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Abstract: The metric dimension of a graph is the smallest number of vertices from which the vector of distances to every vertex in
the graph is unique. A resolving set S of G with the minimum cardinality is a metric basis of G, and |S| is the metric dimension of
G. A resolving set S is secure if for any v € V — S, there exists x € § such that (S — {x}) U{v} is a resolving set. For some graphs,
the value of the resolving set of the graph is determined and defined, the value of the secure resolving number is determined and
defined. The results show that different graph families have different Secure resolving set , we will demonstrate that the resolving set
dimension and the secure resolving set dimension of including the total graph , the pendent edge graph , the tadpole graph , the open
diagonal ladder graph and the bridge graph. This paper investigates the metric and secure metric dimensions of several graph families,
including the total graph, pendent edge graph, tadpole graph, open diagonal ladder graph, and bridge graph. For each graph type, we
determine the minimal resolving sets and analyze their resolving sets and analyze their structural characteristics. The results reveal
notable differences in resolving behavior across these graph classes, offering insights relevant to applications in network discovery,
combinatorial optimization, and pattern recognition.
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1 Introduction A resolving set with the smallest possible cardinality
is known as a metric basis, and its cardinality is referred to

as the metric dimension of G, denoted by dim(G) [26].

Graph theory is a branch of mathematics that explores the
relationship between vertices and edges. One of the
fundamental concepts in this field is the resolving set,
which has numerous applications in areas such as
network discovery [1,2], connected joins in graphs [3],
strategies for the Mastermind game [4,5], pattern
recognition [6], combinatorial optimization [7,8], image
processing [9], and game theory [10].

The concept of resolving sets was introduced nearly
four decades ago by Slater, who referred to them as
locating sets. Independently, Harary and Melter
developed a similar concept and introduced the term
”metric dimension.” Since then, extensive research has
been conducted on various types of resolving sets,
including resolving dominating sets and independent

Let G = (V,E) be a connected, simple and finite resolving sets.

graph. Suppose an ordering (xj,x2,...,x;) is imposed on a
subset S = {x1,x2,...,5x € V(G)}. The metric
representation of a vertex b € V(G) with respect to S is
defined as the ordered k-tuples
r(blS) = ((x1,b),(x2,b),...,d(x,b)) where d(x;,b)

In graph theory, the notion of security is also
associated with different types of sets. In this paper, our

denotes the shortest path distance between x; and b. If
r(x|S) = r(b|S) implies x = b for all x,b € V(G), then S is
called a resolving set of G.

primary objective is to compute both the metric
dimension and the secure metric dimension for several
families of graphs.
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2 Definitions and basic terminology

Definition 1 [11] . A simple graph G consists of a non-
empty finite set of V(G) of elements called vertices (or
nodes), and a finite set E(G)of distinct unordered pairs of
distinct elements of V(G) called edges. We call V(G) the
vertex set and E(G) the edge set of . An edge {v,w} is
said to join the vertices v and , and is usually abbreviated
to vw. For example , Fig.1 represents the simple graph G
whose vertex set V(G) is {v,w,z} , and whose edge set
E(G) consists of the edges uv, uw,vw and wz.

\ w

Figure 1. Example of simple graph.

Definition 2 [11] . Resolving Set For a connected
graph G = (V,E) , a set of vertices T C V(G) resolves G
if every vertex of G is uniquely determined by its vector
of distances to the vertices in
rv|T) = (d(v,x1),d(v,x2),...d(v,x¢)) 1is unique for
everyv € V(G). For example Figure 2 .
T = (vi,2),(v|T) = ((0,1),(1,0),(1,1),(2,1),(2,2)), is
unique, T = (v, v2), is Resolving Set.

A\ \Y%
V1 3 5

Figure 2. Example of Resolving set.

Definition 3 [12] . Secure Resolving Set a subset T’
of G is a SR set of G if T is resolving and for any x €
V —T , there exists y € T such that (T — {y})U{x} is a
resolving set of G. The minimum cardinality of a SR set of
G is known as the secure resolving dimension of , and is
marked by sdim(G). For example, Figure 3.

Figure 3.Example of secure resolving set.

T = (vi,v2) is Resolving Set.

y={r2}

x = (v3,v4,V5)

H = (T —{y}) U{x} = (v1,v5)

r(v|H) = ((0,2),(1,2),(1,1),(2,1),(2,0)) is unique,

H = (v1,vs) is Resolving Set , T is Secure Resolving
Set.

Definition 4 [13] . The total graph T(G) of G is the
graph with the vertex set V{JE and two vertices are
adjacent whenever they are either adjacent or incident in
G.

Definition 5 [14] . The pendant number of a graph ,
denoted by [1p(G), is the least number of vertices in a
graph such that they are the end vertices of a path in a
given path decomposition of a graph G .

Definition 6 [15] . bridge of a connected graph is a
graph edge whose removal disconnects the graph. More
generally, a bridge is an edge of a
not-necessarily-connected graph whose removal increases
the number of components of G .

Definition 7 [16] . The (m,n)-tadpole graph, also
called a dragon graph or kite graph is the graph obtained
by joining a cycle graph C,, to a path graph P,with a
bridge .

3 Main Results

Here, we display that the metric dimension and secure
metric dimension of including the total graph , the
pendent edge graph , the tadpole graph , the open
diagonal ladder graph and the bridge graph.

Metric dimension. Is the smallest number of vertices
from which the vector of distances to every vertex in the
graph is unique .

Theorem 1 Let 7(G) be total graph with n vertices and
k blocks then the metric dimension equal to 2.

Proof. We label total graph as shown in Figure 4 . We
select a subset T = {v1,v(,_(2—1))} » and we must show
that dim(T(G)) =2forn >3, n=2k+1,k>1.

The proof is as follows:-
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Let T = (vi,v(4—(2k—1)) is a metric dimension of
total graph where K=1,2,3,....n and n=2k+1
Begin d(v;,T)=(0,1)

for(i=2;i<n—1;i=i+2)do
d<vi7T> (évi_ )

end

for (i=3;i<n;i=i+2)do
d(V,’,T):(i_ 7%)

end

end
This completes the proof .

Figure 4. The total graph.

- Ex1:- The example of total graph block 2:-
T = (v1,v,) is resolving set Figure 5 :-

d(vi,T)=(0,1),d(v,T) = (1,0),
d(v3,T)=(1,1),d(v4,T) = (2,1),
d(vs,T) = (2,2).
V2 V4
V1 V3 V5

Figure 5. Total graph with block 2.

Theorem 2.Let [ p(G) be pendent edge graph with n
vertices and k blocks then the metric dimension equal to 2.

Proof. We label pendent edge graph as shown in
Figure 6 . We select a subset T = {vi,v(,_t)} , and we
must show that dim([[p(G)) =2forn>5 n=3k+2,
k>1.

The proof is as follows:-

LetT = (v1,v(,—t)) is ametric dimension of pendent edge
graph where K =1,2,3,....n and n=3k+2

for(i=1;i<n—kii=i+1)do

dvi,T)=(i—1,i—n—k)
end
fori=n—k+1;i<ni=i+1)do
d(vi,T) = (2i — 4k —4,2n— 2i +2)
end

end
This completes the proof .

vn-k-4 v,.«.g vn-k-z vﬂ-k-l

Figure 6. The pendent edge graph.

- Ex2 :-The example of pendent edge graph block 2:-
T = (v1,v) is resolving set Figure 7:-

d(v1,T)=(0,5),d(v2,T) = (1,4),
d(v3,T)=(2,3),d(vs,T) = (3,2),
d(vs,T) = (4, 1) d(ve,T) = (5,0),
d(v77T):(274)7d(V87 ) (472)
v7 vB
g 00 4o,

Figure 7. Pendent edge graph with block 2.

Theorem 3. Let G be Open Diagonal ladder
graphO(Dl,) with n vertices and k blocks then the metric
dimension equal ton/2 .

Proof.

We label Open Diagonal ladder graph as shown in
Figure 8. We select a subset T = {v1,...,v(,/2)}, and we
must show that dim(O(DI,)(G)) =5 for n>4,
n=2k+2, k>3.

The proof is as follows:-

Case1 k=1 thendim(G) =2.

Case 2 k =2 then dim(G) =4 .

Let T = (vi,...,V(;/2)) is a metric dimension of
open diagonal ladder graph where n=2k+2  and

dim(G)=k+1=n/2 and  K=34,.....10
for(i=1;i<n/2;i=i+1)do
d(vi7T) = (|l_ 1|,|l—2|,|l—3|,7|l—(l’l/2—
D |n/2—il).
end
d(v(n/Z-‘rl)aT) = ((n—l),(ﬂ—l— 1)a-"7(n_i_

(n/2-2)),(i—k)).
for (i=n/242;i<n/2+3;i=i+1)do

dvi,T)=(n—i),(n—i—1),....,(n—i— (k—
3)), 1,1, (i—k—2)).
end

for (i=n/2+4;i<n/2+5;i=i+1)do

dvi,T)=(n—i),(n—i—1),....,(n—i—(k—
5))71717( k—(l—i’l/Z)),(l—k—(l—n/z—1))7(l—k—
(i=nj2—2).
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end
for(i=n/24+6;i<n/2+T;i=i+1) do
dvi,T)=((n—i),(n—i—-1),...,(n—i— (k—
7)),1,lé(i—k—(i—n/2)),...,(i—k—(i—n/2—4))).
en
for(i=n/248;i<n/2+9i=i+1) do
dvi,T)=((n—=1),(n—i—=1),...,(n—i— (k—
9)),1,1,([—/(—(1—1’1/2)),,(l—k—(l—n/2—6)))

end
fori=n—1i<mi=i+1)do
d(v;,T) =
((i—2k),1,(i—k—10),(i—k—9),...,(i—k—2)).
end
end

This completes the proof .

Figure 8. The Open Diagonal ladder graph.

- Ex3 :-The example of The Open Diagonal ladder
graph block 3:-

T = (v1,v2,V3,v4) is resolving set Figure 9 :-
d(v1,T)=1(0,1,2,3),d(v,,T) = (1,0,1,2),
d(v3,T)=(2,1,0,1),d(v4,T) = (3,2,1,0),
d(vs,T)=(3,2,1,2),d(ve, T) = (2,1,1,1),
dv7,T)=(1,1,1,2),d(vs,T) = (2,1,2,3).

v
2

Figure 9.0pen Diagonal ladder graph with block 3.

Theorem 4. LetG be Bridge graph with n vertices and
k blocks then the metric dimension equal ton/2+ 1 .

Proof.
We label Bridge graph as shown in Figure 10 . We
select a subset T = {vi,v2,...,V(y/241)} » and we must

show that dim(G) = 5 +1forn>6,n=3k+2,k>1.

V2 v
v1 3 v
4
\Y A
8 A -~ 5
\Y
V7 p

Figure 10. The bridge graph.

The proof is as follows:-
Case 1: k is even
Let T =(vi,v2,..-,V(n/2+1)) is a metric dimension
of bridge graph with even blocks where K =2,4,6,8...n
and n=06k
and
m=1,2,3,4,5,6,......
for(i=1;i<n/2;i=i+1)do
dv,T) = (|li—1|,)i=2|,]i=3],...]i—10],]i —
L1, |i—12],...[i—m]|, (i +2)).
end

for(i=n/2+1;i<n/2+2;i=i+1) do
d(vi,T) = ((n/2=(i=k)), (n/2=(i=k)) +1,(n/2 =
(i—k)+2,...,(n/2—(i—k))+m+(i— (n/241))).
end

for (i=n/2+3;i<mi=i+1)do
d(vi,T) = (((i—n/4) —2k), ((i—n/4) = 2k) + 1, ((i —
n/4)=2k)+2,...((i—n/4) = 2k)+m,(i— (n/2+1))).
end
end
This completes the proof .

- Ex4 :-The example of The bridge graph block 2:-
T = (v1,v2,v3,v4,Vs,V6,v7) is resolving set Figure 11

d(vi,T) = 0,1,2,3,4,5,3),d(v2,T) =
(1,0,1,2,3,4,4),

dv3, T) = (2,1,0,1,2,3,5),d(v4,T) =
(3,2,1,0,1,2,6),

d(VSaT) = (4v37271707157)5d(V65T) =
(5,4,3,2,1,0,8).

d(V7, T) = (3,4,5,6,7,8,0),d(\/8, T) =
(2,3,4,5,6,7,1),

d(V9,T) = (17273,4,5,6,2),d(V10,T) =
(2’3’475767773))

d(vi1,T) = (3,4,5,6,7,8,4),d(vi2,T) =
(4,5,6,7,8,9,5) .
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Figure 11. Bridge graph with block 2.

Case 2:- k is odd.

Let T = (vi,v2,..-,V(s/241)) is a metric dimension
of bridge graph with odd blocks
where K=1,3,5,79...n and n=06k

and
m=1,2,3,4,5,6,......

for i=1;i<n/2;i=i+1)do
d(vi,T) = (i = 1],]i = 2[,]i = 3],...[i = 10],]i —
11, [i—12|,...Ji—m]|,(i+2))
end

for (i=n/2+1i<mi=i+1)do
d(vi,T) = (|(n/2= (i = k)| +1,|(n/2 = (i— k)| +
2,..,|(n2=(i—k)|+m,(i—(n/24+1)))
end
end
This completes the proof .

- Ex5:- The example of The bridge graph block 3:-
-T = (v1,v2,v3,Vv4,Vs, V6, V7,V8,V9,V]0) is resolving set
Figure 12 :-

dv,T) = 1(0,1,2,3,4,5,6,7,8,3),d(v2,T) =
(1,0,1,2,3,4,5,6,7,4),

dvs, T) = 1(2,1,0,1,2,3,4,5,6,5),d(v4,T) =
(3,2,1,0,1,2,3,4,5,6),

dvs,T) = (4,3,2,1,0,1,2,3,4,7),d(v¢,T) =
(5,4,3,2,1,0,1,2,3,8),

dv;,T) = 1(6,54,3,2,1,0,1,2,9),d(vs,T) =
(7,6,5,4,3,2,1,0,1,10),

d(v,T) = (8,7,6,5,4,3,2,1,0,11),d(vio,T) =
(3,4,5,6,7,8,9,10,11,0),

dovi,T) = (2,3,4,5,6,7,8,9,10,1),d(vi2,T) =
(1,2,3,4,5,6,7,8,9,2),

dvi3,T) = (2,3,4,5,6,7,8,9,10,3),d(v14,T) =

(3,4,5,6,7,8,9,10,11,4),

d(vis,T) = (4,5,6,7,8,9,10,11,12,5),d(vi6,T) =
(5,6,7,8,9,10,11,12,13,6),

d(vi7,T) = (6,7,8,9,10,11,12,13,14,7)d(v13,T) =
(7,8,9,10,11,12,13, 14,15,8)

v v v V
B 0 55 v

0.
v
1 i

Figure 12. Bridge graph with block 3.

Theorem 5. Let 7'(m,n)be tadpole graph with n
vertices and k blocks then the metric dimension equal to
2.

Proof.

We label tadpole graph as shown in Figure 13 . We
select a subset T = {v1,v(,_x_1)} , and we must show that
dim(G)=2forn>4 ,n=k+3,k>1.

The proof is as follows:-

Let T = (Vlav(n—k—l))
tadpole graph where
n=k+3

Begin d(v,,T) = (0,1),d(v2,T) = (1,0)
for(i=3;i<myi=i+1)do
d(vi,T) = (i=2,i=2)
end
end
This completes the proof .

is a metric dimension of
K=123,....n and

Figure 13. The tadpole graph.

- Ex6:- The example of tadpole graph block 1:-
T = (v1,v2) is resolving set Figure 14 :-
d(vlvT) = (07 1)7d(v27T) = (170)1
d(vs3, T)=(1,1),d(v4,T) = (2,2).

v
2

Figure 14. Tadpole graph with block 1.

3.1 Secure metric dimension

Theorem 6. Let T (G) be total graph with n vertices and k
blocks then the Secure metric dimension equal to 2.
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Proof. We label total graph as shown in Figure 15 .
We select a subset H = {v,v,} , and we must show that
Sdim(T(G)) =2forn>3 n=2k+1,k>1.

- The proof is as follows:-

Let H = (vi,v,) is a Secure metric dimension of
total graph where K=1,2,3,....n and n=2k+1
Begin d(vlaH) = (07K)7d(v27H) = (17K)

for (i=3;i<n—-2i=i+2)do
d(VHH) = ((%7%)

end
for (i=4;i<n-3;i=i+2)do
dvi,H)=(4,n—k—1)
end
d(vy—1,H) = (K,1),d(v,,H) = (K,0).

Figure 15. The total graph.

- Ex7:- The example of total graph block 2:
H = (v1,vs) is secure resolving set Figure 16 :

d(vi,H) =(0,2),d(v2,H) = (1,2),
(V3, ) ( ) (V47 )2(2,1),
d(vs,H) = (2,0).
V2 V4
Y Vs %

Figure 16. Secure metric dimension of total graph with
block 2.

Theorem 7. Let []p(G) be pendent edge graph with
n vertices and k blocks then the Secure metric dimension
equal to 2.

Proof.

We label pendent edge graph as shown in Figure 17 .
We select a subset H = {v2,v(,_x)} , and we must show
that Sdim[[(p(G)) =2forn >5,n=3k+2,k>1.

The proof is as follows:

Let H = (v2,V(,—)) is a Secure metric dimension of
pendent edge graph where K =1,2,3,.....n and n=
3k+2

Begind(v,H) = (l,n—k—1)
for(i=2i<n—kji=i+1)do
dWvi,H)=(i—2,n—i—k)
end
for(z

k+1;i<ni=i+1)do

=(2i—4k—5,2n—2i+2)
end

end

This completes the proof .

vn'k-ﬂ vnk-! vnk»l vﬂ*"
Figure 17. The pendent edge graph.

- Ex8:- The example of pendent edge graph block 2:
H = (v2,vg)is secure resolving set Figure 18 :-

d(vi,H)=(1,5),d(v2,H) = (0,4),
(V3’ ) (1 3),d(V4,H) = (272)7
d(VS? ) (3 1),d(V6,H):(4,0),

d(v7,H) = (1,4),d(vs,H) = (3,2).

V7 V s

vQ 0—80,

1 6
v, v, v Vs

Figure 18. Secure metric dimension of pendent edge
graph with block 2.

Theorem 8. Let G be Open Diagonal ladder graph
O(Dl,) with n vertices and k blocks then the Secure
metric dimension equal to 7 .

Proof. We label Open Diagonal ladder graph as shown
in Figure 19. We select a subset H = {vy,...,v(,/241)} , and
we must show that Sdim[[(O(DIn)(G)) = 5 for n > 4,
n=2k+2,k>3.

The proof is as follows:-

Case 1. k = 1 then Sdim(G) =2

Case 2. k = 2 then Sdim(G) = 4

Let H = (vi,...,V(z/2+1)) is a Secure metric

dimension of open diagonal ladder graph where
n = 2k+2 and K = 34...10
3 8dim(G) =k+1=n/2
fori=1;i<n/2—1;i=i+1)do
d(V,’,H) =
end

© 2025 NSP
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dv),H)=((n—i),(n—i=1),....(n—i— (5 -
2)),((5 —1)+2)).
d(vi),H)=((n—i),(n—i—=1),....(n—i—
(8-2)),(i—k—-2)).
for (i=5+2;i<5+3i=i+1)do
dvi,H)=((n—0),(n—i—1),....(n—i— (k—
3),1,1,(i—k—2)).
end

S L1 (= k= (=), (i—k= (=5 1), (i—k— (i
5-2)
end
for (i=5+6;i<5+7;i=i+1)do
d(vi,H) = ((n—1i),(n—i—1),...,(n—i— (k—
NG k= (=), (i—k—(i— 2 —4))).
end
for(i=24+8i<%+9%i=i+1)do

dvi,H)=((n—1i),(n—i—1),....(n—i— (k—
)11, (i—k— (=3}, r(i— k= (i~ & —6))).

end

for (i=n—1;i<nmi=i+1)do

d(V,’,H) =
((i—2k),1,(i—k—10),(i—k—9),...,(i—k—2)).
end
end

This completes the proof .

A v A A n-4/2 0212 Vo
A N
v —0—r Do
! v v v
VoV, Vs (243 (242 (/)41

Figure 19. The Open Diagonal ladder graph.

Ex9:- The example of The Open Diagonal ladder
graph block 3:

H = (v1,v2,v4) is secure resolving set Figure 20.

d(v,H) = (0,1,2,3),d(v,H) = (1,0,1,2),

d(v3,H)=(2,1,0,1),d(v4,H) = (3,2,1,2),
d(vs,H) = (3,2,1,0),d(ve, H) = (2,1,1,1),
divi,H)=(1,1,1,2),d(vs, H) = (2,1,2,3).

V2 v
v1 3 v
4
\Y A
8 A -~ 5
A
V7 p

Figure 20. Secure metric dimension of Open Diagonal
ladder graph with block 3.

Theorem 9. Let G be Bridge graph with n vertices and
k blocks then the Secure metric dimension equal to 5 + 1.

Proof. We label Bridge graph as shown in Figure 21 .
We select a subset H = {v1,v2,...,V(4/2),V(n—1)} » and we
must show that Sdim(G) = 5 +1 forn>6 ,n=3k+2,
k>1.

The proof is as follows:-
Case 1: k is even:-
Let H = (v1,v2,...,,V(1),V(4—1)) is a secure metric

2
dimension of bridge graph with even blocks where

K=2,4,6,8...n and n=06k
>
m=1,2,3,4,5,6,......
for (i=1;i<%;i=i+1)do
d(vi,H) = (i —1],|i —2|,|i = 3],...]i — 10],]i —
11,]i —12|,...|i —m|, (i +3)).
end
for (i=5+1;i<5+2i=i+1)do

d(vi,H) = ({3~ (= 1), (5~ (~K) + 1.(3 — (1~ K) +
2,...,8%—(i—k))+m,(((9/2k— )—i)+7%)).
en

for (i=n/2+35i<mi=i+1)do
d(vi, H) = (((i—n/4)—26), (i~ n/4)—26)+ 1, (i~
n?j‘))—Zk)+2,...,((i—n/4) —2k)+m,|((9/2k—1)—i)+
end
end
This completes the proof .

v \
2 3
V1 v
4
\Y \4
8 \Y4 - 5
\4
V7 p

Figure 21. The bridge graph.

© 2025 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1316 %N S\

A. Elrokh et al. : Metric dimension and Secure metric...

- Ex9:- The example of The bridge graph block 2:-
H = (v1,v2,v3,Vv4,Vs5,V6,v11) 1S secure resolving set
Figure 22 :-

d(vlvH) - (0,1,2,3,4,5,3),d(V2,H) -
(1707132737474)7

dvi, H) = (2,1,0,1,2,3,5),d(va, H) =
(3,2,1,0,1,2,6),

d(VSaH) = (4’372a1307177)7d(V67H) -
(5,4,3,2,1,0,8).

d(V7,H) = (3,4,5,6,7,8,4),d(v8,H) =
(2,3,4,5,6,7,3),
d(V97H) = (1,2,3,4,5,6,2),d(V10,H) =
(2,3,4,5,6,7,1),
d(v“,H) =
(4,5,6,7,8,9,1).

(3,4,5,6,7,8,0),d(vip,H) =

v

s o o o 9

Figure 22. Secure metric dimension of bridge graph
with block 2.

Case 2:- k is odd.

Let H = (Vi...,V(;/2);V(u—1)) 1S a secure metric

dimension of bridge graph with oddd blocks
where K =1,3,5,7,9...n and n =6k
> m=

1,2,3,4,5.6,......

for(i=1;i<n/2;i=i+1) do

d(vi,H) = (i = 1],]i — 2], |i = 3],...]i — 10], i -
U, Ji—12],. . i=m], (i+5)):

end

for (i=n/24+1i<n—1;i=i+1)do

d(vi,H) = (|(n/2—(i—k))|+ 1L,[(n/2— (i—k))| +
2,..,|(n/2=(i—k)|+m,(n—k—1i)+2)).
end
d(v, H) = (|(n/2— (i = R) |+ 1, (/2 — (i — k)| +
2,0, (n/2 (i = R) [+ m, (Jn—k—i] ~2)).
end
end

This completes the proof .
- Ex10:- The example of The bridge graph block 3:-
-H = (v1,v2,v3,V4,V5,V6,V7,V8,V9,V17) is secure
resolving set Figure 23:-

d(vlaH) = (O,1,2,3,4,5,6,7,8,6),61(1)2,1‘1) =
(]7Oa17273747556a777)a
d(vs,H) = (2,1,0,1,2,3,4,5,6,8),d(v4,H) =

(3,2,1,0,1,2,3,4,5,9),

d(vs,H) = (4,3,2,1,0,1,2,3,4,10),d(ve,H) =
(5?4?37271707172?3’11)7
d(v7,H) = (6,5,4,3,2,1,0,1,2,12),d(vs,H) =
(7?6757473727170?1’13)7
d(ve,H) = (8,7,6,5,4,3,2,1,0,14),d(vi0,H) =
(3,4,5,6,7,8,9,10,11,7),
(V11, ) (2 3,4,5,6,778,9,10,6),d<V12,H):
(1,2,3,4,5,6,7,8,9,5),
d(viz,H) = (2,3,4,5,6,7,8,9,10,4),d(v14,H) =
(3,4,5,6,7,8,9,10,11,3),
d(vis,H) =
(4,5,6,7,8,9,10,11,12,2),d(vi6, H) =
(5,6,7,8,9,10,11,12,13,1),
d(vi7,H) =
(6,7,8,9,10,11,12,13,14,0)d(v13,H) =
(7,8,9,10,11,12,13,14,15,1).

Figure 23. Secure metric dimension of bridge graph with
block 3.

Theorem 10. Let7 (m,n) be tadpole graph with n
vertices and k blocks then the secure metric dimension
equal to 2.

Proof.

- We label tadpole graph as shown in Figure 24 . We
select a subset H = {v1,v(,_g)}, and we must show that
Sdim(G) =2 forn>4,n=k+3, k> 1.

-The proof is as follows:-

Let H=(vi,v(,_g)) is asecure metric dimension
of tadpole graph where K=123,.....n and
n=k+3

Begin d(v;,H) = (0,1),d(v2,H) = (1,1)
for(i=3;i<mi=i+1)do
dvi,H)=(i—2,i—(n—k))
end
end
This completes the proof .
v v
v : 3 v
4
VS A4 ~ V5
v7 V6

Figure 24. The bridge graph.
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- Ex11:- The example of tadpole graph block 1:
- H = (v1,v3) is secure resolving set Figure 25:-
d(vlvT) = (Ov 1)ad(v2aT) = (la 1)a
d(vs3,T)=(1,0),d(v4,T) = (2,1).

Figure 25. Secure metric dimension of tadpole graph
with block 1.

4 Conclusion

In this paper we have calculated and explained the
resolving set dimension and the secure resolving set
dimension for some graphs like the total graph , the
pendent edge graph , the tadpole graph , the open
diagonal ladder graph and the bridge graph, as shown in
the following table:-

Table 1: Summary of results

Graph type Resolving set dimension Secure resolving set dimension

The total graph dim(T(G)) =2forn >3 Sdim(T(G)) =2forn >3

The pendent edge graph dim([1p(G)) =2forn>5 Sdim(T1p(G)) =2forn>5

atk=1—dim(G) =2,
atk=2 — dim(G) =4,
atk =10 — dim(O(DLn)(G))
=k+1=n/2

atk=1— Sdim(G)=2 ,
atk=2 — Sdim(G) =4,
atk =10 — Sdim(0(Dl_n)(G))
—k+1=n/2

The open diagonal ladder graph

The bridge graph dim(G) =n/2+1forn>6 Sdim(G) =n/2+ 1forn>6

The tadpole graph dim(G) =2forn >4 Sdim(G) =2forn >4
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