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Abstract: In this paper, we introduce and define the concept of a Bipolar K-Q Group acting on a ϑ -fuzzy subset, along with its
associated algebraic properties. The study begins by examining the fundamental notion of a Bipolar K-Q Group acting on ϑ -fuzzy
subgroups, shedding light on their structural and theoretical attributes. We then extend the discussion to Bipolar K-Q Groups acting on
ϑ -fuzzy cosets, providing a detailed analysis of their algebraic properties and significance. These concepts are instrumental in exploring
the interplay between group theory and fuzzy logic. Furthermore, we present a new notation: the Bipolar K-Q Group acting on a ϑ -fuzzy
normal subgroup. This notion is further investigated in the context of quotient groups, particularly with respect to homomorphisms.
We demonstrate various group-theoretical properties, including normality, compatibility, and structural relationships, to highlight the
robustness of this framework. The paper provides a comprehensive foundation for understanding the algebraic behavior of these new
group structures, offering insights into their broader theoretical and practical applications. By combining the principles of fuzzy logic
and algebraic groups, this work advances the mathematical study of uncertainty and creates opportunities for future research in related
areas of Mathematics.

Keywords: Fuzzy Sets, Fuzzy Subgroup, Bipolar K-Q Group Acting on ϑ -fuzzy subset, Bipolar K-Q Group Acting on ϑ -fuzzy
subgroup, Bipolar K-Q Group Acting on ϑ -fuzzy normal subgroup, Bipolar K-Q Group Acting on ϑ -fuzzy coset.

1 Introduction
Let ξT

K
0∗ be an Bipolar acting defined as

Ajmal [1] described the new notation of Homomorphism
of groups, Correspondence theorem and fuzzy quotient
groups in 1994. In 2005, Fuzzy group theory developed
by Mordeson [2]. Fuzzy normal subgroups and fuzzy
cosets introduced by Mukherjee [3] in 1984. Gupta [4]
initiated by the new concept of Theory of T-norms and

fuzzy inference methods in 1984. In Das [5], developed
the concept of Fuzzy groups and level subgroups in 1981.
Khare S S[6] described the concept of Fuzzy
Homomorphism and Algebraic Structures in 1993. In
1979, Fuzzy groups redefined introduced by Sherwood H
[7]. Rosenfeld A [8] first introduced by Fuzzy Groups in
1971. Abdul Salam [9] described the new notation of A
new Construction of a group acting on fuzzy algebraic
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structure in 2016. In 1982, Fuzzy Sets and Possibility
theory initiated by Yager R R [10]. Tarnauceanu [11]
described the new concept of Classifying fuzzy normal
subgroups of finite groups in 2015. In 1965, Fuzzy Sets
first introduced by Zadeh [12]. In Nagarajan [13],
developed by the concept of a new structure and
construction of Q-fuzzy groups in 2009.

2 Preliminaries
Definition 1
Let X be a non-empty set. A fuzzy subset µ of the set X is
a mapping µ: X → [0,1].
Definition 2
Let G be any group. A mapping µ: G → [0,1] is a fuzzy
group if

1.µ(xy) ≥ minµ(x),µ(y)
2.µ(x−1)=µ(x), for all x, y ∈ G

Definition 3
Let Q and G be a set and a group respectively. A mapping
µ: G × Q → [0,1] is called Q-fuzzy set in G. For any Q-
fuzzy set µ in G and t ∈ [0,1] we define the set
U(µ; t) = x in G / µ(x,q) ≥ t, q ∈ Q
Which is called an upper cut of ”µ” and can be used to
characterize µ .
Definition 4 Let G and Q be any two nonempty sets and κ

in [0,1] and A be a Q-FSb of a set G. The fuzzy set Aκ of
G is called the κ-Q-FSb of G is defined by:
Aκ (θ ,q) = (A(θ ,q),κ), ∀ θ ∈ G and q in Q.

3 A Novel Limit of Bipolar Group Acting on
Subgroup and Normal subgroup
Definition (3.1)
Let
ξT

K
0∗ be an Bipolar acting defined as ξT

K−
0∗: ([0,1] ×

[0,1]) × Q) → [0,1]
and ξT

K+
0∗: ([0,1] × [0,1]) × Q) → [0,1] by

ξT
K−

0 ∗ ((a1,a2),q)={ξT
−

0 ∗ ((1 − a1),q),k) ∧ ξT
−

0 ∗
(((1−a2),q),k)}
and ξT

K+
0 ∗ ((a1,a2),q)={ξT

+
0 ∗ ((1 − a1),q),k) ∨

ξT
+

0 ∗ ((1−a2),q),k)}
Infect ξT

K
0∗ admits the properties given below:

1.(a) ξT
K−

0 ∗ ((a1,a2),q) = ξT
K−

0 ∗ ((a2,a1),q)
(b) ξT

K+
0 ∗ ((a1,a2),q) = ξT

K+
0 ∗ ((a2,a1),q)

2.(a) ξT
K−

0 ∗ ((a1,1),q) = ξT
K−

0 ∗ ((1,a1),q) =

ξT
K−

0 ∗ (((a1,1),q),k) = 0
(b) ξT

K+
0 ∗ ((a1,1),q) = ξT

K+
0 ∗ ((1,a1),q) =

ξT
K−

0 ∗ (((a1,1),q),k) = 0

Definition(3.2)
Let X and Q be any two non-empty set and k,ϑ ∈ [0,1].
Let ξ0

ϑ−
k∗ : (X ×Q)→ [0,1]

and ξ0
ϑ+

k∗ : (X ×Q)→ [0,1] is a Bipolar K-Q Group.

1.ξ0
ϑ−

k ∗(a1∗s,q) = {1−ξ0
−∗((1,a1)∗s,q),k)∧((1−

ϑ),q),k)},∀a1 ∈ [0,1],q ∈ Qandk ∈ [0,1]
2.ξ0

ϑ+
k ∗(a1∗s,q) = {1−ξ0

+∗((1,a1)∗s,q),k)∧((1−
ϑ),q),k)}

Example(3.2.1)
Let X = Set of Young People define K-Q Group Acting
ϑ -fuzzy subset of X

ξ0
ϑ−

k ∗ (a1 ∗ s,q) =


1, i f a1 < 26
45−a1

15 , i f 26 ≤ a1 ≤ 45
0, i f a1 > 45

∗(a∗ s,q) =


1, if a < 30
55−a

15 , if 30a55
0, if a > 55

Take ϑ = 0.8 and a1 = 30, we have ξ0
ϑ

k ∗ (a1 ∗ s,q) =
0.8

Definition 1(3.3). Let X and Q be any two non-empty set,
G be a group and ,k [0,1]. Let : (G × Q) → [0,1] and :
(G × Q) → [0,1] be a Bipolar K-Q Group Acting -fuzzy
subset of G and operating on S. Then * is called Bipolar
K-Q Group Acting -fuzzy subgroup of G if its following
conditions:

[(i)]
(a)*((aa) * s),q) {*((a * s,q),k) *((a * s,q),k)}
(b)*((aa) * s),q) {*((a * s,q),k) *((a * s,q),k)}
(ii)(a) *((a¹ * s),q) *((a * s,q),k)

(b) *((a¹ * s),q) *((a * s,q),k)

[Continue with Example 3.3.1]

Example 1(3.3.1). Let X and Q be any two non-empty set
and * be a Bipolar K-Q Group Acting fuzzy subset of G.
Let G = {1,a,a,aa} defined as:

[(a)]
1.*(1 * s,q) = 0.8 and *(a * s,q) = *(a * s,q) = *(aa * s,q)

= 0.7
2.*(1 * s,q) = 0.9 and *(a * s,q) = *(a * s,q) = *(aa * s,q)

= 0.8

Define Bipolar K-Q Group Acting -fuzzy subset * of
G, for = 0.6 as follows:

[(a)]*(1 * s,q) = 0.2 and *(a * s,q) = *(a * s,q) = *(aa *
s,q) = 0.1 *(1 * s,q) = 0.3 and *(a * s,q) = *(a * s,q) =
*(aa * s,q) = 0.2

Clearly, * is Bipolar K-Q Group Acting -fuzzy
subgroup of G.

1.2.Definition 2(3.2). Let X and Q be any two non-empty set
and k, [0,1]. Let : (X × Q) → [0,1] and : (X × Q) → [0,1]
is a Bipolar K-Q Group Acting subset of * of X denotes the
Bipolar K-Q Group Acting -fuzzy subset of X and defined
as follows that:

[(a)]
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Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 6, 1335-1343 (2025) / www.naturalspublishing.com/Journals.asp 1337

1.*(a * s,q) = {1 - *((1,a) * s,q),k) ((1 - ),q),k)}, a [0,1],
q Q and k [0,1]

2.*(a * s,q) = {1 - *((1,a) * s,q),k) ((1 - ),q),k)}

Example 2(3.2.1). Let X = {Set of Young People} define
K-Q Group Acting -fuzzy subset of X

∗(a∗ s,q) =


1, if a < 26
45−a

15 , if 26a45
0, if a > 45

∗(a∗ s,q) =


1, if a < 30
55−a

15 , if 30a55
0, if a > 55

Take = 0.8 and a = 30, we have *(a * s,q) = 0.8

Definition 3(3.3). Let X and Q be any two non-empty set,
G be a group and ,k [0,1]. Let : (G × Q) → [0,1] and :
(G × Q) → [0,1] be a Bipolar K-Q Group Acting -fuzzy
subset of G and operating on S. Then * is called Bipolar
K-Q Group Acting -fuzzy subgroup of G if its following
conditions:

[(i)]
(a)*((aa) * s),q) {*((a * s,q),k) *((a * s,q),k)}
(b)*((aa) * s),q) {*((a * s,q),k) *((a * s,q),k)}
(ii)(a) *((a¹ * s),q) *((a * s,q),k)

(b) *((a¹ * s),q) *((a * s,q),k)

[Continue with Example 3.3.1]

Example 3(3.3.1). Let X and Q be any two non-empty set
and * be a Bipolar K-Q Group Acting fuzzy subset of G.
Let G = {1,a,a,aa} defined as:

[(a)]
1.*(1 * s,q) = 0.8 and *(a * s,q) = *(a * s,q) = *(aa * s,q)

= 0.7
2.*(1 * s,q) = 0.9 and *(a * s,q) = *(a * s,q) = *(aa * s,q)

= 0.8

Define Bipolar K-Q Group Acting -fuzzy subset * of
G, for = 0.6 as follows:

[(a)]*(1 * s,q) = 0.2 and *(a * s,q) = *(a * s,q) = *(aa *
s,q) = 0.1 *(1 * s,q) = 0.3 and *(a * s,q) = *(a * s,q) =
*(aa * s,q) = 0.2

Clearly, * is Bipolar K-Q Group Acting -fuzzy
subgroup of G.

1.2.Proposition 1(3.4). Let * be Bipolar K-Q Group Acting -
fuzzy subgroup of (S,) in acting on S. Then the following
statements holds:

[(i)]
(a)*(a * s,q) *((e * s,q),k)
(b)*(a * s,q) *((e * s,q),k)
(ii)(a) *(aa¹ * s,q) = *((e * s,q),k) = *(a * s,q) = *(a *

s,q)
(b) *(aa¹ * s,q) = *((e * s,q),k) = *(a * s,q) = *(a *
s,q), a,a [0,1], q Q and k [0,1]

Proof.[(i)]
Since *(a * s,q) = *((e * s,q),k) and also

∗(a∗ s,q) = {∗((a∗ s,q),k)∗ ((a∗ s,q),k)}

= {*((a * s,q),k) *((a * s,q),k)} = *((a * s,q),k) *(a *
s,q) = *((e * s,q),k), a [0,1], q Q and k [0,1]

(a)(b)Since *(a * s,q) = *((e * s,q),k) and also

∗(a∗ s,q) = {∗((a∗ s,q),k)∗ ((a∗ s,q),k)}

= {*((a * s,q),k) *((a * s,q),k)} = *((a * s,q),k) *(a *
s,q) = *((e * s,q),k), a [0,1], q Q and k [0,1]

(ii)(a)
∗(aa∗ s,q) = ∗((aa∗ s,q)(aa∗ s,q))

{*((aa¹ * s,q),k) *((a¹a * s,q),k)} {*((e * s,q),k) *((a
* s,q),k)} *(a * s,q) *((a * s,q),k)

(1)

Similarly,
∗(a∗ s,q) = ∗(aaa∗ s,q)

{*((aa¹ * s,q),k) *((a * s,q),k)} {*((e * s,q),k) *((a *
s,q),k)} *(a * s,q) *((a * s,q),k)

(2)

From (1) and (2) *(a * s,q) = *((a * s,q),k)

Note 1(3.5).
[(i)]

(a)*(a * (st),q) {*((a * s,q),k) *((a * t,q),k)}
(b)*(a * (st),q) {*((a * s,q),k) *((a * t,q),k)} [Continue

with remaining notes...]

Theorem 1(3.6). Every Bipolar K-Q Group Acting fuzzy
subgroup is also Bipolar K-Q Group Acting -fuzzy
subgroup of G.

Proof.Let * be a Bipolar K-Q Group Acting -fuzzy
subgroup of G. Now,

[(a)]*((aa) * s,q) {(1 - *((aa * s,q),k)) ((1 - ),q),k)}
{1 - (*((a * s,q),k) *((a * s,q),k)) ((1 - ),q),k)} = {(1
- *((a * s,q),k)) ((1 - ),q),k)) (1 - * ((a * s,q),k) ((1 -
),q),k))} = {*((a * s,q),k) *((a * s,q),k)} *((aa) * s,q)
{*((a * s,q),k) *((a * s,q),k)}

1.Theorem 2(3.7).
Let A and B be any two non-empty sets, G be a group,
and let µ and ν be Bipolar Group Acting fuzzy
subgroups of G with operators on G such that

µ,ν : G → [0,1]

and let ω : G → [0,1] be defined as

ω(x) = min{µ(x),ν(x)}, ∀x ∈ G.

Then ω is also a Bipolar Group Acting fuzzy subgroup
of G.

© 2025 NSP
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Proof:
(a)Let x,y ∈ G. Then,

ω(xy) = min{µ(xy),ν(xy)}.

Since µ and ν are Bipolar Group Acting fuzzy
subgroups, we have:

µ(xy)≥min{µ(x),µ(y)}, ν(xy)≥min{ν(x),ν(y)}.

Thus,
ω(xy)≥ min{ω(x),ω(y)}.

(b)Let x ∈ G. Then,

ω(x−1) = min{µ(x−1),ν(x−1)}.

Since µ and ν are Bipolar Group Acting fuzzy
subgroups, we have:

µ(x−1) = µ(x), ν(x−1) = ν(x).

Therefore,

ω(x−1) = min{ω(x)}.

Hence, ω is also a Bipolar Group Acting fuzzy
subgroup of G.
[3.8] Let A and B be any two non-empty sets, G be a
group, and let µ and ν be Group Acting fuzzy
subgroups of G with operators on G. Then their sum

(ζ−
0 k ∗ (∗))ϑ−(a′1a′2 ∗ s,q)≥

{(ζ−
0 k ∗ (∗))ϑ−(a′1 ∗ s,q)∧

(ζ−
0 k ∗ (∗))ϑ−(a′2 ∗ s,q)}

is also a Bipolar Group Acting fuzzy subgroup of G.

Proof: Let x,y ∈ G. Since µ and ν are Group Acting
fuzzy subgroups of G, we have

µ(xy)≥min{µ(x),µ(y)}, ν(xy)≥min{ν(x),ν(y)}.

Thus,

(ζ−
0 k ∗ (∗))ϑ−(a′1a′2 ∗ s,q)≥

{(ζ−
0 k ∗ (∗))ϑ−(a′1 ∗ s,q)∧

(ζ−
0 k ∗ (∗))ϑ−(a′2 ∗ s,q)}

(i)For all x ∈ G,

(µ +ν)(e) = max{µ(e),ν(e)}= 1.

(ii)(a) For all x ∈ G,

(µ +ν)(x−1) = max{µ(x−1),ν(x−1)}.

Since µ(x−1) = µ(x) and ν(x−1) = ν(x), it follows
that

(µ +ν)(x−1) = (µ +ν)(x).

(b) Since the conditions for a fuzzy subgroup hold,
we conclude that

µ+ν is a Bipolar Group Acting fuzzy subgroup of G.

Corollary 1(3.9). The intersection of any finite
number of Bipolar K-Q Group Acting
ϑ − f uzzysubgroupo f GisalsoBipolarK −
QGroupActingϑ − f uzzysubgroupo f G.

Proposition 2(3.10). Let X and Q be any two
non-empty set, G be a group and
ϑ ,k ∈ [0,1]and ∗ beaBipolarK − QGroupActingϑ −
f uzzysubsetsuchthat ∗ (a1 ∗ s,q) =

∗((a−1
1 ∗ s,q),∀a1 ∈ G,q ∈ Q and s ∈ S and ∗

(a1 ∗ s,q) = ∗((a−1
1 ∗ s,q),∀a1 ∈ G,q ∈ Q and s ∈ S

Let (n,q) ≥ (m,q),wherek,ϑ ∈ [0,1]and(m,q) =
sup{∗(a1 ∗ s,q),∀a1 ∈ G,q ∈ Q and s ∈ S} and

(m,q) = inf{∗(a1 ∗ s,q),∀a1 ∈ G,q ∈ Q and s ∈ S}

Then * is also Bipolar K-Q Group Acting
ϑ − f uzzysubgroupo f G.
Proof

(a)We have (n,q) ≥ (m,q) ⇒ (ϑ ,q) ≥
sup{ξ0

ϑ−
k ∗ (a1 ∗ s,q),∀a1 ∈ G,q ∈ Q and s ∈ S}

So, we have ξ0
ϑ−

k ∗ (a1 ∗ s,q) =

{(1−ξ0
− ∗ ((a1 ∗ s,q),k))∧ ((1−ϑ),q),k)}

Also,
ξ0

ϑ−
k ∗ ((a1a2) ∗ s,q) ≥

ξ0
ϑ− ∗ ((a1 ∗ s,q),k)∧ξ0

ϑ− ∗ ((a2 ∗ s,q),k)}
(b)Similarly for positive membership function:

We have (n,q)≥(m,q)
⇒ (ϑ ,q) ≤ in f{ξ0

ϑ+
k ∗ (a1 ∗ s,q),∀a1 ∈ G,q ∈

Q,s ∈ S}
ξ0

ϑ+
k ∗ (a1 ∗ s,q) =

{(1−ξ0
+ ∗ ((a1 ∗ s,q),k))∨ ((1−ϑ),q),k)}

Also,
ξ0

ϑ+
k ∗ (a1a2)∗,q) ≤

{ξ0
ϑ+ ∗ ((a1 ∗ s,q),k)∨ξ0

ϑ+
k ∗ ((a2 ∗ s,q),k)}

Therefore, ξ0
ϑ+

k∗ is Bipolar K −Q Group Acting
ϑ fuzzy subgroup of G.

Definition(3.13)
Let ξ0

ϑ−
k∗ be Bipolar K −Q Group Acting ϑ fuzzy

subgroup of G. Let Bipolar K − Q Group Acting ϑ

fuzzy left coset (a1 ∗ s,q)ξ0
ϑ−

k∗ and (a1 ∗ s,q)ξ0
ϑ+

k∗
be defined as follows:
(a1 ∗ s,q)ξ0

ϑ−
k ∗ (x ∗ s,q) =

{1−ξ0
−

k ∗ ((a−1
1 x∗ s,q),k)∧ ((1−ϑ),q),k)}

and
(a1 ∗ s,q)ξ0

ϑ+
k ∗ (x ∗ s,q) =

{1 − ξ0
+

k ∗ ((a−1
1 x ∗ s,q),k) ∨ ((1 − ϑ),q),k)},

∀a1,x ∈ G,q ∈ Q.
Definition (3.14) The group G/ξ0

ϑ
k∗ of Bipolar

K −Q Group Acting ϑ fuzzy coset of a Bipolar K-Q
Group Acting ϑ fuzzy normal subgroup of G is called
Bipolar K −Q Group Acting ϑ Quotient group of G
by ξ0

ϑ
k∗.

© 2025 NSP
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theorem (3.15) Every fuzzy normal subgroup is also
Bipolar K − Q Group Acting ϑ fuzzy normal
subgroup of G.
proof

(a)Let ξ0
ϑ

k∗ is Bipolar K −Q Group Acting ϑ fuzzy
normal subgroup of G
⇒ (a1 ∗ s,q)ξ0

ϑ−
k∗= ξ0

ϑ−
k ∗ (a1 ∗ s,q)

Then for any a1, x ∈ G and q ∈ Q
We have,
ξ0

ϑ−
k ∗ (a−1

1 x∗ s,q) = ξ0
ϑ−

k ∗ (xa−1
1 ∗ s,q)

So,
ξ0

ϑ−
k ∗(a−1

1 x∗s,q)= {1−ξ0
−∗((a−1

1 x∗s,q),k)∧
((1−ϑ),q),k)}
= {1−ξ0

− ∗ ((xa−1
1 ∗ s,q),k)∧ ((1−ϑ),q),k)}

⇒ (a1 ∗ s,q)ξ0
ϑ

k ∗ (x∗ s,q) = ξ0
ϑ

k ∗ (a1 ∗ s,q)(x∗
s,q),∀a1,x ∈ G and q ∈ Q

(b)Let ξ0
ϑ

k∗ is Bipolar K −Q Group Acting ϑ fuzzy
normal subgroup of G
⇒ (a1∗s,q)ξ0

ϑ+
k∗= ξ0

ϑ+
k ∗ (a1 ∗ s,q)

Then for any a1, x ∈ G and q ∈ Q
We have,
ξ0

ϑ+
k ∗ (a−1

1 x∗ s,q) = ξ0
ϑ+

k ∗ (xa−1
1 ∗ s,q)

So,
ξ0

ϑ+
k ∗ (a−1

1 x ∗ s,q) =

{1−ξ0
+ ∗ ((a−1

1 x∗ s,q),k)∨ ((1−ϑ),q),k)}
= {1−ξ0

+ ∗ ((xa−1
1 ∗ s,q),k)∨ ((1−ϑ),q),k)}

⇒ (a1 ∗ s,q)ξ0
ϑ+

k ∗ (xasts,q) =

ξ0
ϑ+

k ∗ (a1 ∗ s,q)(x∗ s,q),∀a1,x ∈ G,q ∈ Q
Hence ξ0

ϑ
k∗ is also Bipolar K −Q Group Acting ϑ

fuzzy normal subgroup of G.
Proposition (3.16)
Let ξ0

ϑ
k∗ be Bipolar K − Q Group Acting ϑ fuzzy

normal subgroup of G. Then:
ξ0

ϑ−
k ∗ ((b−1a1b ∗ s,q)) = ξ0

ϑ−
k ∗ (a1 ∗

s,q) or ξ0
ϑ−

k ∗ (a1a2 ∗ s,q) = ξ0
ϑ−

k ∗ (a2a1 ∗ s,q)
and
ξ0

ϑ+
k ∗ ((b−1a1b ∗ s,q)) = ξ0

ϑ+
k ∗ (a1 ∗

s,q) or ξ0
ϑ+

k ∗ (a1a2 ∗ s,q) = ξ0
ϑ+

k ∗ (a2a1 ∗ s,q)
∀a1,a2 ∈ G and q ∈ Q.
proof

(a)Let ξ0
ϑ

k∗ be Bipolar K − Q Group Acting ϑ

fuzzy normal subgroup of G.
Then, we have
(a1 ∗ s,q)ξ0

ϑ−
k∗ = ξ0

ϑ−
k ∗ (a1 ∗ s,q).

∀a1 ∈ G and q ∈ Q
Consequently, we have
ξ0

ϑ−
k ∗ ((a2a1)

−1 ∗ s,q) =

ξ0
ϑ−

k ∗ ((a1a2)
−1 ∗ s,q)

Hence,ξ0
ϑ−

k ∗ (a1a2 ∗ s,q) = ξ0
ϑ−

k ∗ (a2a1 ∗ s,q).
(b)Let ξ0

ϑ
k∗ be Bipolar K − Q Group Acting ϑ

fuzzy normal subgroup of G.
Then, we have

(a1 ∗ s,q)ξ0
ϑ+

k∗ = ξ0
ϑ+

k ∗ (a1 ∗ s,q).
∀a1 ∈ G and q ∈ Q.
Consequently, we have
ξ0

ϑ+
k ∗ ((a2a1)

−1 ∗ s,q) =

ξ0
ϑ+

k ∗ ((a1a2)
−1 ∗ s,q)

Hence,
ξ0

ϑ+
k ∗ (a1a2 ∗ s,q) = ξ0

ϑ+
k ∗ (a2a1 ∗ s,q).

Theorem (3.17)
Let ξ0

ϑ
k∗ be Bipolar K −Q Group.

(a)(i)ξ0
ϑ−

k ∗ (a2a1 ∗ s,q) = ξ0
ϑ−

k ∗ (a1a2 ∗ s,q)
(ii)ξ0

ϑ+
k ∗ (a2a1 ∗ s,q) = ξ0

ϑ+
k ∗ (a1a2 ∗ s,q)

(b)iξ0
ϑ−

k ∗ (a1a2a−1
1 ∗ s,q) = ξ0

ϑ−
k ∗ (a2 ∗ s,q)

(ii)ξ0
ϑ+

k ∗ (a1a2a−1
1 ∗ s,q) = ξ0

ϑ+
k ∗ (a2 ∗ s,q)

(c)(i)ξ0
ϑ−

k ∗ (a1a2a−1
1 ∗ s,q)≥ ξ0

ϑ−
k ∗ (a2 ∗ s,q)

(ii) ξ0
ϑ+

k ∗ (a1a2a−1
1 ∗ s,q)≤ ξ0

ϑ+
k ∗ (a2 ∗ s,q)

(d)(i) ξ0
ϑ−

k ∗ (a1a2a−1
1 ∗ s,q)≥ ξ0

ϑ−
k ∗ (a2 ∗ s,q)

(ii) ξ0
ϑ+

k ∗ (a1a2a−1
1 ∗ s,q)≤ ξ0

ϑ+
k ∗ (a2 ∗ s,q)

∀ a1,a2 ∈ G and q ∈ Q.
Theorem (3.18)
Let ξ0

ϑ
k∗ be Bipolar K − Q Group Acting ϑ fuzzy

subgroup of G. Let (n,q)≥ (m,q), where ϑ ∈ [0,1]
and
(i) (m,q) = Sup{ξ0

ϑ−
k ∗ (a1 ∗ s,q),a1 ∈ G and q ∈

Q} and
(ii) (m,q) = in f{ξ0

ϑ−
k ∗ (a1 ∗ s,q),a1 ∈ G and q ∈ Q}

then
ξ0

ϑ
k∗ is also Bipolar K − Q Group Acting ϑ fuzzy

normal subgroup of G.
Proof
(a)Let (n,q)≥ (m,q)

So, (n,q) ≥ Sup{ξ0
ϑ−

k ∗ (a1 ∗ s,q),∀ a1 ∈ G,q ∈
Q and s ∈ S}
⇒ (n,q) ≥ ξ0

ϑ−
k ∗ (a1 ∗ s,q),∀ a1 ∈ G,q ∈

Q and s ∈ S
We have,
ξ0

ϑ−
k ∗ (a−1

1 a2 ∗ s,q) = ξ0
ϑ−

k ∗ (xa−1
1 ∗ s,q)

Thus,
ξ0

ϑ−
k ∗ (a1a2 ∗ s,q) ≥

{ξ0
ϑ−

k ∗ ((a1 ∗ s,q),k)∧ξ0
ϑ−

k ∗ ((a2 ∗ s,q),k)}
(b)Let (n,q)≥ (m,q)

So, (n,q) ≤ in f{ξ0
ϑ+

k ∗ (a1 ∗ s,q),∀ a1 ∈ G,q ∈
Q and s ∈ S}
⇒ (n,q) ≥ ξ0

ϑ+
k ∗ (a1 ∗ s,q),∀ a1 ∈ G,q ∈

Q and s ∈ S
Thus,
ξ0

ϑ+
k ∗ (a1a2 ∗ s,q) ≤

{ξ0
ϑ+

k ∗ ((a1 ∗ s,q),k)∨ξ0
ϑ+

k ∗ ((a2 ∗ s,q),k)}

Hence ξ0
ϑ

k∗ is also Bipolar K −Q Group Acting ϑ

fuzzy normal subgroup of G.

Theorem 3(3.19). Let * be Bipolar K-Q Group Acting
ϑ − f uzzynormalsubgroupo f G.T henthesetde f ineas
[(i)]
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G∗ = {(a1 ∗ s,q) ∈ G : ∗(a1 ∗ s,q) = ∗(e∗ s,q)}GG∗ =
{(a1 ∗ s,q) ∈ G : ∗(a1 ∗ s,q) = ∗(e∗ s,q)}G

Proof(Proof of Theorem 3.19).
[(i)]

1.Let G∗benonemptysetande ∈ G
Let a1,a2 ∈ G∗

∗(a1a−1
2 ∗ s,q){∗((a1 ∗ s,q),k)∧∗((a−1

2 ∗ s,q),k)}

Since, * is Bipolar K-Q Group Acting
ϑ − f uzzynormalsubgroupo f G
*(a1 ∗ s,q) = ∗(a−1

2 a1a2 ∗ s,q)
Therefore, we have

∗(a1 ∗ s,q)∗ (a2 ∗ s,q)

Similarly, we have

∗(a2 ∗ s,q)∗ (a1 ∗ s,q)

Hence *(a2 ∗ s,q) = ∗(a1 ∗ s,q)
Now we prove, G∗G.
Let a1 ∈ G∗anda2 ∈ G.
We have,

∗(a−1
2 a1a2 ∗ s,q) = ∗(a1 ∗ s,q) = ∗(e∗ s,q)

Consequently, we have a−1
2 ,a1,a2 ∈ G∗

2.Let G∗benonemptysetande ∈ G
Let a1,a2 ∈ G∗

∗(a1a−1
2 ∗ s,q){∗((a1 ∗ s,q),k)∨∗((a−1

2 ∗ s,q),k)}

Since, * is Bipolar K-Q Group Acting
ϑ − f uzzynormalsubgroupo f G
*(a1 ∗ s,q) = ∗(a−1

2 a1a2 ∗ s,q)
Therefore, we have

∗(a1 ∗ s,q)∗ (a2 ∗ s,q)

Similarly, we have

∗(a2 ∗ s,q)∗ (a1 ∗ s,q)

Hence *(a2 ∗ s,q) = ∗(a1 ∗ s,q)
Now we prove, G∗G.
Let a1 ∈ G∗anda2 ∈ G.
We have,

∗(a−1
2 a1a2 ∗ s,q) = ∗(a1 ∗ s,q) = ∗(e∗ s,q)

Consequently, we have a−1
2 ,a1,a2 ∈ G∗

4 Homomorphism of Bipolar Group Acting
on Subgroup and Normal subgroup

Theorem 4(4.1). Let ζ
−
0 k∗ : (G × Q) → G′ and

ζ
+
0 k∗ : (G × Q) → G′ be bijective homomorphisms of a

group G into a group G′. If ∗ is a Bipolar K-Q Group
Acting on a ϑ -fuzzy subgroup of G, then the
homomorphic image ζ ∗

0k(
∗) is also a Bipolar K-Q Group

Acting on a ϑ -fuzzy subgroup of G′.

Proof.Given that * be Bipolar K-Q Group Acting
ϑ − f uzzysubgroupo f G.
[(i)]Let a′1,a

′
2 ∈ G′,q ∈ Q and K ∈ [0,1]Wehave,a1,a2 ∈

G,K ∈ [0,1] and q ∈ Qsuchthatζ−
0 k ∗ (a1 ∗ s,q) =

(a′1 ∗ s,q) and ζ
−
0 k ∗ (a2 ∗ s,q) = (a′2 ∗ s,q) Now, equation

equation

(ζ−
0 k ∗ (∗))ϑ−(a′1a′2 ∗ s,q)≥

{(ζ−
0 k ∗ (∗))ϑ−(a′1 ∗ s,q)∧

(ζ−
0 k ∗ (∗))ϑ−(a′2 ∗ s,q)}

= {1−ζ
−
0 ∗ (∗)((a1a2 ∗ s,q),k)∧ ((1−ϑ),q),k)}

= ∗(a1a2 ∗ s,q)

{*((a1 ∗ s,q),k)∧∗((a2 ∗ s,q),k)}
= {(ζ−

0 k ∗ (∗))ϑ−(a1 ∗ s,q)∧ (ζ−
0 k ∗ (∗))ϑ−(a2 ∗ s,q)}

Consequently,

(ζ−
0 k ∗ (∗))ϑ−(a′1a′2 ∗ s,q)≥

{(ζ−
0 k ∗ (∗))ϑ−(a′1 ∗ s,q)∧

(ζ−
0 k ∗ (∗))ϑ−(a′2 ∗ s,q)}

Also,

(ζ−
0 k ∗ (∗))ϑ−(a′1a′2 ∗ s,q)≥

{(ζ−
0 k ∗ (∗))ϑ−(a′1 ∗ s,q)∧

(ζ−
0 k ∗ (∗))ϑ−(a′2 ∗ s,q)}

= *(a−1 ∗ s,q) = ∗(a∗ s,q) = (ζ−
0 k ∗ (∗))ϑ−(a′ ∗ s,q)

1.The proof for positive membership function follows
similarly.

Theorem 5(4.2). Let ζ
−
0 k∗ : (G × Q) → G′ and

ζ
+
0 k∗ : (G × Q) → G′ be bijective homomorphisms of a

group G into a group G′. If ∗ is a Bipolar K-Q Group
Acting on a ϑ -fuzzy normal subgroup of G, then the
homomorphic image ζ ∗

0k(
∗) is also a Bipolar K-Q Group

Acting on a ϑ -fuzzy normal subgroup of G′.
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Proof.Given that ∗ is a Bipolar K-Q Group Acting on a
ϑ -fuzzy normal subgroup of G.
Let a′1,a

′
2 ∈ G′, q ∈ Q, and K ∈ [0,1]. Then there exist

unique elements a1,a2 ∈ G such that:

ζ
−
0 k∗(a1 ∗ s,q) = (a′1 ∗ s,q), ζ

−
0 k∗(a2 ∗ s,q) = (a′2 ∗ s,q).

Now, we compute:

(ζ−
0 k∗(∗))ϑ−(a′1a′2 ∗ s,q) =

{1− (ζ−
0 k∗(∗)((a′1a′2 ∗ s,q),k))

∧ ((1−ϑ),q),k)}
= {1−ζ

−
0 k∗(∗)(ζ−

0 k∗(a1 ∗ s,q)

ζ
−
0 k∗(a2 ∗ s,q))∧ ((1−ϑ),q),k)}

=∗ (a1a2 ∗ s,q)≥
{∗((a1 ∗ s,q),k)

∧∗ ((a2 ∗ s,q),k)}

Similar proof follows for the positive membership
function. Therefore, ζ ∗

0k(
∗) is a Bipolar K-Q Group

Acting on a ϑ -fuzzy normal subgroup of G′.

Theorem 6(4.3). Let ζ
−
0 k∗ : (G × Q) → G′ and

ζ
+
0 k∗ : (G × Q) → G′ be homomorphisms of a group G

into a group G′. If ∗ is a Bipolar K-Q Group Acting on a
ϑ -fuzzy subgroup of G′, then the preimage ζ ∗

0k
−1(∗) is

also a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup
of G.

Proof.Given that ∗ is a Bipolar K-Q Group Acting on a
ϑ -fuzzy subgroup of G′, we consider:
Let a1,a2 ∈ G, K ∈ [0,1], and q ∈ Q. We have:

(ζ−
0 k∗−1(∗))ϑ (a1a2 ∗ s,q) = ζ

−
0 k∗−1(ϑ )(a1a2 ∗ s,q)

=ϑ (ζ−
0 k∗(a1a2 ∗ s,q))

=ϑ (ζ−
0 k∗(a1 ∗ s,q)ζ−

0 k∗(a2 ∗ s,q))

≥ {ϑ (ζ−
0 k∗(a1 ∗ s,q))∧ϑ (ζ−

0 k∗(a2 ∗ s,q))}.

Thus, the closure property holds.
For inverses:

(ζ−
0 k∗−1(∗))ϑ (a−1 ∗ s,q) = ζ

−
0 k∗−1(ϑ )(a−1 ∗ s,q)

=ϑ (ζ−
0 k∗(a−1 ∗ s,q))

=ϑ ((ζ−
0 k∗(a∗ s,q))−1)

=ϑ (ζ−
0 k∗(a∗ s,q)).

Thus, (ζ−
0 k∗−1(∗))ϑ (a−1 ∗ s,q) = (ζ−

0 k∗−1(∗))ϑ (a∗ s,q). Similar proof follows for
the positive membership function.

Hence, ζ ∗
0k

−1(∗) is a Bipolar K-Q Group Acting on a ϑ -fuzzy subgroup of G.

Theorem 7(4.4). Let ζ
−
0 k∗ : (GQ)ßG′andζ

+
0 k∗ :

(GQ)ßG′beahomomorphismo f agroupGintoagroupG′.I f ∗
beBipolarK − QGroupActingϑ −
f uzzynormalsubgroupo f G′thenthepreimageζ0k ∗−1

(∗)isBipolarK − QGroupActingϑ −
f uzzynormalsubgroupo f G.

Proof.Let * be Bipolar K-Q Group Acting
ϑ − f uzzynormalsubgroupo f G′.
[(i)]Let a1,a2 ∈ G,K ∈ [0,1] and q ∈
QT hus,∗(a1a2 ∗ s,q) = ∗(ζ−

0 k ∗ (a1a2a−1
1 ∗ s,q))

{*((a−1
2 a1 ∗ s,q),k) ∧ ∗((a2 ∗ s,q),k)} =

∗(a−1
2 a1a2 ∗ s,q) = (a2 ∗ s,q) ∗ (a3 ∗ s,q) Leta1,a2 ∈

G,K ∈ [0,1] and q ∈ QHence,ζ0k ∗−1 (∗) is Bipolar K-Q
Group Acting ϑ -fuzzy normal subgroup of G.

1.Theorem 8(4.5). Let * be Bipolar K-Q Group Acting
ϑ − f uzzynormalsubgroupo f Ganda1,a2 ∈ G,K ∈
[0,1] and q ∈ Q.I f

[(i)]
1.(a1 ∗ s,q)∗= (a2 ∗ s,q)∗ and (a2 ∗ s,q)∗= (y∗ s,q)∗ (a1 ∗

s,q)∗= (a2 ∗ s,q)∗ and (a2 ∗ s,q)∗= (y∗ s,q)∗
then

[(i)](a1a2 ∗ s,q)∗ = (xy ∗ s,q) ∗ and (a1a2 ∗ s,q)∗ = (xy ∗
s,q)∗

2.1.2.Proof(Proof of Theorem 4.5).
[(i)]

1.Suppose that (a1 ∗ s,q)∗= (x∗ s,q)∗and(a2 ∗ s,q)∗=
(y∗ s,q)∗

By theorem (3.20), we have (a−1
1 a2 ∗ s,q) ∈ G∗and(a−1

2 y∗
s,q) ∈ G∗
Since, Bipolar K-Q Group Acting
ϑ − f uzzynormalsubgroupo f G
*(a1 ∗ s,q) = ∗(a−1

2 a1a2 ∗ s,q)
Therefore, we have

∗(a1 ∗ s,q)∗ (a2 ∗ s,q)

Similarly, we have

∗(a2 ∗ s,q)∗ (a1 ∗ s,q)

Hence *(a1a2 ∗ s,q) = ∗(xy∗ s,q)
2.Similar proof follows for positive membership functions.

5 Conclusion

In the present research, we established the new notations
of Bipolar K-Q Group Acting on ϑ -fuzzy subset, Bipolar
K-Q Group Acting on ϑ -fuzzy subgroup, and addressed
different results and algebraic characteristics. We
investigated the effect of these algebraic characteristics on
the concept of Bipolar K-Q Group Acting on ϑ -fuzzy
cosets.

Furthermore, we introduced a new notation of Bipolar
K-Q Group Acting on ϑ -fuzzy normal subgroup and
quotient group with respect to group homomorphism. In
future research, we aim to expand this notion to
intuitionistic fuzzy sets, bipolar fuzzy sets, anti-fuzzy
sets, and neutrosophic fuzzy sets, as well as explore their
various algebraic aspects.
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