ and } *$

$$(a_1 * s, q) = *((a_1^{-1} * s, q), \forall a_1 \in G, q \in Q \text{ and } s \in S$$

Let $(n,q) \geq (m,q)$, where $k, \vartheta \in [0,1]$ and (m,q) = $\sup\{*(a_1*s,q), \forall a_1 \in G, q \in Q \text{ and } s \in S\} \text{ and }$

$$(m,q) = \inf\{*(a_1 * s, q), \forall a_1 \in G, q \in Q \text{ and } s \in S\}$$

Then * is also Bipolar K-Q Group Acting $\vartheta - fuzzysubgroupofG$.

Proof

(a) We have
$$(n,q) \ge (m,q) \Rightarrow (\vartheta,q) \ge \sup\{\xi_0^{\vartheta_{-k}} * (a_1 * s,q), \forall a_1 \in G, q \in Q \text{ and } s \in S\}$$

So, we have $\xi_0^{\vartheta_{-k}} * (a_1 * s,q) = \{(1-\xi_0^- * ((a_1 * s,q),k)) \wedge ((1-\vartheta),q),k)\}$
Also,
 $\xi_0^{\vartheta_{-k}} * ((a_1a_2) * s,q) \ge \xi_0^{\vartheta_{-k}} * ((a_1 * s,q),k) \wedge \xi_0^{\vartheta_{-k}} * ((a_2 * s,q),k)\}$

(b) Similarly for positive membership function:

We have
$$(n,q) \ge (m,q)$$
 $\Rightarrow (\vartheta,q) \le \inf\{\xi_0^{\vartheta+}_k * (a_1 * s,q), \forall a_1 \in G, q \in Q, s \in S\}$ $\xi_0^{\vartheta+}_k * (a_1 * s,q), \forall ((1-\vartheta),q),k)\}$ Also, $\xi_0^{\vartheta+}_k * (a_1 * s,q), \forall ((1-\vartheta),q),k)\}$ Also, $\xi_0^{\vartheta+}_k * (a_1 * s,q), \forall \xi_0^{\vartheta+}_k * ((a_2 * s,q),k)\}$ Therefore, $\xi_0^{\vartheta+}_k *$ is Bipolar $K-Q$ Group Acting

Therefore, $\xi_0^{\vartheta+}_{k}$ * is Bipolar K-Q Group Acting ϑ fuzzy subgroup of G.

Definition(3.13)

Let $\xi_0^{\vartheta -}_{k}$ be Bipolar K - Q Group Acting ϑ fuzzy subgroup of G. Let Bipolar K-Q Group Acting ϑ fuzzy left coset $(a_1 * s, q) \xi_0^{\vartheta -} {}_k *$ and $(a_1 * s, q) \xi_0^{\vartheta +} {}_k *$ be defined as follows:

$$(a_1 * s,q)\xi_0^{\vartheta_{-k}} * (x * s,q) = \{1 - \xi_0^{-k} * ((a_1^{-1}x * s,q),k) \wedge ((1 - \vartheta),q),k)\}$$

$$\begin{array}{lll} (a_1 & * & s,q)\xi_0^{\vartheta+}{}_k & * & (x & * & s,q) = \\ \{1 & -\xi_0^+{}_k & * & ((a_1^{-1}x * s,q),k) \lor ((1 & -\vartheta),q),k)\}, \\ \forall a_1,x \in G,q \in Q. \end{array}$$

Definition (3.14) The group $G/\xi_0^{\vartheta}{}_{k}*$ of Bipolar K-Q Group Acting ϑ fuzzy coset of a Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G is called Bipolar K - Q Group Acting ϑ Quotient group of G by $\xi_0^{\vartheta}_{k}$ *.

theorem (3.15) Every fuzzy normal subgroup is also Bipolar K - Q Group Acting ϑ fuzzy normal subgroup of G. proof

(a)Let
$$\xi_0^{\vartheta}_k *$$
 is Bipolar $K - Q$ Group Acting ϑ fuzzy normal subgroup of G

$$\Rightarrow (a_1 * s, q) \xi_0^{\vartheta}_{-k} * = \xi_0^{\vartheta}_{-k} * (a_1 * s, q)$$

Then for any
$$a_1, x \in G$$
 and $q \in Q$

We have,
$$\xi_0^{\vartheta_-}_k * (a_1^{-1}x * s, q) = \xi_0^{\vartheta_-}_k * (xa_1^{-1} * s, q)$$

So, $\xi_0^{\vartheta_-}_k * (a_1^{-1}x * s, q) = \{1 - \xi_0^- * ((a_1^{-1}x * s, q), k) \wedge ((1 - \vartheta), q), k)\}$
 $= \{1 - \xi_0^- * ((xa_1^{-1} * s, q), k) \wedge ((1 - \vartheta), q), k)\}$

$$= \{1 - \xi_0^- * ((xa_1^{-1} * s, q), k) \wedge ((1 - \vartheta), q), k)\}$$

$$\Rightarrow (a_1 * s, q) \xi_0^{\vartheta}{}_k * (x * s, q) = \xi_0^{\vartheta}{}_k * (a_1 * s, q)(x *$$

$$(a_1 * s, q) \subseteq 0$$
 $k * (x * s, q) = s, q), \forall a_1, x \in G \text{ and } q \in Q$

(b)Let $\xi_0^{\vartheta}_{k}$ * is Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G

$$\Rightarrow (a1*s,q)\xi_0^{\vartheta^+}{}_k* = \xi_0^{\vartheta^+}{}_k*(a_1*s,q)$$

Then for any $a_1, x \in G$ and $q \in Q$

We have,

we have,

$$\xi_0^{\vartheta_+}{}_k * (a_1^{-1}x * s, q) = \xi_0^{\vartheta_+}{}_k * (xa_1^{-1} * s, q)$$

So,
 $\xi_0^{\vartheta_+}{}_k * (a_1^{-1}x * s, q), k) \lor ((1 - \vartheta), q), k) \}$
 $= \{1 - \xi_0^+ * ((xa_1^{-1}x * s, q), k) \lor ((1 - \vartheta), q), k)\}$
 $\Rightarrow (a_1 * s, q)\xi_0^{\vartheta_+}{}_k * (xasts, q) = \xi_0^{\vartheta_+}{}_k * (a_1 * s, q)(x * s, q), \forall a_1, x \in G, q \in Q$

Hence $\xi_0^{\vartheta}_{k^*}$ is also Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G.

Proposition (3.16)

Let $\xi_0^{\vartheta}_{k^*}$ be Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G. Then:

$$\xi_0^{\vartheta^-}{}_k * ((b^{-1}a_1b * s,q)) = \xi_0^{\vartheta^-}{}_k * (a_1 * s,q) \text{ or } \xi_0^{\vartheta^-}{}_k * (a_1a_2*s,q) = \xi_0^{\vartheta^-}{}_k * (a_2a_1*s,q)$$
 and
$$\xi_0^{\vartheta^+}{}_k * ((b^{-1}a_1b * s,q)) = \xi_0^{\vartheta^+}{}_k * (a_1a_2*s,q) = \xi_0^{\vartheta^+}{}_k * (a_2a_1*s,q)$$
 $\forall a_1,a_2 \in G \text{ and } q \in Q.$ proof

(a)Let $\xi_0^{\vartheta}_{k}$ * be Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G.

Then, we have

Then, we have
$$(a_1 * s, q)\xi_0^{\vartheta_-} * = \xi_0^{\vartheta_-} * * (a_1 * s, q).$$
 $\forall a_1 \in G \text{ and } q \in Q$

Consequently, we have

$$\xi_0 \frac{\vartheta - k}{k} * ((a_2 a_1)^{-1} * s, q) = \xi_0 \frac{\vartheta - k}{k} * ((a_1 a_2)^{-1} * s, q)$$

Hence,
$$\xi_0^{\vartheta-}_k * (a_1 a_2 * s, q) = \xi_0^{\vartheta-}_k * (a_2 a_1 * s, q).$$

(b)Let $\xi_0^{\vartheta}_{k^*}$ be Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G.

Then, we have

$$(a_1 * s, q)\xi_0^{\vartheta+}{}_k * = \xi_0^{\vartheta+}{}_k * (a_1 * s, q).$$
 $\forall a_1 \in G \text{ and } q \in Q.$ Consequently, we have $\xi_0^{\vartheta+}{}_k * ((a_2a_1)^{-1} * s, q) = \xi_0^{\vartheta+}{}_k * ((a_1a_2)^{-1} * s, q)$

$$\xi_0 = {}_k * ((a_1 a_2) = * s, q)$$

Hence,

$$\xi_0^{\vartheta+}_{k} * (a_1 a_2 * s, q) = \xi_0^{\vartheta+}_{k} * (a_2 a_1 * s, q).$$

Theorem (3.17)

Let $\xi_0^{\vartheta}_{k}$ * be Bipolar K - Q Group.

(a)(i)
$$\xi_0^{\vartheta-}{}_k * (a_2a_1 * s, q) = \xi_0^{\vartheta-}{}_k * (a_1a_2 * s, q)$$

(ii) $\xi_0^{\vartheta+}{}_k * (a_2a_1 * s, q) = \xi_0^{\vartheta+}{}_k * (a_1a_2 * s, q)$
(b) $\mathbf{i}\xi_0^{\vartheta-}{}_k * (a_1a_2a_1^{-1} * s, q) = \xi_0^{\vartheta-}{}_k * (a_2 * s, q)$

(b)
$$\mathbf{i}\xi_0^{\vartheta_{-k}} * (a_1a_2a_1^{-1} * s, q) = \xi_0^{\vartheta_{-k}} * (a_2 * s, q)$$

$$(\mathbf{i})\mathbf{i}\mathbf{j}\mathbf{j}_{0} \quad k * (a_{1}a_{2}a_{1} * s, q) = \mathbf{j}_{0} \quad k * (a_{2} * s, q)$$

$$(\mathbf{i})\mathbf{j}\mathbf{j}_{0} \stackrel{\vartheta+}{\rightarrow} k * (a_{1}a_{2}a_{1}^{-1} * s, q) = \mathbf{j}_{0} \stackrel{\vartheta+}{\rightarrow} k * (a_{2} * s, q)$$

(i)
$$\xi_0^{\vartheta_+}{}_k * (a_1 a_2 a_1^{-1} * s, q) = \xi_0^{\vartheta_+}{}_k * (a_2 * s, q)$$

(c) (i) $\xi_0^{\vartheta_-}{}_k * (a_1 a_2 a_1^{-1} * s, q) \ge \xi_0^{\vartheta_-}{}_k * (a_2 * s, q)$

(ii)
$$\xi_0^{\vartheta+}_k * (a_1 a_2 a_1^{-1} * s, q) \le \xi_0^{\vartheta+}_k * (a_2 * s, q)$$

(d)(i) $\xi_0^{\vartheta-}_k * (a_1 a_2 a_1^{-1} * s, q) \ge \xi_0^{\vartheta-}_k * (a_2 * s, q)$

$$(\mathbf{d})(\mathbf{i}) \ \xi_0^{\vartheta_-} {}_k * (a_1 a_2 a_1^{-1} * s, q) \ge \xi_0^{\vartheta_-} {}_k * (a_2 * s, q)$$

(ii)
$$\xi_0^{\vartheta_+}{}_k * (a_1 a_2 a_1^{-1} * s, q) \le \xi_0^{\vartheta_+}{}_k * (a_2 * s, q)$$

 $\forall a_1, a_2 \in G \text{ and } q \in Q.$

Theorem (3.18)

Let $\xi_0^{\vartheta}_{k^*}$ be Bipolar K - Q Group Acting ϑ fuzzy subgroup of G. Let $(n,q) \ge (m,q)$, where $\vartheta \in [0,1]$

(i)
$$(m,q) = Sup\{\xi_0^{\vartheta^-}_k * (a_1 * s,q), a_1 \in G \text{ and } q \in Q\}$$
 and

(ii)
$$(m,q)=\inf\{\xi_0^{\vartheta-}{}_k*(a_1*s,q),a_1\in G \text{ and } q\in Q\}$$
 then

 $\xi_0^{\vartheta}_{k^*}$ is also Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G.

Proof

(a)Let
$$(n,q) \ge (m,q)$$

So, $(n,q) \ge Sup\{\xi_0^{\vartheta-}_k * (a_1 * s,q), \forall a_1 \in G, q \in Q \text{ and } s \in S\}$

$$Q \text{ and } s \in S$$
} $\Rightarrow (n,q) \geq \xi_0^{\vartheta-}{}_k * (a_1 * s,q), \forall a_1 \in G, q \in Q \text{ and } s \in S$

$$\xi_0^{\vartheta -}{}_k * (a_1^{-1}a_2 * s, q) = \xi_0^{\vartheta -}{}_k * (xa_1^{-1} * s, q)$$

Thus,

$$\begin{array}{lll} \xi_0^{\vartheta-}_k & * & (a_1a_2 & * & s,q) \\ \{\xi_0^{\vartheta-}_k * ((a_1*s,q),k) \wedge \xi_0^{\vartheta-}_k * ((a_2*s,q),k)\} \end{array}$$

(b)Let $(n,q) \ge (m,q)$

So,
$$(n,q) \leq \inf\{\xi_0^{\vartheta+}_k * (a_1 * s,q), \forall a_1 \in G, q \in Q \text{ and } s \in S\}$$

$$\Rightarrow (n,q) \geq \xi_0^{\vartheta+}{}_k * (a_1 * s,q), \forall a_1 \in G, q \in Q \text{ and } s \in S$$

Thus,

$$\xi_0^{\vartheta+}{}_k * (a_1a_2 * s,q) \le \{\xi_0^{\vartheta+}{}_k * ((a_1*s,q),k) \vee \xi_0^{\vartheta+}{}_k * ((a_2*s,q),k)\}$$

Hence $\xi_0^{\vartheta}_{k^*}$ is also Bipolar K-Q Group Acting ϑ fuzzy normal subgroup of G.

Theorem 3(3.19). *Let* * *be Bipolar K-Q Group Acting* $\vartheta - fuzzynormal subgroup of G. Then the set define as$ [(i)]

$$G_* = \{(a_1 * s, q) \in G : *(a_1 * s, q) = *(e * s, q)\}GG_* = \{(a_1 * s, q) \in G : *(a_1 * s, q) = *(e * s, q)\}G$$

Proof(Proof of Theorem 3.19). [(i)]

1.Let G_* benonempty set and $e \in G$ Let $a_1, a_2 \in G_*$

$$*(a_1a_2^{-1}*s,q)\{*((a_1*s,q),k)\wedge *((a_2^{-1}*s,q),k)\}$$

Since, is **Bipolar** K-Q Group Acting $\vartheta - fuzzynormal subgroup of G$ $*(a_1 * s, q) = *(a_2^{-1}a_1a_2 * s, q)$ Therefore, we have

$$*(a_1*s,q)*(a_2*s,q)$$

Similarly, we have

$$*(a_2*s,q)*(a_1*s,q)$$

Hence $*(a_2 * s, q) = *(a_1 * s, q)$ Now we prove, G_*G . Let $a_1 \in G_*$ and $a_2 \in G$. We have,

$$*(a_2^{-1}a_1a_2*s,q) = *(a_1*s,q) = *(e*s,q)$$

Consequently, we have $a_2^{-1}, a_1, a_2 \in G_*$ 2.Let G_* benonempty set and $e \in G$ Let $a_1, a_2 \in G_*$

$$*(a_1a_2^{-1}*s,q)\{*((a_1*s,q),k)\vee *((a_2^{-1}*s,q),k)\}$$

Bipolar K-O is Group Acting $\vartheta - \textit{fuzzynormal subgroup of G} \\ *(a_1 * s, q) = *(a_2^{-1} a_1 a_2 * s, q)$ Therefore, we have

$$*(a_1*s,q)*(a_2*s,q)$$

Similarly, we have

$$*(a_2*s,q)*(a_1*s,q)$$

Hence $*(a_2 * s, q) = *(a_1 * s, q)$ Now we prove, G_*G . Let $a_1 \in G_*$ and $a_2 \in G$. We have.

$$*(a_2^{-1}a_1a_2*s,q) = *(a_1*s,q) = *(e*s,q)$$

Consequently, we have $a_2^{-1}, a_1, a_2 \in G_*$

4 Homomorphism of Bipolar Group Acting on Subgroup and Normal subgroup

Theorem 4(4.1). Let $\zeta_0^- k^* : (G \times Q) \rightarrow G'$ and $\zeta_0^+ k^* : (G \times Q) \to G'$ be bijective homomorphisms of a group G into a group G'. If * is a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G, then the homomorphic image $\zeta_{0k}^*(^*)$ is also a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G'.

Proof. Given that * be Bipolar K-Q Group Acting $\vartheta - fuzzysubgroup of G$.

[(i)]Let $a_1', a_2' \in G', q \in Q$ and $K \in [0, 1]$ Wehave, $a_1, a_2 \in$ $G,K \in [0,1]$ and $q \in Qsuchthat \zeta_0^- k * (a_1 * s,q) =$ $(a'_1 * s, q)$ and $\zeta_0^- k * (a_2 * s, q) = (a'_2 * s, q)$ Now, equation equation

$$(\zeta_0^- k * (*))^{\vartheta -} (a'_1 a'_2 * s, q) \ge$$

$$\{ (\zeta_0^- k * (*))^{\vartheta -} (a'_1 * s, q) \land$$

$$(\zeta_0^- k * (*))^{\vartheta -} (a'_2 * s, q) \}$$

$$= \{1 - \zeta_0^- * (*)((a_1a_2 * s, q), k) \wedge ((1 - \vartheta), q), k)\}$$

$$=*(a_1a_2*s,q)$$

 $\begin{aligned} & \big\{ *((a_1 * s, q), k) \wedge *((a_2 * s, q), k) \big\} \\ & = \big\{ (\zeta_0^- k * (*))^{\vartheta -} (a_1 * s, q) \wedge (\zeta_0^- k * (*))^{\vartheta -} (a_2 * s, q) \big\} \end{aligned}$ Consequently,

$$(\zeta_0^- k * (*))^{\vartheta^-} (a_1' a_2' * s, q) \ge$$

$$\{ (\zeta_0^- k * (*))^{\vartheta^-} (a_1' * s, q) \land$$

$$(\zeta_0^- k * (*))^{\vartheta^-} (a_2' * s, q) \}$$

Also,

$$(\zeta_0^- k * (*))^{\vartheta^-} (a_1' a_2' * s, q) \ge$$

$$\{(\zeta_0^- k * (*))^{\vartheta^-} (a_1' * s, q) \land$$

$$(\zeta_0^- k * (*))^{\vartheta^-} (a_2' * s, q)\}$$

$$=*(a^{-1}*s,q)=*(a*s,q)=(\zeta_0^-k*(*))^{\vartheta-}(a'*s,q)$$

1. The proof for positive membership function follows similarly.

Theorem 5(4.2). Let $\zeta_0^- k^* : (G \times Q) \rightarrow G'$ and $\zeta_0^+ k^* : (G \times Q) \to G'$ be bijective homomorphisms of a group G into a group G'. If * is a Bipolar K-Q Group Acting on a ϑ -fuzzy normal subgroup of G, then the homomorphic image $\zeta_{0k}^{*}(*)$ is also a Bipolar K-Q Group Acting on a ϑ -fuzzy normal subgroup of G'.

*Proof.*Given that * is a Bipolar K-Q Group Acting on a ϑ -fuzzy normal subgroup of G.

Let $a'_1, a'_2 \in G'$, $q \in Q$, and $K \in [0,1]$. Then there exist unique elements $a_1, a_2 \in G$ such that:

$$\zeta_0^- k^* (a_1 * s, q) = (a_1' * s, q), \quad \zeta_0^- k^* (a_2 * s, q) = (a_2' * s, q).$$

Now, we compute:

$$\begin{split} &(\zeta_0^-k^*(^*))^{\vartheta^-}(a_1'a_2'*s,q) = \\ &\{1 - (\zeta_0^-k^*(^*)((a_1'a_2'*s,q),k)) \\ & \wedge ((1-\vartheta),q),k)\} \\ &= \{1 - \zeta_0^-k^*(^*)(\zeta_0^-k^*(a_1*s,q) \\ & \zeta_0^-k^*(a_2*s,q)) \wedge ((1-\vartheta),q),k)\} \\ &=^*(a_1a_2*s,q) \geq \\ &\{^*((a_1*s,q),k) \\ & \wedge^*((a_2*s,q),k)\} \end{split}$$

Similar proof follows for the positive membership function. Therefore, $\zeta_{0k}^*(^*)$ is a Bipolar K-Q Group Acting on a ϑ -fuzzy normal subgroup of G'.

Theorem 6(4.3). Let $\zeta_0^-k^*: (G\times Q)\to G'$ and $\zeta_0^+k^*: (G\times Q)\to G'$ be homomorphisms of a group G into a group G'. If * is a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G', then the preimage $\zeta_{0k}^{*-1}(^*)$ is also a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G.

*Proof.*Given that * is a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G', we consider:

Let $a_1, a_2 \in G$, $K \in [0, 1]$, and $q \in Q$. We have:

$$\begin{split} (\zeta_0^-k^{*-1}(^*))^{\vartheta}(a_1a_2*s,q) &= \zeta_0^-k^{*-1}(^{\vartheta})(a_1a_2*s,q) \\ &=^{\vartheta} \ (\zeta_0^-k^*(a_1a_2*s,q)) \\ &=^{\vartheta} \ (\zeta_0^-k^*(a_1*s,q)\zeta_0^-k^*(a_2*s,q)) \\ &\geq \{^{\vartheta} \ (\zeta_0^-k^*(a_1*s,q))\wedge^{\vartheta} \ (\zeta_0^-k^*(a_2*s,q))\}. \end{split}$$

Thus, the closure property holds. For inverses:

$$\begin{split} (\zeta_0^-k^{*-1}(^*))^{\vartheta}(a^{-1}*s,q) &= \zeta_0^-k^{*-1}(^{\vartheta})(a^{-1}*s,q) \\ &= ^{\vartheta} \ (\zeta_0^-k^*(a^{-1}*s,q)) \\ &= ^{\vartheta} \ ((\zeta_0^-k^*(a*s,q))^{-1}) \\ &= ^{\vartheta} \ (\zeta_0^-k^*(a*s,q)). \end{split}$$

Thus, $(\zeta_0^-k^{*-1}(^*))^\vartheta(a^{-1}*s,q)=(\zeta_0^-k^{*-1}(^*))^\vartheta(a*s,q)$. Similar proof follows for the positive membership function.

Hence, $\zeta_{0k}^{*-1}(^*)$ is a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G.

Theorem 7(4.4). Let $\zeta_0^- k * : (GQ) BG' and \zeta_0^+ k * : (GQ) BG' beahomomorphism of a group Ginto a group G'. If * be Bipolar K - QGroup Acting \vartheta - fuzzynormal subgroup of G' then the preimage <math>\zeta_{0k}$ * $^{-1}$ (*) is Bipolar K - QGroup Acting \vartheta - fuzzynormal subgroup of G.

*Proof.*Let * be Bipolar K-Q Group Acting ϑ − *fuzzynormalsubgroupof G'*. [(i)]Let $a_1, a_2 \in G, K \in [0, 1]$ and $q \in QThus, *(a_1a_2 * s, q) = *(ζ_0^-k * (a_1a_2a_1^{-1} * s, q))$ {*($(a_2^{-1}a_1 * s, q), k$) ∧ *($(a_2 * s, q), k$)} = *($a_2^{-1}a_1a_2 * s, q$) = $(a_2 * s, q) * (a_3 * s, q)$ Let $a_1, a_2 \in G, K \in [0, 1]$ and $q \in QHence, ζ_{0k} *^{-1}$ (*) is Bipolar K-Q

Group Acting ϑ -fuzzy normal subgroup of G.

 $\vartheta - fuzzynormalsubgroupofGanda_1, a_2 \in G, K \in [0,1] \ and \ q \in Q.If \ [(i)]$ $1.(a_1*s,q)* = (a_2*s,q)* \ and \ (a_2*s,q)* = (y*s,q)* (a_1*s,q)* = (a_2*s,q)* \ and \ (a_2*s,q)* = (y*s,q)* \ then \ [(i)](a_1a_2*s,q)* = (xy*s,q)* \ and \ (a_1a_2*s,q)* = (xy*s,q)*$

1. **Theorem 8(4.5).** Let * be Bipolar K-Q Group Acting

2.Proof(Proof of Theorem 4.5). [(i)]
1.Suppose that $(a_1*s,q)*=(x*s,q)*$ and $(a_2*s,q)*=(y*s,q)*$ By theorem (3.20), we have $(a_1^{-1}a_2*s,q)\in G_*$ and $(a_2^{-1}y*s,q)\in G_*$ Since, Bipolar K-Q Group Acting $\vartheta-fuzzynormalsubgroupofG$ $*(a_1*s,q)=*(a_2^{-1}a_1a_2*s,q)$ Therefore, we have

$$*(a_1*s,q)*(a_2*s,q)$$

Similarly, we have

$$*(a_2*s,q)*(a_1*s,q)$$

Hence $*(a_1a_2*s,q) = *(xy*s,q)$

2. Similar proof follows for positive membership functions.

5 Conclusion

In the present research, we established the new notations of Bipolar K-Q Group Acting on ϑ -fuzzy subset, Bipolar K-Q Group Acting on ϑ -fuzzy subgroup, and addressed different results and algebraic characteristics. We investigated the effect of these algebraic characteristics on the concept of Bipolar K-Q Group Acting on ϑ -fuzzy cosets.

Furthermore, we introduced a new notation of Bipolar K-Q Group Acting on ϑ -fuzzy normal subgroup and quotient group with respect to group homomorphism. In future research, we aim to expand this notion to intuitionistic fuzzy sets, bipolar fuzzy sets, anti-fuzzy sets, and neutrosophic fuzzy sets, as well as explore their various algebraic aspects.

Acknowledgement

This research is partially funded by Zarqa University

References

- N. (1994). Homomorphism of [1] Ajmal, groups, Correspondence theorem and fuzzy quotient groups. *Fuzzy Sets and Systems*, **66**, 329-339.
- [2] Mordeson, J. N., Bhutani, K. R., & Rosenfeld, A. (2005). *Fuzzy Group Theory*. Springer Verlag.
- [3] Mukherjee, N. P., & Bhattacharya, P. (1984). Fuzzy normal subgroups and fuzzy cosets. *Information Science*, **34**, 225–239.
- [4] Gupta, M. M., & Qi, J. (1991). Theory of T-norms and fuzzy inference methods. *Fuzzy Sets and Systems*, **40**,
- [5] Das, P. S. (1981). Fuzzy groups and level subgroups. *Journal of Mathematical Analysis and Applications*, **84**, 264–269.
- [6] Chakrabarty, A. B., & Khare, S. S. (1993). Fuzzy Homomorphism and Algebraic Structures. *Fuzzy Sets and Systems*, **51**, 211-221.
- [7] Anthony, J. M., & Sherwood, H. (1979). Fuzzy groups redefined. *Journal of Mathematical Analysis and Applications*, **69**, 124-130.
- [8] Rosenfeld, A. (1971). Fuzzy Groups. *Journal of Mathematical Analysis and Applications*, **35**, 512-517.
- [9] Solairaju, A., & Abdul Salam, A. (2016). A new construction of a group acting on fuzzy algebraic structure. *Advances in Fuzzy Mathematics*, **11**, 207-217.
- [10] Yager, R. R. (1982). *Fuzzy Sets and Possibility Theory*. Pergamon, New York.
- [11] Tarnauceanu, M. (2015). Classifying fuzzy normal subgroups of finite groups. *Iranian Journal of Fuzzy Systems*, **12**, 107-115.
- [12] Zadeh, L. A. (1965). Fuzzy Sets. *Information and Control*, **8**, 338–353.
- [13] Solairaju, A., & Nagarajan, R. (2009). A new structure and construction of Q-fuzzy groups. *Advances in Fuzzy Mathematics*, **4**, 23-29.

Suleiman **Ibrahim** Mohammad is a Professor Business Management Al al-Bayt University, Jordan (currently at Zarga University, Jordan), with more than 17 years of teaching experience. He has published over 100 research papers in prestigious journals.

He holds a PhD in Financial Management and an MCom from Rajasthan University, India, and a Bachelor's in Commerce from Yarmouk University, Jordan. His research interests focus on supply chain management,

Marketing, and total quality (TQ). His ORCID ID is orcid.org/0000-0001-6156-9063.

Premkumar Munusamy

is a researcher at the Department of Mathematics, Sathyabama Institute of Science and Technology, Chennai, India. His work focuses on fuzzy models, with contributions to reputed journals and conferences. Actively engaged in academic collaborations, he holds memberships in professional organizations and has received recognition for his research.

Prasanna A. is researcher in the **PG and Research Department of Mathematics** at **Jamal Mohamed College (Autonomous), affiliated with Bharathidasan University, Tiruchirappalli, Tamil Nadu, India**. His research primarily focuses on fuzzy algebra, contributing to various academic publications in the field. Actively engaged in mathematical research, he participates in academic collaborations and professional organizations.

Hanan Jadallah is affiliated with Electronic Marketing and Social Media, Economic and Administrative Sciences at Zarqa University, Jordan. Her research interests include digital marketing strategies, blockchain applications in business, and consumer behavior in digital

environments. She has contributed to multiple research projects on technological integration in marketing.

N. Raja has 18 years of experience in education and the media industry. Assistant Currently an Professor in the Department Visual Communication Sathyabama University, at produced has he edited over 100 television programs during his time as a

Video Editor at Jesus Calls. Dr. Raja holds an MSc in Electronic Media, an M.Phil. in Journalism and Mass Communication, a PG Diploma in Public Relations, and a PhD in Communication from Bharathiar University, where his research focused on the impact of social media as an educational tool for media students in Tamil Nadu. His ORCID ID is orcid.org/0000-0003-2135-3051.

R. Selvakumari is a researcher at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India. Her research primarily focuses on Human Resources, contributing to various academic publications in the field. Actively involved in research and academic collaborations, she participates in professional organizations and scholarly activities.

M. Venkatachalam is a researcher in the Department of Mathematics at Erode Sengunthar Engineering College, Perundurai, Erode, Tamil Nadu, India. His research primarily focuses on Graph Theory, contributing to various academic publications in the field. Actively engaged in mathematical research, he collaborates with scholars and participates in professional organizations.

P. Shanmugavel is a researcher in the Department of Mathematics at Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu, India. His research interests span Botany, Forestry, and Bioinformatics, contributing to interdisciplinary studies and academic publications. Actively engaged in research collaborations, he participates in professional organizations and scholarly activities.

Asokan Vasudevan is a distinguished academic at INTI International University, Malaysia. He holds multiple degrees, including a PhD in Management from UNITEN, Malaysia, and has held key roles such as Lecturer, Department Chair, and Program Director. His

research, published in esteemed journals, focuses on business management, ethics, and leadership. Dr. Vasudevan has received several awards, including the Best Lecturer Award from Infrastructure University Kuala Lumpur and the Teaching Excellence Award from INTI International University. His ORCID ID is orcid.org/0000-0002-9866-4045.