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Abstract: The nonlinear Schrödinger-Bopp-Podolsky system has recently attracted a lot of interest since it is useful for modelling a
variety of physical phenomena, including optical solitons and Bose-Einstein condensates. In this article, we used an enhanced modified
extended tanh-expansion approach to examine the dynamics of wave functions in quantum mechanics with nonlinear interactions and
relativistic effects on the Schrödinger-Bopp-Podolsky system. The proposed approach provides precise and effective analytical results.
In order to develop a generalized version of the solitary wave solution ansatz, we first formulate the Schrödinger-Bopp-Podolsky
system as a coupled set of nonlinear partial differential equations. The enhanced approach enables us to efficiently explore a large
parameter space and locate numerous families of solitary wave solutions that have distinctive characteristics. In order to examine
the characteristics of solitary waves of the Schrödinger-Bopp-Podolsky system under various conditions, such as variation in the
nonlinearity coefficients and external potentials, we employ our enhanced approach. The results of this investigation considerably
advance knowledge of the Schrödinger-Bopp-Podolsky system and its solitary wave behavior. The distinctive feature of this article
is, to give graphical representations of the obtained solutions using MATLAB and Mathematica simultaneously. Future research into
related nonlinear wave equations and their applications in other physical systems will benefit greatly from the enhanced approach
described here.

Keywords: Nonlinear Schrödinger Bopp- Podolsky(NLS-BP) system, enhanced modified extended
tanh-expansion method, solitary wave solutions, relativistic effects

1 Introduction

In recent years, the study of ultrashort pulse propagation
in nonlinear optical fibers has gained significant attention
due to its relevance in high-speed optical communication
systems, nonlinear optics, and fiber lasers. Ultrashort
pulses, characterized by durations on the order of
femtoseconds or picoseconds, exhibit complex nonlinear
interactions with the optical medium as they travel
through the fiber [1–20]. The dynamics of several
physical phenomena, such as Bose-Einstein condensates

and nonlinear optics, are modelled mathematically by the
nonlinear Schrödinger-Bopp-Podolsky (NLS-BP) system.
Using the nonlinear Schrödinger equation and the
Bopp-Podolsky equation, the NLS-BP system forms a
nonlinear partial differential equation. The
Bopp-Podolsky equation describes the behavior of a
vector field, whereas the nonlinear Schrödinger equation
describes the behavior of a complex scalar field.
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The NLS-BP system can be written in the following form:{
iψt =−∇2ψ +λ |ψ|2ψ + γ v,
vt =−∆v−λ |ψ|2v,

(1)

where ψ is a complex scalar field(complex valued wave
function), v is a vector field(real valued wave function), λ

and γ are constants, and ∇2 and ∆ are the Laplacian
operators in the scalar and vector fields, respectively. The
first Eq. in the system 1 describes the evolution of the
scalar field under the influence of a nonlinearity, while the
second Eq. in the system 1 describes the evolution of the
vector field under the influence of the scalar field. The
NLS-BP system exhibits a variety of interesting
phenomena, including solitons, breathers, and chaos.
Solitons are localized wave packets that maintain their
shape and speed over long distances, while breathers are
localized wave packets that oscillate periodically in time.
Chaos refers to a state of disorder and unpredictability in
the system behavior.
The study of the nonlinear Schrödinger-Bopp-Podolsky
system has applications in various areas of physics. The
nonlinear Schrödinger-Bopp-Podolsky equation is used in
nonlinear optics to model the propagation of intense laser
beams through nonlinear optical media. It aids in the
comprehension of phenomena like pulse compression,
optical solitons, and self-focusing. This is especially
important for the design and improvement of laser
systems and photonic devices. When the field operators in
a quantum field theory fulfill commutation relations, the
nonlinear Schrödinger-Bopp-Podolsky equation can be
extended to explain the theory. It has uses in researching
particle interactions, quantum dynamics, and the
emergence of particle-like excitations in quantum
systems. In cold atom physics, cold atom systems like
Bose-Einstein condensates, can demonstrate nonlinear
behavior as a result of atomic interactions. A theoretical
framework for investigating the dynamics and
characteristics of these systems, including the
development of solitary waves and the behavior of
vortices, is provided by the nonlinear
Schrödinger-Bopp-Podolsky equation. The nonlinear
Schrödinger-Bopp-Podolsky equation can be used to
study the transmission of intense electromagnetic waves
through plasmas in plasma physics. It aids in the
comprehension of phenomena such as self-focusing,
interactions between laser and plasma, and the formation
of high-energy particle beams in plasma-based
accelerators.
In the study of condensed matter systems, such as
superconductors and superfluids, where the wave
functions of electrons or Cooper pairs can demonstrate
nonlinear interactions and relativistic-like behavior, the
nonlinear Schrödinger-Bopp-Podolsky equation is
important. The nonlinear Schrödinger-Bopp-Podolsky
equation has been used to model wave propagation in
excitable media, nerve fibers, and protein dynamics in
biological systems. It offers understanding of phenomena

like wave patterns in cardiac tissue or soliton propagation
in nerve impulses. In the study of quantum information
and quantum computing, where the dynamics of quantum
states and quantum gates can involve nonlinear
interactions, the nonlinear Schrödinger-Bopp-Podolsky
equation plays a significant role. It applies to topics like
quantum computers based on quantum optics or the
manipulation of quantum states in nonlinear systems. The
nonlinear Schrödinger-Bopp-Podolsky system can be
applied in a variety of domains, as shown by these
scenarios, and it offers a mathematical framework for
comprehending and forecasting complicated wave
processes with nonlinear and relativistic effects.
The methods for obtaining exact explicit solutions of
nonlinear partial differential equations are the extended
generalized Riccati equation mapping method [29, 30],
improved F-expansion method [31], φ 6 model expansion
method [32], modified extended direct algebraic
method [33], the exp-function method [34], Hirota’s
direct method [37, 38], Kudryashov method [35, 36], the
extended auxiliary equation method [39, 40], modified
method of simplest equation [41, 42], and extended Fan’s
sub-equation method [43].
The goal of the current article is to extend the enhanced
modified extended tanh-expansion method to make
further progress. The enhanced modified extended
tanh-expansion method [44–51] has a variety of
advantages for investigating and analyzing nonlinear
partial differential equations. It is appropriate for a wide
class of partial differential equations because to its broad
application, which enables it to manage many sorts of
nonlinearities. The method is flexible enough to allow for
the inclusion of parameters, allowing for the investigation
of different solution properties. Its systematic and
straightforward procedure makes it easy to construct
exact solutions. The accuracy of the constructed solutions
and their physical interpretability provide illuminating
information about the underlying physical system, aiding
in the understanding of dynamics and phenomena.
Additionally, the method might present novel types of
solutions, advancing the discipline. The enhanced
Modified extended tanh-expansion method is a potent tool
for studying nonlinear partial differential equations as a
result, and it can significantly enhance research in this
area.

2 Algorithm for Enhanced Modified
Extended tanh-expansion method

In this section, the algorithm for the enhanced modified
extended tanh-expansion method are introduced. The
main steps of our method are outlined below.
Suppose we have the following nonlinear partial
differential equation

P(u,ut ,ux,utt ,uxx,uxt , · · ·) = 0, (2)
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where P is a polynomial in u = u(x, t) and u is an
unknown wave function, while subscripts represent the
partial derivatives.
Step 1. Using the following wave transformation for
traveling wave solutions

u =U(ζ ), ζ = x− ct, (3)

where c is the wave speed.
Step 2. Substituting the Eq. 3 into Eq. 2 yields a nonlinear
ordinary differential equation

O(U,U ′,U ′′,U ′′′, · · ·) = 0. (4)

Step 3. Now let U(ζ ) which can be expressed into a
polynomial in Q(ζ )

U(ζ ) = A0 +
m

∑
i=1

AiQi(ζ )+
m

∑
i=1

BiQ−i(ζ ), (5)

where Ai,Bi are constants to be determined later, and Q(ζ )
satisfying the following Riccati equation

Q′(ζ ) = σ +Q2(ζ ) (6)

Step 4. In order to find the value of the positive integer m,
the homogeneous balance between the highest order
derivatives and the nonlinear terms found in Eq. 4 is used.
Step 5. Plugging Eq. 5 with Eq. 6 into Eq. 4 and
gathering all coefficients of Qs (ζ ) where s = 0,1,2, · · · ,
then will yield a system of algebraic equations with
respect to Q(ζ ) where i =±1,±2, · · ·n.
Step 6. After solving the algebraic system of equations
and plugging the results into Eq. 5, then we obtain
general form of the solitary wave solutions of Eq. 6,
which admits the following solutions.
Type-I. When σ < 0, we have

Q1(ζ ) =−
√
−σ tanh(

√
−σζ ),

Q2(ζ ) =−
√
−σ coth(

√
−σζ ),

Q3(ζ ) =−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

)
,

Q4(ζ ) = σ−
√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

,

Q5(ζ ) =
√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

,

Q6(ζ ) =
ε

√
−σ(p2+s2)−p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+s ,

Q7(ζ ) = ε
√
−σ

[
1− 2p

p+cosh(2
√
−σζ )−ε sinh(2

√
−σζ )

]
,

(7)

Type-II. When σ > 0, we have

Q8(ζ ) =
√

σ tan(
√

σζ ),

Q9(ζ ) =−
√

σ cot(
√

σζ ),

Q10(ζ ) =
√

σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

]
,

Q11(ζ ) =−
√

σ

[
1−tan(

√
σζ )

1+tan(
√

σζ )

]
,

Q12(ζ ) =
√

σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

]
,

Q13(ζ ) =
ε

√
σ(p2−s2)−p

√
σ cos(2

√
σζ )

psin(2
√

σζ )+s ,

Q14(ζ ) = iε
√

σ

[
1− 2p

p+cos(2
√

σζ )−iε sin(2
√

σζ )

]
.

(8)

where p and s are arbitrary constants.

Type-III. When σ = 0, we have

Q15(ζ ) =
1
Q
(ζ ) (9)

In the next section, we will apply the enhanced modified
extended tanh-expansion method to find the solitary wave
solutions to the nonlinear Schrödinger Bopp-
Podolsky(NLS-BP)system.

3 Application of Enhanced Modified
extended tanh- expansion method

Consider the nonlinear Schrödinger Bopp- Podolsky(NLS-
BP)system,

i
∂ψ

∂ t
=−∇

2
ψ +λ |ψ|2ψ + γv,

∂v
∂ t

=−∆v−λ |ψ|2v.
(10)

Making wave transformation

ψ (x, t) =U (ζ )e−iη (11)
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v(x, t) =V (ζ ) (12)

where ζ = x− ct and η = −k x+wt +θ . Plugging Eq. 11 and Eq. 12 into Eq. 10, then we have obtained following
NODEs,

U ′′−Uκ
2 +λ U3 + γ V +U ′c, (13)

−cV =V ′′−λ U2V. (14)

Applying homogeneous balance between the highest order derivatives and the nonlinear terms found in Eqs. 13 and
Eq. 14, we have m = 1 and n = 2. Hence using 5, the formal solutions of Eq. 13 and Eq. 14 are,

U(ζ ) = A0 +A1Q(ζ )+
B1

Q(ζ )
, (15)

V (ζ ) = F0 +F1Q(ζ )+F2Q2(ζ )+
G1

Q(ζ )
+

G2

Q2(ζ )
. (16)

Plugging Eqs.15, 16 into Eqs.13, 14 respectively, then the following systems of algebraic equations obtained,



2A1 +λA3
1 = 0,

3λA0A2
1 −σ2A1 +λF2 + cA1 = 0,

2A1σ +λF1 +3λA2
0A1 +3λA2

1B1 = 0,
−σ2A1σ +6λA0A1B1 + cA1σ +λF0 +λA3

0 +σ2B1 − cB1 = 0,
2B1σ +λG1 +3λA2

0B1 +3λA1B2
1 = 0,

λG2 +σ2B1σ +3λA0B2
1 − cB1σ = 0,

2B1σ2 +λB3
1 = 0,

(17)

and 

λA2
1F1 +2λA0A1F2 −2F1 = 0,

λA2
1F0 +λA2

0F2 +2λA0A1F1 +2λA1B1F2 − cF2 −8F2σ = 0,
λA2

1G1 +λA2
0F1 +2λA0B1F2 −2F1σ +2λA1B1F1 − cF1 +2λA0A1F0 = 0,

2λA0A1G1 +λB2
1F2 +2λA0B1F1 +λA2

1G2 +2λA1B1F0 +λA2
0F0 −2F2σ2 − cF0 −2G2 = 0,

2λA0B1F0 +2λA1B1G1 +λA2
0G1 +2λA0A1G2 +λB2

1F1 − cG1 −2G1σ = 0,
−8G2σ +2λA1B1G2 − cG2 +2λA0B1G1 +λA2

0G2 +λB2
1F0 = 0,

λB2
1G1 −2G1σ2 +2λA0B1G2 = 0,

−6G2σ2 +λB2
1G2 = 0.

(18)

Solving Eq. 17 with help of Maple, we have,

A1 =± 2√
−2λ

, A0 =± 1
6λ

√
−6λ (−8σ + γF1

√
−2λ ), B1 =± 2σ√

−2λ
, F1 = F1. (19)

Solving Eq. 18 with help of Maple, and using Eq. 19 we have,

F0 = 0, F2 =
12(40σ +3c)

γ
√

−6λ (72σ +6c)
, F1 =

2(40σ +3c)√
−2λγ

, G1 =− 2σ2(40σ +3c)√
−2λγ(7σ + c)

, G2 =− 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)
. (20)
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Substituting Eq. 19 and Eq. 20 together with Eq. 15 into Eq. 11, we obtained the following solitary wave solutions of
Eq. 10 are:
Type-I. When σ < 0, we have

ψ1 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
−
√
−σ tanh(

√
−σζ )

)
+

2σ√
−2λ

(
−
√
−σ tanh(

√
−σζ )

)−1
]

e−iη , (21)

v1 (x, t) = F1
(
−
√
−σ tanh(

√
−σζ )

)
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
−
√
−σ tanh(

√
−σζ )

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
−
√
−σ tanh(

√
−σζ )

)−1 − 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
−
√
−σ tanh(

√
−σζ )

)−2
, (22)

ψ2 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
−
√
−σ coth(

√
−σζ )

)
++

2σ√
−2λ

(
−
√
−σ coth(

√
−σζ )

)−1
]

e−iη , (23)

v2 (x, t) = F1
(
−
√
−σ coth(

√
−σζ )

)
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
−
√
−σ coth(

√
−σζ )

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
−
√
−σ coth(

√
−σζ )

)−1 − 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
−
√
−σ coth(

√
−σζ )

)−2
, (24)

ψ3 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

))
+

2σ√
−2λ

(
−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

))−1
]

e−iη , (25)

v3 (x, t) = F1
(
−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

))
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

))2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

))−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
−
√
−σ

(
tanh(2

√
−σζ )+ iε sech(2

√
−σζ )

))−2
, (26)

ψ4 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
σ −

√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

)
+

2σ√
−2λ

(
σ −

√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

)−1]
e−iη ,

(27)

v4 (x, t) = F1

(
σ −

√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

)
+

12(40σ +3c)

γ
√

−6λ (72σ +6c)

(
σ −

√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
σ −

√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

)−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
σ −

√
−σ tanh(

√
−σζ )

1+
√
−σ tanh(

√
−σζ )

)−2

,

(28)
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ψ5 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

)
+

2σ√
−2λ

(√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

)−1]
e−iη , (29)

v5 (x, t) = F1

(√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

)
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

)−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(√
−σ(5−4cosh(2

√
−σζ ))

3+4sinh(2
√
−σζ )

)−2

, (30)

ψ6 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
ε
√
−σ(p2 + s2)− p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+ s

)

+
2σ√
−2λ

(
ε
√
−σ(p2 + s2)− p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+ s

)−1]
e−iη , (31)

v6 (x, t) = F1

(
ε
√
−σ(p2 + s2)− p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+ s

)

+
12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
ε
√
−σ(p2 + s2)− p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+ s

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
ε
√
−σ(p2 + s2)− p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+ s

)−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(
ε
√
−σ(p2 + s2)− p

√
−σ cosh(2

√
−σζ )

psinh(2
√
−σζ )+ s

)−2

, (32)

ψ7 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
ε
√
−σ

[
1− 2p

p+ cosh(2
√
−σζ )− ε sinh(2

√
−σζ )

])
+

2σ√
−2λ

(
ε
√
−σ

[
1− 2p

p+ cosh(2
√
−σζ )− ε sinh(2

√
−σζ )

])−1]
e−iη , (33)

v7 (x, t) = F1

(
ε
√
−σ

[
1− 2p

p+ cosh(2
√
−σζ )− ε sinh(2

√
−σζ )

])
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
ε
√
−σ

[
1− 2p

p+ cosh(2
√
−σζ )− ε sinh(2

√
−σζ )

])2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
ε
√
−σ

[
1− 2p

p+ cosh(2
√
−σζ )− ε sinh(2

√
−σζ )

])−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(
ε
√
−σ

[
1− 2p

p+ cosh(2
√
−σζ )− ε sinh(2

√
−σζ )

])−2

. (34)
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Type-II. When σ > 0, we have

ψ8 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(√
σ tan(

√
σζ )

)
+

2σ√
−2λ

(√
σ tan(

√
σζ )

)−1
]

e−iη , (35)

v8 (x, t) = F1
(√

σ tan(
√

σζ )
)
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(√
σ tan(

√
σζ )

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(√
σ tan(

√
σζ )

)−1
+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(√
σ tan(

√
σζ )

)−2
, , (36)

ψ9 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
−
√

σ cot(
√

σζ )
)
+

2σ√
−2λ

(
−
√

σ cot(
√

σζ )
)−1
]

e−iη , (37)

v9 (x, t) = F1
(
−
√

σ cot(
√

σζ )
)
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
−
√

σ cot(
√

σζ )
)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
−
√

σ cot(
√

σζ )
)−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
−
√

σ cot(
√

σζ )
)−2

, (38)

ψ10 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
−
√
−σ

(√
σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

]))
+

2σ√
−2λ

(√
σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

])−1
]

e−iη , (39)

v10 (x, t) = F1
(√

σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

])
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(√
σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

])2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(√
σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

])−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(√
σ
[
tan(2

√
σζ )+ ε sec(2

√
σζ )

])−2
, (40)

ψ11 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
−
√

σ

[
1− tan(

√
σζ )

1+ tan(
√

σζ )

])
+

2σ√
−2λ

(
−
√

σ

[
1− tan(

√
σζ )

1+ tan(
√

σζ )

])−1]
e−iη , (41)

v11 (x, t) = F1

(
−
√

σ

[
1− tan(

√
σζ )

1+ tan(
√

σζ )

])
+

12(40σ +3c)

γ
√

−6λ (72σ +6c)

(
−
√

σ

[
1− tan(

√
σζ )

1+ tan(
√

σζ )

])2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
−
√

σ

[
1− tan(

√
σζ )

1+ tan(
√

σζ )

])−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
−
√

σ

[
1− tan(

√
σζ )

1+ tan(
√

σζ )

])−2

, (42)

ψ12 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(√
σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

])
(43)

+
2σ√
−2λ

(√
σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

])−1]
e−iη , (44)
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v12 (x, t) = F1

(√
σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

])
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(√
σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

])2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(√
σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

])−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(√
σ

[
4−5cos(2

√
σζ )

3+5sin(2
√

σζ )

])−2

,

(45)

‘

ψ13 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
ε
√

σ(p2 − s2)− p
√

σ cos(2
√

σζ )

psin(2
√

σζ )+ s

)
(46)

+
2σ√
−2λ

(
ε
√

σ(p2 − s2)− p
√

σ cos(2
√

σζ )

psin(2
√

σζ )+ s

)−1]
e−iη , (47)

v13 (x, t) = F1

(
ε
√

σ(p2 − s2)− p
√

σ cos(2
√

σζ )

psin(2
√

σζ )+ s

)
+

12(40σ +3c)

γ
√

−6λ (72σ +6c)

(
ε
√

σ(p2 − s2)− p
√

σ cos(2
√

σζ )

psin(2
√

σζ )+ s

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
ε
√

σ(p2 − s2)− p
√

σ cos(2
√

σζ )

psin(2
√

σζ )+ s

)−1

+

− 2σ3(40σ +3c)

γ(7σ + c)
√

−λ (12σ + c)

(
ε
√

σ(p2 − s2)− p
√

σ cos(2
√

σζ )

psin(2
√

σζ )+ s

)−2

, (48)

ψ14 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
iε
√

σ

[
1− 2p

p+ cos(2
√

σζ )− iε sin(2
√

σζ )

])
+

2σ√
−2λ

(
iε
√

σ

[
1− 2p

p+ cos(2
√

σζ )− iε sin(2
√

σζ )

])−1]
e−iη , (49)

v14 (x, t) = F1

(
iε
√

σ

[
1− 2p

p+ cos(2
√

σζ )− iε sin(2
√

σζ )

])
+

12(40σ +3c)

γ
√
−6λ (72σ +6c)

(
iε
√

σ

[
1− 2p

p+ cos(2
√

σζ )− iε sin(2
√

σζ )

])2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
iε
√

σ

[
1− 2p

p+ cos(2
√

σζ )− iε sin(2
√

σζ )

])−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(
iε
√

σ

[
1− 2p

p+ cos(2
√

σζ )− iε sin(2
√

σζ )

])−2

, (50)

Type-III. When σ = 0, we have

ψ15 (x, t) =
[

1
6λ

√
−6λ (−8σ + γF1

√
−2λ )+

2√
−2λ

(
1
ζ

)
+

2σ√
−2λ

(
1
ζ

)−1]
e−iη , (51)

v15 (x, t)=F1

(
1
ζ

)
− 6F1(−1+σ2)

c(−1+3σ2)

(
1
ζ

)2

− 2σ2(40σ +3c)√
−2λγ(7σ + c)

(
1
ζ

)−1

+− 2σ3(40σ +3c)

γ(7σ + c)
√
−λ (12σ + c)

(
1
ζ

)−2

. (52)

4 The Graphical Representation
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Fig. 1: Select σ = −0.22,λ = 11.02,γ = 11.60,k = 5.55,w = 0.0102,θ = 0.012,c = 0.0015, f1 = 0.002 for 3D and
contour graphs of Eq. 21.

.
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Fig. 2: Select σ =−0.022,λ = 10.02,γ = 2.60,k = 6.55,w = 0.0102,θ = 1.012,c = 0.0015 for 3D and contour graphs
of Eq. 23.

.
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(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
(b)

Fig. 3: Select σ = −0.22,λ = 11.02,γ = 11.60,k = 1.55,w = 5.2,θ = 0.012,c = 0.015, f1 = 0.002 for 3D and contour
graphs of Eq. 25.
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Fig. 4: Select for σ =−0.92,λ = 5.02,γ = 4.76,k = 7.55,w = 2π

k ,θ = 1.012,c = 0.0095, f1 = 0.002 for 3D and contour
graphs of Eq. 27.

.
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Fig. 5: Select for σ =−0.0042,λ = 2.02,γ = 2.76,k = 10.55,w = 2π

k ,θ = 0.12,c = 0.87, f1 = 0.002 for 3D and contour
and 2D graphs of Eq. 29.
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Fig. 6: Select for σ =−0.0042,λ = 2.02,γ = 2.76,k = 10.55,w = 2π

k ,θ = 0.12,c = 1.80, p = 4,s = 1, f1 = 0.002 for 3D
and contour graphs of Eq. 31.

.
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Fig. 7: Select for σ = −0.0042,λ = 2.02,γ = 2.76,k = 0.55,w = 1.44,θ = 0.012,c = 0.008, p = 4, f1 = 0.002 for 3D,
contour and 2D graphs of Eq. 33.
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Fig. 8: Select σ = 0.22,λ = 5.02,γ = 1.6,k = 7.55,w = 0.0102,θ = 0.012,c = 0.0015, f1 = 0.002 for 3D and contour
graphs of Eq. 35.

.
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Fig. 9: Select σ = 0.022,λ = 5.02,γ = 1.60,k = 7.55,w = 0.0102,θ = 0.012,c = 0.0015, f1 = 0.002 for 3D and contour
graphs of Eq. 37.
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Fig. 10: Select σ = 0.22,λ = 5.02,γ = 11.60,k = 8.55,w= 0.0102,θ = 0.012,c= 0.0015, f1 = 2.002 for 3D and contour
graphs of Eq. 39.

.
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Fig. 11: Select σ = 0.022,λ = 5.02,γ = 1.60,k = 4.55,w = 2.02,θ = 0.012,c = 0.0015, f1 = 2.002 for 3D and contour
graphs of Eq. 41.
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Fig. 12: Select σ = 0.022,λ = 5.02,γ = 11.60,k = 2.55,w = 3.0102,θ = 0.012,c = 0.0015, f1 = 2.002 for 3D and
contour graphs of Eq. 43.

.
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Fig. 13: Select σ = 0.022,λ = 0.02,γ = 0.0060,k = 0.0055,w = 0.0102,θ = 0.012,c = 0.0015, p = 2,s = 1,
f1 = 2.002 for 3D and contour graphs of Eq. 46.
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Fig. 14: Select σ = 3.0048,λ = 5.02,γ = 1.60,k = 2.0055,w = 3.02,θ = 0.0012,c = 0.0015, p = 2, f1 = 2.2 for 3D and
contour graphs of Eq. 49.

.
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(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

-1

-0.5

0

0.5

1

x

(b)

Fig. 15: Select σ = 0.0048,λ = 15.02,γ = 11.60,k = 2.0055,w = 3.02,θ = 0.0012,c = 0.0015, f1 = 2.002 for 3D and
contour graphs of Eq. 51.
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Fig. 16: Select σ =−0.009,λ = 0.0025,γ = 15.60,c = 0.0125 for 3D, contour and 2D graphs of Eq. 22.
.
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Fig. 17: Select σ =−0.00099,λ = 0.00095,γ = 15.60,c = 0.00825 for 3D, contour and 2D graphs of Eq. 24.
.

(a) (b) (c)

Fig. 18: Select σ =−0.0099,λ = 0.0095,c = 0.0825 for 3D, contour and 2D graphs of Eq. 26.
.
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(a) (b) (c)

Fig. 19: Select σ =−0.00009,λ = 0.0025,c = 0.225 for 3D, contour and 2D graphs of Eq. 30.
.
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Fig. 20: Select σ =−1.0099,λ = 0.2095,c = 0.00825, p = 6 for 3D, contour and 2D graphs of Eq. 32.
.
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Fig. 21: Select σ =−5.09,λ = 12.2095,c = 1.25, p = 3. for 3D, contour and 2D graphs of Eq. 34.
.

(a) (b)

Fig. 22: Select for σ = 2.09,λ = 1.25,c = 0.125 for 3D, contour and 2D graphs of Eq. 36.
.
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(a) (b)

Fig. 23: Select σ = 0.59,λ = 0.0025,c = 0.125 for 3D and 2D graphs of Eq. 38 .
.
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Fig. 24: Select σ = 2.59,λ = 1.25,c = 0.125 for 3D and 2D graphs of Eq. 42.
.
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Fig. 25: Select σ = 2.59,λ = 1.25,c = 0.125 for 3D and 2D graphs of Eq. 45.
.
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5 Results and Discussion

In order to demonstrate the physical Interpretation of the
solutions and to define the nature of solitary waves are
illustrated through constructed 3D, contour, and 2D(line)
graphs in this section. We can see the wave as it varies
through time and space, these type of plots, which are a
useful tools for visualizing the solitary waves behavior.
The nature of solitary wave for different scenario is given
below.
The figures 1, 16, 4, display dark solitary wave solution,
and the figures 2, 17, display singular solitary wave
solution. The figures 5, 19, 6, 20, 7, 21, display
combination of singular solitary wave solutions, and the
figures 3, 18, display combination of dark-bright solitary
wave solution. The figures 8, 22, 9, 23, 11, 24, display
singular periodic solitary wave solutions, and the figures
10, 12, 25, 13, 14, display combination of singular
periodic solitary wave solution. The figure 15, displays
rational solitary wave solution.

6 Conclusion

The nonlinear Schrödinger-Bopp-Podolsky system, which
combines parts of the nonlinear Schrödinger equation and
the Bopp-Podolsky equation, is used in this study to
describe the dynamics of wave functions in quantum
mechanics with nonlinear interactions and relativistic
effects. Applications of this research can be found in
condensed matter physics, quantum optics, nonlinear
wave phenomena, and other areas. Additionally, utilizing
this system and an improved modified tanh-expansion
method, we have examined and identified solitary wave
solutions in this study. By combining this technique with
powerful analytical methods, we have achieved accurate
and efficient solutions for this complex system. We have
successfully obtained a variety of solitary wave solutions
using our enhanced modified tanh-expansion method,
each of which can be recognized by specific features and
behaviors. We have been able to investigate several
parameter regimes using the derived ansatz and analytical
simulations, revealing delightful phenomena as soliton
stability, wave interactions, and the effects of external
perturbations on the dynamics of solitary waves. The
results of this study strengthen our understanding of the
NLS-BP system’s solitary wave behavior. The modified
method presented in this study will be very helpful for
future studies on related nonlinear wave equations and
their applications in many physical systems. Our analysis
provides novel directions of research. Future research can
concentrate on adapting the enhanced method to related
nonlinear wave equations or broadening it to more
intricate NLS-BP system versions. Additional study on
the dynamics and stability of the resulting solitary wave
solutions in the presence of external perturbations or
consideration of higher-dimensional systems could offer
insightful information about the behavior of nonlinear

waves. In conclusion, our improved technique has
successfully obtained solitary wave solutions for the
NLS-BP system. The results of this study make a
substantial contribution to the subject of nonlinear wave
dynamics and open fresh opportunities for the study,
comprehension, and application of solitary waves in many
physical environments.
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