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Abstract: This study investigates the concentration, spatial variability, and associated health risks of selected heavy metals
(Cd, Cr, As, Pb, and Cu) in agricultural soils across the Northern Agricultural Zone of Bauchi State, Nigeria. Twenty-one
composite soil samples were analyzed using standardized geochemical protocols, and results were benchmarked against
international regulatory thresholds set by the USEPA and EU. The mean concentrations of Cd (14.97 mg/kg) and As (10.43
mg/kg) substantially exceeded permissible limits, indicating possible anthropogenic enrichment linked to agricultural
inputs and artisanal mining. Spatial distribution maps revealed discrete hotspots, particularly in areas of high cultivation
intensity and proximity to mineralized geological formations. Risk assessment metrics, including Annual Daily Intake
(ADI) and Hazard Quotients (HQ), demonstrated elevated non-carcinogenic risks for children, particularly via oral
ingestion of Cd and Cr. Inhalation data exhibited anomalous values likely due to computational artifacts, warranting further
methodological review. Despite copper and lead levels remaining below regulatory limits, their cumulative ecological and
physiological impacts remain relevant, especially under prolonged exposure scenarios. These findings underscore the
urgent need for regulatory oversight of agrochemical practices, community-level health surveillance, and implementation
of soil remediation strategies in vulnerable zones.
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remain limited, which hinders the development of targeted
remediation and regulatory frameworks [6].

1 Introduction

The contamination of soils by heavy metals is an escalating

concern worldwide, particularly in regions experiencing
rapid industrialization and urban expansion. Metals such as
cadmium, chromium, arsenic, lead, and copper are
especially worrisome because of their persistence in the
environment and potential to cause adverse health effects
even at low concentrations [1, 2]. These contaminants often
accumulate through human activities such as mining,
industrial emissions, and the application of agrochemicals,
creating long-lasting pollution challenges [3].

In Nigeria, expanding industrial activities and population
growth have contributed to increasing levels of heavy
metals in soils, especially in areas near industrial hubs and
mining sites [4-6]. Despite these challenges, comprehensive
local data on soil contamination and associated health risks

Exposure to these metals occurs through several pathways,
primarily ingestion, inhalation, and dermal contact, with
children often being more vulnerable due to their behavior
and physiology [7]. Health risk assessments using
indicators like hazard quotients and indices help quantify
potential non-carcinogenic and carcinogenic risks, guiding
environmental management decisions [8, 9]. Given regional
variations in contamination sources and exposure scenarios,
localized studies are critical for accurate risk profiling [10].

This research focuses on assessing heavy metal
concentrations in soil samples from Bauchi State, Nigeria,
with a specific emphasis on evaluating health risks for
children and adults through different exposure pathways.
By comparing findings with previous studies in Nigeria and
other regions, this study seeks to provide essential data to
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support environmental health protection and sustainable
soil use policies.

2 Materials and Methods

Study Area

This investigation was carried out within the Northern
Agricultural Zone of Bauchi State, located in northeastern
Nigeria. This zone comprises several Local Government
Areas (LGAs), including Gamawa, Zaki, Itas/Gadau,
Jama’are, Giade, Shira, and Katagum. Geographically, this
part of the state is bordered by Jigawa and Kano States to
the northwest, Yobe State to the northeast, and Gombe
State to the southeast, forming a strategically significant
agricultural corridor with both ecological and socio-
economic diversity [11].

The area lies within two major geological formations: the
Chad Basin sediments and the Basement Complex terrain.
The Chad Formation is predominantly composed of loosely
packed sand, silt, gravel, and clay materials that influence
the leaching and retention capacities of soils. Below this
sedimentary layer lies the crystalline Basement Complex,
which consists primarily of granites, gneisses, and schists,
often associated with mineralization of substances like
limestone, quartz, iron ore, and granite [12, 13].

Climatically, the zone experiences a tropical savanna
climate, with distinct seasonal cycles. The dry season,
extending from November to May, brings high
temperatures, often exceeding 30°C. From June to October,
the wet season sets in, contributing approximately 800 mm
of annual rainfall. A cooler, dust-laden harmattan season
also occurs between December and February, driven by dry
winds from the Sahara Desert [14].

The economy of the study area is deeply rooted in
agriculture. Farmers cultivate cereals and legumes such as
millet, sorghum, maize, and cowpea, while also raising
livestock like cattle, goats, sheep, and poultry. In addition
to farming, small-scale mining activities targeting quartz,
limestone, and iron ore are also prevalent, potentially
contributing to metal pollution in soils [15]. Local market
economies thrive on agricultural produce and artisanal
crafts, reinforcing the community’s dependence on natural
resources.

The selection of this zone as the study location stems from
its geological complexity, agricultural intensity, and
presence of unregulated mining practices, all of which can
influence the accumulation of toxic heavy metals in soils.
The presence of Yankari Game Reserve and Wikki Warm
Springs,  although  ecotouristic,  underscores  the
environmental importance of this region.
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Fig. 1: Map of the study area and sampling locations.
Method of Soil Sample Collection

The Worldwide Positioning System (GPS) was used to take
the coordinates of the sampling points within the study
region. A total of twenty (21) soil samples were collected
from farms in the selected locations in the study area. These
soil samples were collected randomly from each sampling
farms in the study area. The method applied in sampling is
simple random sampling to achieve statistical sensitivity of
sampling. A shovel was used to collect soil samples to a
depth of about 10cm. The method applied in sampling is
simple random sampling to achieve statistical sensitivity of
sampling. Each composite soil sample

collected is expected to weigh about 400g of mass,
separately collected and placed in a well-labeled polythene
bag, and then sealed to avoid cross-contamination of the
samples during transportation to the laboratory.

Method of Soil Sample Preparation

The soil samples were prepared through a process of open-
air drying at room temperature to remove moisture, and
would later be oven dried at a temperature of 500 - 1100 °C
to obtain uniform weight. Stony soil samples were ground
into a powdery form separately and singly using a mortar
and pestle and sieved with a wire mesh with holes of
thickness 0.5mm to obtain homogeneity of sample size. The
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samples are expected to weigh approximately 300g. The
samples for heavy metal concentration analysis were sent
immediately to the laboratory, where Atomic Absorption
spectrometry (AAS) analysis was carried out on the
samples.

Method of Data Analysis

The data on heavy metal concentration from soil
samples were analyzed. The hazard indices and soil to
the presence of heavy metals and activity
concentration, level, respectively, were determined to
ascertain the potential risk associated with the
samples. Using MS Excel for the data analysis.

Hazard indices: Determination of Heavy Metals
Concentration Analysis.

The potential exposure pathways for heavy metals in
contaminated  soils are calculated based on
recommendations by several U.S Environmental Protection
Agency [16]. ADI (mg/kg-day) for the different pathways
were calculated using the following exposure Equations (1)
to (3) as prescribed by [17].

The ingestion of Heavy Metals through Soil (ADljyg),
Inhalation of Heavy Metals via Soil Particulates (ADlj,p),
and Dermal Contact with Soil (ADlgm) are given in
equations (2), (3), and (4), respectively.

CxIRXEFXEDxCF
ADI;,, = =0
g BWxAT

1)

Where ADlyq is the average daily intake of heavy metals
ingested from soil in mg/kg-day, C is the concentration of
heavy metal in mg/kg for soil. IR in mg/day is the ingestion
rate, EF in days/year is the exposure frequency, ED is the
exposure duration in years, BW is the body weight of the
exposed individual in kg, and AT is the period over which
the dose is averaged in days. CF is the conversion factor in
kg/mg.

_ CXIRgiyXEFXED
ADljpy = —————
BWxATxPEF

)

Where ADI;,, is the average daily intake of heavy metals
inhaled from soil in mg/kg-day, CS is the concentration of
heavy metal in soil in mg/kg, IR is the inhalation rate in
m?*/day, and PEF is the particulate emission factor in m*/kg.
EF, ED, BW, and AT are as defined earlier in Equation (1).

CxSAXFExAFxABSXEFXEDxCF
ADIgems =
BWxAT

©)

Where ADlgyems is the exposure dose via dermal contact in
mg/kg/day. Cs is the concentration of heavy metal in soil in
mg/kg, SA is the exposed skin area in cm? FE is the
fraction of the dermal exposure ratio to soil, AF is the soil
adherence factor in mg/cm?, and ABS is the fraction of the

applied dose absorbed across the skin. EF, ED, BW, CF,
and AT are as defined earlier in Equation (1). Table 2
shows the exposure parameters used for the health risk
assessment for the standard residential exposure scenario
through different exposure pathways.

Table 1: Exposure parameter used for the health risk
assessment through different exposure pathways for soil
[18]

Parameter Unit Child Adult

Body weight (BW) Kg 15 70

Exposure Frequency (EF) | Days/ 350 350
years

Exposure duration (ED) Years 6 30

Ingestion rate (IR) mg/day | 200 100

Inhalation rate (IRair) m/day | 10 20

Skin surface area (SA) cm2 2100 5800

Soil adherence factor mg/ cm® | 0.2 0.07

(AF)

Dermal absorption factor | None 0.1 0.1

(ABS)

Dermal exposure ratio None 0.61 0.61

(FE)

Particulate emission m’/ kg | 1.3x10° | 1.3x10°

factor (PEF)

Conversion factor (CF) kg/mg | 10° 10°

Average time (AT) for Days 365x70 | 365x70

carcinogens

Average time (AT) for Days 365XED | 365xED

non-carcinogens

Non- Non-Carcinogenic Risk Assessment
Non-carcinogenic hazards are characterized by a term
called hazard quotient (HQ). HQ is a unitless number
that is expressed as the probability of an individual
suffering an adverse effect. It is defined as the
quotient of ADI or dose divided by the toxicity
threshold value, which is referred to as the chronic
reference dose (RfD) in mg/kg-day of a specific heavy
metal, as shown in Equation (3);

ADI

HQ = ﬁ
(4)

For n number of heavy metals, the non-carcinogenic
effect to the population is a result of the summation of
all the HQs due to individual heavy metals. This is
considered to be another term called the Hazard Index
(HI) as described by the USEPA document [17].
Equation (4) shows the mathematical representation
of this parameter:

ADI
HI = Zﬁ=1HQk = ;cl=1RfD’;

)
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Where HQ, ADI, and RfDy are values of heavy metal k.
If the HI value is less than one, the exposed population is
unlikely to experience adverse health effects. If the HI
value exceeds one, then there may be concern for potential
non-carcinogenic effects [17].

Carcinogenic Risk Assessment

For carcinogens, the risks are estimated as the incremental
probability of an individual developing cancer over a
lifetime as a result of exposure to the potential carcinogen.
The equation for calculating the excess lifetime cancer risk
is:

RiSkpathway = Yk=1ADI CSFy (6)

where Risk is a unitless probability of an individual
developing cancer over a lifetime. ADIk (mg/kg/day) and
CSFk(mg/kg/day)-lare the average daily intake and the
cancer slope factor, respectively, for the kth heavy metal,
for n number of heavy metals. The slope factor converts the
estimated daily intake of the heavy metal, averaged over a
lifetime of exposure, directly to the incremental risk of an
individual developing cancer.

The total excess lifetime cancer risk for an individual is
finally calculated from the average contribution of the
individual's heavy metals for all the pathways using the
following equation:

RiSk(tOtal) = RiSk(ing) + RiSk(inh) + RiSk(dems)
()

where Risk(ing), Risk(inh), and Risk(dermal)are risk
contributions through ingestion, inhalation, and dermal
pathways.

Both non-carcinogenic and carcinogenic risk assessment of
heavy metals are calculated using RfD and CSF values
derived largely from the Department of Environmental
Affairs (South Africa) and USEPA, as shown in Table 3.2.

3 Results and Discussion

The results of Heavy Metals Concentration Level in mg/kg
of Soil Samples collected from the Study Area are
presented in Figure 4, respectively. The levels of Cd, Cr,
As, Pb, and Cu samples collected are determined

The analysis of soil samples from 21 locations in the
northern agricultural zone of Bauchi State revealed elevated
concentrations of heavy metals, notably Cd (14.97 mg/kg),
Cr (18.70 mg/kg), As (10.43 mg/kg), Pb (16.97 mg/kg), and
Cu (30.43 mg/kg) (see Figure 2). These levels raise
environmental and health concerns when compared with
international standards.

Cadmium levels were especially high (14.97 mg/kg),
exceeding both EU (3 mg/kg) and USEPA (0.3 mg/kg)
thresholds [19]. Such contamination is likely linked to

phosphate-based fertilizers, which are known Cd sources in
farmlands [20]. Arsenic with an average of 10.43 mg/kg
levels also surpassed safety limits (USEPA: 0.68 mg/kg),
posing significant risks due to its persistence and
carcinogenic nature [21].

While average lead levels (16.97 mg/kg) remained below
the USEPA critical limit (400 mg/kg), they exceeded
natural background values, likely due to informal mining
and traffic emissions [22, 23]. Copper concentrations
(peaked at 72.68 mg/kg and averaged 30.43 mg/kg), though
within regulatory limits (USEPA: 3100 mg/kg; EU: 140
mg/kg), may still impair soil biological activity at elevated
levels [24].

Chromium concentrations averaged 18.70 mg/kg, with a
peak of 44.34 mg/kg—within permissible limits, yet the
potential presence of toxic Cr(VI) raises ecological
concerns [25].

Comparative studies highlight regional variability. For
example, Cd levels reported by Adebayo and Olayinka [26]
in southwestern Nigeria were lower (<5 mg/kg), suggesting
that local agricultural and mining practices may intensify
contamination in Bauchi. Conversely, soils in Zamfara’s
mining areas showed even higher levels [27], pointing to
broader anthropogenic influences.

Spatial patterns suggest certain locations (e.g., ITSS,
JMRS, GMWS) act as contamination hotspots, likely due to
land use intensity or proximity to pollutant sources. These
findings support the urgent need for remediation strategies
like phytoremediation and organic amendments [28].
Additionally, regular soil monitoring and stricter
agrochemical regulation are essential to protect soil
health and agricultural sustainability in the region.

The findings indicate that ingestion is the primary exposure
route for heavy metals in children, with Cd, Cu, and Pb
showing the most significant intake levels. Adults, while
less affected, still demonstrate concerning exposure to Cu
and Cd, particularly via dermal contact. The inhalation data
requires validation due to evident anomalies. These results
underscore the urgent need for soil remediation, public
health monitoring, and pollution source control in the study
area to mitigate long-term health risks, especially among
children This study evaluated the Mean Annual Daily
Intake (ADI) of five heavy metals (Cd, Cr, As, Pb, Cu)
through ingestion, inhalation, and dermal pathways in
children and adults (see Table 3).

Following ingestion exposure, Children exhibited notably
higher ADIs than adults, consistent with their physiological
vulnerability and higher intake relative to body weight [29,
30]. Cu (3.89x10° mg/kg/day) and Pb (2.10x107
mg/kg/day) were the most significant, surpassing values
from similar regions [31]. Adults had lower ADIs, with Cu
(4.17x107* mg/kg/day) within safe limits [32], although Cd
levels approached risk thresholds [33].

© 2025 NSP
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Reported inhalation ADIs were implausibly high (e.g., As:
4.85x10" mg/kg/day), indicating likely unit or input errors.
These values greatly exceed standard references [34],
requiring data review and correction.

Both age groups showed comparable dermal ADIs, with Cu
being highest overall. Children had elevated Pb dermal
exposure (2.69x10* mg/kg/day), likely due to behavioral

Compared to studies in regions like Southwestern Nigeria
[36] and Jebba [6], this study recorded higher ADIs,
especially for Cd and Cu, suggesting localized pollution
sources. Ingestion remains the primary exposure route,
particularly for children. Adults face moderate risk, mainly
via dermal contact. The inhalation data must be revised.
These findings underscore the need for remediation,
monitoring, and stricter pollution control.

Table 2: Reference Doses (RfD) and Cancer Slope Factors (CSF) for the different Heavy Metals [17, 18].

Heavy Oral RfD Dermal RfD | Inhalation Oral CSF Dermal CSF | Inhalation
metal RfD CSF
As 3.0x10* 3.0x10* 3.0x10™ 1.5 1.5 15
Pb 3.6x10° NA NA 8.5x10° NA 4.2x10°
Cd 5.0x10™ 5.0x10™ 5.7x10° NA NA 6.3
Ni 2.0x107° 5.6x10° NA NA NA NA
Zn 3.0x10* 7.5x107 NA NA NA NA
Cu 4x107° NA NA NA NA NA
Cr 3x10° NA NA 5x107 NA NA
400
'—;\ 350
= 300
;‘f 150
T
= 100
= P [T JNY [ T T * Y .!-Uln“ oLl §
MZTTSETZLIIFZsSFVvIpPRpEogeyzEL
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Sample Locations
eCd mCr As Pb mCu

Fig. 2: Comparison of
Study Area

factors. Cu's bioavailability in soils supports its prominence
[29, 35], while As also poses dermal risks due to its skin

Heavy Metals Concentration Level in mg/kg of Soil Samples collected from the

Table 3: Mean Annual Daily Intake (ADI) of Hea

permeability [33].

Receptor | Mean Annual Daily Intake (mg.kg™.day™
Pathway Cd Cr As
Ingestion 1.91E-03 2.39E-03 1.33E-0
Child

Ingestion 2.05E-04 2.56E-04 1.43E-0
Adult

Inhalation 6.31E-11 7.88E-11 4.85E+]
Child
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Table 4 summarizes average Hazard Quotient (HQ) values
via ingestion, inhalation, and dermal exposure for children
and adults in the study area. An HQ above 1 signals
potential health concerns [19].
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Child ingestion HQs for cadmium (Cd = 3.83) and
chromium (Cr = 2.39) exceed the safe limit, suggesting
significant risk. This aligns with findings from Malik et al.
[37], who reported HQ values above 2 for Cd in industrial—
agricultural soils. Chromium’s elevated child HQ exceeds
the 1.5 threshold noted in Zhang et al. [38]. In contrast,
HQs for arsenic (As), lead (Pb), and copper (Cu) were
below 0.001, suggesting no immediate non-carcinogenic
concern via ingestion.

Adult ingestion HQs remain below 1 for all metals, with the
highest for Cr (0.256), indicating negligible risk for older
populations. This differential between age groups mirrors
results from Li et al. [29], who attributed higher child
exposure to greater soil ingestion per body weight.

Child inhalation HQs for Cd (1.11 x 107**) and Cr (2.63 x
10°%) are in expected ranges; however, values for As, Pb,
and Cu are extremely high (10'°-10%), likely due to
calculation or unit errors. In properly conducted studies,
inhalation HQs remain well below 1 for all ages in non-
industrial regions (Liang et al., 2024). The adult inhalation
HQ wvalues (10"-10%) are similarly implausible,
underscoring a need to re-evaluate calculations or unit
conversions.

Dermal HQs remain below 1 for both children and adults.
Chromium shows the highest dermal HQ (0.15-0.16),
reflecting its relatively higher dermal absorption potential
[39]. Other metals registered negligible dermal HQ values
(<0.0003), consistent with prior observations by Wang et
al. [40] regarding low skin penetration of heavy metals in
contaminated soils.

Overall, ingestion presents the primary non-carcinogenic
risk for children, driven by Cd and Cr. This pattern is
echoed in comparable investigations of soil contamination
in rural agricultural settings [29]. Before concluding,
troubleshooting inhalation values is essential.

Table 5 presents calculated risk values across three
primary exposure routes (ingestion, inhalation, dermal
contact) for children and adults, focusing on five heavy
metals: Cd, Cr, As, Pb, and Cu. Summing risk scores across
all metals and exposure routes highlights ingestion as the
dominant pathway, especially for children.

Child ingestion risk is highest for arsenic (0.200), followed
by cadmium (0.184) and copper (0.004), culminating in a
total ingestion risk of 0.392. These values surpass their
adult equivalents (0.152 total), particularly for arsenic
(child: 0.200 vs. adult: 0.021), due to children's higher
exposure rates per unit body weight. This aligns with
observations in Punjab, Pakistan, where arsenic ingestion
risk among children exceeded adult estimates by nearly
tenfold [41-48].

The inhalation pathway results are invalid, featuring
astronomically high values (>10*) for adults and
exaggerations in children. Such magnitudes are physically

implausible and far exceed typical environmental exposure
levels, which are generally <10~ for non-industrial soils
[38]. This discrepancy indicates likely calculation or data
entry errors that must be rectified before drawing
meaningful interpretations.

Dermal exposure risks are low across both demographics.
Children’s total dermal risk is 0.027, while adults’ is 0.027,
primarily driven by arsenic absorption, likely due to its skin
permeability. These findings mirror those of Li et al. [29],
who reported dermal risks below 0.05 for similar metals in
agricultural areas. The similarity between child and adult
dermal risks is expected, given the shared exposure context
and only slight variation in body weight and surface area
parameters [49].

4 Conclusions

The present investigation reveals significant contamination
of agricultural soils in northern Bauchi State with heavy
metals, particularly cadmium and arsenic, exceeding
international safety thresholds and posing tangible risks to
environmental and human health. The elevated levels of Cd
and Cr in child exposure pathways point to ingestion as the
dominant route of concern, exacerbated by localized factors
such as fertilizer usage and unregulated mining. Although
other metals like Cu and Pb remain within global
acceptable ranges, their potential for bioaccumulation and
long-term toxicity cannot be dismissed. Spatial analysis
confirms heterogeneous contamination, with specific
sampling points emerging as pollution hotspots likely
driven by both anthropogenic and geogenic factors. The
unusually high inhalation HQ values observed for several
metals suggest inconsistencies in exposure modeling that
require methodological refinement. Overall, the data
highlight a pressing need for multi-pronged interventions
comprising soil quality monitoring, public awareness,
regulatory control of agro-inputs, and deployment of
remediation technologies to mitigate ongoing exposure and
prevent future soil degradation in this vital agricultural
corridor. Strengthening institutional capacity and policy
frameworks will be critical in translating scientific insights
into sustainable land management practices in the region.
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