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Abstract: This research paper aims at obtaining closed-form solutions for the traveling wave solutions of the (4+ 1)-dimensional
Fokas equation. To solve this difficult system of nonlinear partial differential equations, we will use a new improved direct algebraic
method. The given technique can be seen to work well for the purpose of converting the governing equation into a set of algebraic
equations from where one can extract various traveling wave solutions. Here our results concern different forms of the solutions as
solitons, periodic and rational functions. The obtained solutions are important for understanding the physical processes which are
characterized by this equation and may be of use in Fluid mechanics, Nonlinear optics, Plasma physics and other areas.
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1 Introduction

Nonlinear evolution equations (NLEEs) as a class of
equations are derived from the nonlinear sciences and
those have important roles in analyze of the nonlinear
phenomenon. Another well preserved by
self-reinforcement wave packet is referred to as soliton or
solitary wave that moves at a constant velocity. The
nonlinearity and dispersion of the medium are eliminated
which in a result cause the formation of solitons. The
class of weakly nonlinear dispersive PDEs which models
physical systems has so-called solitons In nonlinear
PDEs, more striking phenomena exist than soliton
solutions. A specific kind of a localized traveling wave
solution of a nonlinear PDE which is immensely stable is
known as a soliton [1–20]. Nonlinear Partial differential
equations (NPDEs) are a powerful and indispensable tool
of modern mathematical modeling, applied for the
description of many sophisticated phenomena in science
and engineering. Evaluating these equations is at the heart
of reproducing highly complex behaviors and remains

instrumental in developing theory and technology from
physics and fluid mechanics to biological and financial
systems. One of the issues arising with the study of
NPDEs is the question of determining exact solutions to
these equations, which is essential for determining the
physical processes going on and for modeling many
systems described by such equations. Traditionally,
getting analytical solutions to NPDEs has been quite hard
and even to date, some problems are yet to be solved.
Since these equations are mutually dependent and quite
elaborate at most times, simple solutions are rarely
possible, which calls for enhanced methods. Much has
been done in this area in the recent past perhaps due to the
increase in computational power and availability of better
algorithms. These have made the solution of NPDEs
possible and have created opportunities for applying
solutions previously pipe dreams. The sophisticated
symbolic computation systems like Maple, Mathematica,
MATLAB, etc. have gone further in encouraging the
researchers by providing more efficient instruments to
analyze broader areas of solution techniques. These tools
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have enabled one to obtain results that hitherto had been
out of the reach of the researcher working on NPDEs. It
enriches the existing research on exact solutions of
NPDEs by presenting a new method suitable for a certain
type of such equations. Thus, using the potential of the
current methods of computational mathematics, this work
intends to contribute to the development of the existing
theoretical material and provide a new look at the
behavior of the given complex systems that are
characterized by NPDEs. The conclusions drawn in this
paper contribute not only to the development of
knowledge on these systems but also to the further
research done in the fascinating and most diverse field.
The techniques for finding exact analytical solutions of
nonlinear partial differential equations are the tanh
function technique [41], the exp function technique [42],
the F-expansion method [43], Hirota-s direct method [44],
Kudryashov technique [45], the modified extended direct
algebraic method [64], the extended auxiliary equation
technique [47], the modified technique of the simplest
equation [48] and the new extended direct algebraic
technique [62]. Some of the methods adapted for
numerical solution of the nonlinear partial differential
equations are finite element method [31, 32], finite
volume method [33, 34], generalized finite difference
method [35, 36], collocation method [37, 38] ,Galerkin
finite element method [39, 40].
In this paper, we are interested in applying the new
extended direct algebraic method for solving the
presented model trying to reveal their dynamics. The
organization of the paper is as follows: in section 2, the
algorithm for applying the new extended direct algebraic
method is introduced with its main steps revealing
different types of solutions. In section 3, the application
of the presented method on the (4+1)-dimensional Fokas
equation is illustrated along with the graphical
representations of the obtained solutions. Finally, section
6 present the discussion of the obtained results along with
a conclusion of the present and possible future work.

2 Algorithm for New Extended Direct
Algebraic Method

In this section, the algorithm for the new extended direct
algebraic method is introduced, see [49, 50]. In the
following we will outline the main steps of our method.
Consider a general nonlinear PDE in the form

Q(u,ux,uy,uz,uw,ut ,utt , ....) = 0, (1)

where Q is a polynomial function of its argument, and the
subscripts denote partial derivatives. We seek its traveling
wave solutions by using transformation wave

u(x,y,z,w, t) =U(ζ ), ζ = ax+by+ cz+d w+ vt. (2)

Substituting Eq. 2 into Eq. 1 yields a nonlinear ordinary
differential equation

Q(u,u
′
,u

′′
,u

′′′
, ...) = 0, (3)

where the prime denotes differentiation with respect to ζ .
Let us consider that Eq.3 has a formal solution of the form

U(ζ ) =
n

∑
j=0

η jP j(ζ ), ηn ̸= 0, (4)

where the η j (0 ≤ j ≤ n) are constants coefficients to be
determined later, and n is a positive integer which is found
by homogenous balancing principle between the highest
nonlinear term and the highest derivative in Eq. 3 and P(ζ )
satisfies the NODE Eq. 3 in the form of

P
′
(ζ ) = lnA

(
Ψ +Θ P(ζ )+Ω P2(ζ )

)
, A ̸= (0,1), (5)

where Ψ , Θ and Ω are constants. Some special solutions
of the NODE are given in [49, 50].

3 Application of the new extended direct
algebraic method

Considering (4+1)− dimensional Fokas equation [65]

4utx −uxxxy +uxyyy +12uxuy +12uuxy −6uzw = 0. (6)

u : dependent variable representing a physical
quantity (e.g., wave amplitude, fluid velocity)
x,y,z, t : independent variables representing spatial
coordinates and time, respectively
Making a wave transformation

u(x,y,z,w, t) =U (ζ ) , (7)

with ζ = ax+by+ cz+ d w+ vt.
Plugging Eq.7 into 6, then resulting nonlinear ordinary
differential equation is:

(4av−6cd)U′′ (ζ )+12ab(U (ζ )U ′ (ζ ))
′
+
(
−a3b+ab3)U iv (ζ ) = 0. (8)

Integrating Eq.8 twice and neglecting constants of
integration

(4av−6cd)U (ζ )+6abU2 (ζ )+
(
−a3b+ab3)U ′′ (ζ ) = 0. (9)

Balancing between the highest nonlinear term and the
highest derivative U ′′ with U2 in Eq. 9 gives N = 2. Thus,
Eq. 9 has the formal solution

U (ζ ) = η0 +η1P(ζ )+η2P2 (ζ ) , (10)
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

6abη2
2 +6ab3

η2ln2AΩ
2 −6a3bη2ln2AΩ

2 = 0,
−10a3bη2ln2AΘ Ω +10ab3

η2ln2AΘ Ω −2a3bη1ln2AΩ
2 +12abη1η2 +2ab3

η1ln2AΩ
2 = 0,

8ab3
η2ln2AΨΩ +6abη1

2 +12abη0η2 +4ab3
η2ln2AΘ

2 −8a3bη2ln2AΨΩ −6cd η2 +4avη2

+3ab3
η1ln2AΘ Ω −4a3bη2ln2AΘ

2 −3a3bη1ln2AΘ Ω = 0,
−6a3bη2ln2AΨΘ −2a3bη1ln2AΩ Ψ +4avη1 −a3bη1ln2AΘ

2 −6cd η1 +6ab3
η2ln2AΨΘ

+2ab3
η1ln2AΩ Ψ +12abη0η1 +ab3

η1ln2AΘ
2 = 0,

4avη0 +2ab3
η2ln2AΨ

2 +6abη0
2 −a3bη1ln2AΘ Ψ −6cd η0 −2a3bη2ln2AΨ

2

+ab3
η1ln2AΘ Ψ = 0.

(11)

Solving the above system of algebraic Eq. 11 with the aid of Maple, we have the following results;

Set 1
η0 =Ψ Ω

(
a2 −b2

)
ln2A,

η1 =Θ Ω
(
a2 −b2

)
ln2A,

η2 = Ω
2 (a2 −b2

)
ln2A,

v =
1
4

b
(
b2 −a2

) (
Θ

2 −4 Ψ Ω
)

ln2A− 3cd
2a .

(12)

Set 2
η0 =

1
6
(
a2 −b2

)(
Θ

2 +2Ψ Ω
)

ln2A,

η1 =Θ Ω
(
a2 −b2

)
ln2A,

η2 = Ω
2 (a2 −b2

)
ln2A,

v =
1
4

b
(
b2 −a2

) (
Θ

2 −4 Ψ Ω
)

ln2A+ 3cd
2a .

(13)

substituting Eq. 12 along with Eq. 10 into Eq. 7, we get the following exact solutions of Eq. 6

Case 1

Family 1. When Θ 2 −4ΨΩ < 0 and Ω ̸= 0, then the traveling wave solutions are given by

u1,1 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

[
− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

2Ω
tanA

(√
−(Θ 2 −4Ψ Ω) ζ

2

)]

+Ω
2
(

a2 −b2
)

ln2A
[
− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

2Ω
tanA

(√
−(Θ 2 −4Ψ Ω) ζ

2

)]2
(14)

u2,1 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

[
− Θ

2Ω
−
√

−(Θ 2 −4Ψ Ω)

2Ω
cotA

(√
−(Θ 2 −4Ψ Ω) ζ

2

)]

+Ω
2
(

a2 −b2
)

ln2A
[
− Θ

2Ω
−
√

−(Θ 2 −4Ψ Ω)

2Ω
cotA

(√
−(Θ 2 −4Ψ Ω) ζ

2

)]2
(15)

u3,1 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A[

− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

2Ω

(
tanA

(√
−(Θ 2 −4Ψ Ω) ζ

)
±√

pqsecA

(√
−(Θ 2 −4Ψ Ω) ζ

))]
+Ω

2
(

a2 −b2
)

ln2A
[
− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

2Ω

(
tanA

(√
−(Θ 2 −4Ψ Ω) ζ

)
±√

pqsecA

(√
−(Θ 2 −4Ψ Ω) ζ

))]2
(16)
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u4,1 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A[

− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

2Ω

(
−cotA

(√
−(Θ 2 −4Ψ Ω) ζ

)
±√

pqcscA

(√
−(Θ 2 −4Ψ Ω) ζ

))]
+Ω

2
(

a2 −b2
)

ln2A
[
− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

2Ω

(
−cotA

(√
−(Θ 2 −4Ψ Ω) ζ

)
±√

pqcscA

(√
−(Θ 2 −4Ψ Ω) ζ

))]2
(17)

u5,1 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A{

− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

4Ω

(
tanA

(
1
4

√
−(Θ 2 −4Ψ Ω) ζ

)
− cotA

(
1
4

√
−(Θ 2 −4Ψ Ω) ζ

))}
+Ω

2
(

a2 −b2
)

ln2A{
− Θ

2Ω
+

√
−(Θ 2 −4Ψ Ω)

4Ω

(
tanA

(
1
4

√
−(Θ 2 −4Ψ Ω) ζ

)
− cotA

(
1
4

√
−(Θ 2 −4Ψ Ω) ζ

))}2
. (18)

Family2. When Θ 2 −4ΨΩ > 0 and Ω ̸= 0, then the traveling wave solutions are given by

u6,2 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− Θ

2Ω
−
√

(Θ 2 −4Ψ Ω)

2Ω
tanhA

(√
(Θ 2 −4Ψ Ω) ζ

2

)}

+Ω
2
(

a2 −b2
)

ln2A
{
− Θ

2Ω
−
√

(Θ 2 −4Ψ Ω)

2Ω
tanhA

(√
(Θ 2 −4Ψ Ω) ζ

2

)}2
, (19)

u7,2 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− Θ

2Ω
−
√

(Θ 2 −4Ψ Ω)

2Ω
cothA

(√
(Θ 2 −4Ψ Ω) ζ

2

)}

+Ω
2
(

a2 −b2
)

ln2A
{
− Θ

2Ω
−
√

(Θ 2 −4Ψ Ω)

2Ω
cothA

(√
(Θ 2 −4Ψ Ω) ζ

2

)}2
, (20)

u8,2 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A{

− Θ

2Ω
+

√
(Θ 2 −4Ψ Ω)

2Ω

(
− tanhA

(√
(Θ 2 −4Ψ Ω) ζ

)
± i

√
pq csch A

(√
(Θ 2 −4Ψ Ω) ζ

))}
+

Ω
2
(

a2 −b2
)

ln2A{
− Θ

2Ω
+

√
(Θ 2 −4Ψ Ω)

2Ω

(
− tanhA

(√
(Θ 2 −4Ψ Ω) ζ

)
± i

√
pq csch A

(√
(Θ 2 −4Ψ Ω) ζ

))}2
(21)

u9,2 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A{

− Θ

2Ω
+

√
(Θ 2 −4Ψ Ω)

2Ω

(
−cothA

(√
(Θ 2 −4Ψ Ω) ζ

)
± √

pq csch A

(√
(Θ 2 −4Ψ Ω) ζ

))}
+Ω

2 (a2 −b2) ln2A{
− Θ

2Ω
+

√
(Θ 2 −4Ψ Ω)

2Ω

(
−cothA

(√
(Θ 2 −4Ψ Ω) ζ

)
±√

pq csch A

(√
(Θ 2 −4Ψ Ω) ζ

))}2

(22)

u10,2 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A[

− Θ

2Ω
−
√

(Θ 2 −4Ψ Ω)

4Ω

{
tanhA

(√
(Θ 2 −4Ψ Ω) ζ

4

)
+ cothA

(√
(Θ 2 −4Ψ Ω) ζ

4

)}]
+Ω

2 (a2 −b2) ln2A

[
− Θ

2Ω
−
√
(Θ 2 −4Ψ Ω)

4Ω

{
tanhA

(√
(Θ 2 −4Ψ Ω) ζ

4

)
+ cothA

(√
(Θ 2 −4Ψ Ω) ζ

4

)}]2

. (23)
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Family3. When Ψ Ω > 0 and Θ = 0, then the traveling wave solutions are given by

u11,3 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{√
Ψ

Ω
tanA

(√
Ψ Ωζ

)}
+Ω

2 (a2 −b2) ln2A
{√

Ψ

Ω
tanA

(√
Ψ Ωζ

)}2

, (24)

u12,3 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
−
√

Ψ

Ω
cotA

(√
Ψ Ωζ

)}
+

Ω
2 (a2 −b2) ln2A

{
−
√

Ψ

Ω
cotA

(√
Ψ Ωζ

)}2

, (25)

u13,3 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{√
Ψ

Ω

(
tanA

(
2
√

Ψ Ωζ

)
±√

pqsecA

(
2
√

Ψ Ωζ

))}
+Ω

2 (a2 −b2) ln2A
{√

Ψ

Ω

(
tanA

(
2
√

Ψ Ωζ

)
±√

pqsecA

(
2
√

Ψ Ωζ

))}2

, (26)

u14,3 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{√
Ψ

Ω

(
−cotA

(
2
√

Ψ Ωζ

)
±√

pqcscA

(
2
√

Ψ Ωζ

))}
+Ω

2 (a2 −b2) ln2A
{√

Ψ

Ω

(
−cotA

(
2
√

Ψ Ωζ

)
±√

pqcscA

(
2
√

Ψ Ωζ

))}2

, (27)

u15,3 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
1
2

√
Ψ

Ω

(
tanA

(
1
2

√
Ψ Ωζ

)
− cotA

(
1
2

√
Ψ Ωζ

))}
+Ω

2 (a2 −b2) ln2A
{

1
2

√
Ψ

Ω

(
tanA

(
1
2

√
Ψ Ωζ

)
− cotA

(
1
2

√
Ψ Ωζ

))}2

. (28)

Family4. When Ψ Ω < 0 and Θ = 0, then the traveling wave solutions are given by

u16,4 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−
√
−Ψ

Ω
tanhA

(√
−Ψ Ωζ

)}
+Ω

2
(

a2 −b2
)

ln2A
{
−
√

−Ψ

Ω
tanhA

(√
−Ψ Ωζ

)}2
, (29)

u17,4 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−
√

−Ψ

Ω
cothA

(√
−Ψ Ωζ

)}
+Ω

2
(

a2 −b2
)

ln2A
{
−
√

−Ψ

Ω
cothA

(√
−Ψ Ωζ

)}2
, (30)

u18,4 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{√
−Ψ

Ω

(
− tanh

(
2
√
−Ψ Ωζ

))
± i

√
pq csch A(2

√
−Ψ Ωζ )

}
+Ω

2
(

a2 −b2
)

ln2A
{√

−Ψ

Ω

(
− tanh

(
2
√
−Ψ Ωζ

))
± i

√
pq csch A(2

√
−Ψ Ωζ )

}2
, (31)
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u19,4 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−
√

Ψ

Ω

(
−cothA

(
2
√
−Ψ Ωζ

)
±√

pq csch A

(
2
√
−Ψ Ωζ

))}
+Ω

2
(

a2 −b2
)

ln2A
{√

−Ψ

Ω

(
−cothA

(
2
√
−Ψ Ωζ

)
±√

pq csch A

(
2
√
−Ψ Ωζ

))}2
(32)

u20,4 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
−1

2

√
−Ψ

Ω

(
tanhA

(
1
2

√
−Ψ Ωζ

)
+ cothA

√
−Ψ Ωζ

)}
+Ω

2 (a2 −b2) ln2A
{
−1

2

√
−Ψ

Ω

(
tanhA

(
1
2

√
−Ψ Ωζ

)
+ cothA

√
−Ψ Ωζ

)}2

. (33)

Family5. When Θ = 0 and Ω =Ψ , then the traveling wave solutions are given by

u21,5 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
tanA (Ψζ )

}
+Ω

2 (a2 −b2) ln2A
{

tanA (Ψζ )

}2

, (34)

u22,5 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
−cotA (Ψζ )

}
+Ω

2 (a2 −b2) ln2A
{
−cotA (Ψζ )

}2

, (35)

u23,5 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
(tanA (2Ψζ )±√

pq)secA (2Ψζ )

}
+Ω

2 (a2 −b2) ln2A
{
(tanA (2Ψζ )±√

pq)secA (2Ψζ )

}2

, (36)

u24,5 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
−cotA (2Ψζ )±√

pqcscA (2Ψζ )

}
+Ω

2 (a2 −b2) ln2A
{
−cotA (2Ψζ )±√

pqcscA (2Ψζ )

}2

, (37)

u25,5 (ζ ) =Ψ Ω
(
a2 −b2) ln2A+Θ Ω

(
a2 −b2) ln2A

{
1
2

(
tan
(

1
2

Ψζ

)
− cot

(
1
2

Ψζ

))}
+Ω

2 (a2 −b2) ln2A
{

1
2

(
tan
(

1
2

Ψζ

)
− cot

(
1
2

Ψζ

))}2

. (38)

Family6. When Θ = 0 and Ω =−Ψ , then the traveling wave solutions are given by

u26,6 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− tanhA (Ψζ )

}
+Ω

2
(

a2 −b2
)

ln2A
{
− tanhA (Ψζ )

}2
, (39)

u27,6 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−cothA (Ψζ )

}
+Ω

2
(

a2 −b2
)

ln2A
{
−cothA (Ψζ )

}2
, (40)

u28,6 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− tanhA (2Ψζ )± i

√
pqsechA (2Ψζ )

}
+Ω

2
(

a2 −b2
)

ln2A
{
− tanhA (2Ψζ )± i

√
pqsechA (2Ψζ )

}2
, (41)

u29,6 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−cothA (2Ψζ )±√

pqcschA (2Ψζ )

}
+Ω

2
(

a2 −b2
)

ln2A
{
−cothA (2Ψζ )±√

pqcschA (2Ψζ )

}2
, (42)

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 20, No. 1, 23-43 (2025) / www.naturalspublishing.com/Journals.asp 29

u30,6 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−1

2

(
tanhA(

1
2

Ψζ )+ cothA(
1
2

Ψζ )

)}
+Ω

2
(

a2 −b2
)

ln2A
{
−1

2

(
tanhA(

1
2

Ψζ )+ cothA
1
2

Ψζ

)}2
. (43)

Family7 When Θ 2 = 4Ψ Ω , then the traveling wave solutions are given by

u31,7 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−2

Ψ (Θζ lnA+2)
Θ 2ζ lnA

}
+Ω

2
(

a2 −b2
)

ln2A
{
−2

Ψ (Θζ lnA+2)
Θ 2ζ lnA

}2
(44)

Family 8. When Θ = 0,Ψ = mk,(m ̸= 0) and Ω = k, then the traveling wave solutions are given by

u32,8 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
Ak ζ −m

}
(45)

+Ω
2
(

a2 −b2
)

ln2A
{

Ak ζ −m
}2

Family 9. When Θ = Ω = 0,, then the traveling wave solutions are given by

u33,9 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
Ψ ζ ln(A)

}
+Ω

2
(

a2 −b2
)

ln2A
{

Ψ ζ ln(A)
}2

(46)

Family 10 : when Θ =Ψ = 0,, then

u34,10 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
−1

Ω ζ ln(A)

}
(47)

+Ω
2
(

a2 −b2
)

ln2A
{

−1
Ω ζ ln(A)

}2

Family 11 : When Θ ̸= 0,Ψ = 0, then the traveling wave solutions are given by

u35,11 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− p Θ

Ω (coshA(Θ ζ )− sinhA (Θ ζ ))+ p

}
+

Ω
2
(

a2 −b2
)

ln2A
{
− pΘ

Ω (coshA (Θ ζ )− sinhA (Θ ζ )+ p)

}2
, (48)

u36,11 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− Θ (sinhA(Θ ζ )+ coshA(Θ ζ ))

Ω (sinhA(Θ ζ )+ coshA(Θ ζ )+q)

}
+Ω

2
(

a2 −b2
)

ln2A
{
− Θ (sinhA(Θ ζ )+ coshA(Θ ζ ))

Ω (sinhA(Θ ζ )+ coshA(Θ ζ )+q)

}2
. (49)

Family 12 : When Θ = λ ,Ω = m(m ̸= 0), and Ψ = 0 then the rational solution is given by

u37,12 (ζ ) =Ψ Ω

(
a2 −b2

)
ln2A+Θ Ω

(
a2 −b2

)
ln2A

{
− pAλ ζ

q−m pAλ ζ

}
+Ω

2
(

a2 −b2
)

ln2A
{
− pAλ ζ

q−m pAλ ζ

}2
(50)

where ζ is an independent variable, p and q are arbitrary constants greater than zero and called deformation parameters.

4 The graphical representation
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(a) (b)

Fig. 1: The 3-D and 2-D graphs of u1(ζ ) given by Eq. 14.

(a) (b)

Fig. 2: The 3-D and 2-D graphs of u2(ζ ) given by Eq. 15.

(a) (b)

Fig. 3: The 3-D and 2-D graphs of u3(ζ ) given by Eq.16.
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(a) (b)

Fig. 4: The 3-D and 2-D graphs of u4(ζ ) given by Eq. 17.

(a) (b)

Fig. 5: The 3-D and 2-D graphs of u5(ζ ) given by Eq. 18.

(a) (b)

Fig. 6: The 3-D and 2-D graphs of u6(ζ ) given by Eq. 19.
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(a) (b)

Fig. 7: The 3-D and 2-D graphs of u7(ζ ) given by Eq. 20.

(a) (b)

Fig. 8: The 3-D and 2-D graphs of u8(ζ ) given by Eq. 21.

(a) (b)

Fig. 9: The 3-D and 2-D graphs of u9(ζ ) given by Eq. 22.
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(a) (b)

Fig. 10: The 3-D and 2-D graphs of u10(ζ ) given by Eq. 23.

(a) (b)

Fig. 11: The 3-D and 2-D graphs of u11(ζ ) given by Eq. 24.

(a) (b)

Fig. 12: The 3-D and 2-D graphs of u12(ζ ) given by Eq. 25.
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(a) (b)

Fig. 13: The 3-D and 2-D graphs of u13(ζ ) given by Eq. 26.

(a) (b)

Fig. 14: The 3-D and 2-D graphs of u15(ζ ) given by Eq. 28.

(a) (b)

Fig. 15: The 3-D and 2-D graphs of u16(ζ ) given by Eq. 29.
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(a) (b)

Fig. 16: The 3-D and 2-D graphs of u17(ζ ) given by Eq. 30.

(a) (b)

Fig. 17: The 3-D and 2-D graphs of u19(ζ ) given by Eq. 32.

(a) (b)

Fig. 18: The 3-D and 2-D graphs of u20(ζ ) given by Eq. 33.
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(a) (b)

Fig. 19: The 3-D and 2-D graphs of u21(ζ ) given by Eq. 34.

(a) (b)

Fig. 20: The 3-D and 2-D graphs of u22(ζ ) given by Eq. 35.

(a) (b)

Fig. 21: The 3-D and 2-D graphs of u23(ζ ) given by Eq. 36.
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(a) (b)

Fig. 22: The 3-D and 2-D graphs of u24(ζ ) given by Eq. 37.

(a) (b)

Fig. 23: The 3-D and 2-D graphs of u25(ζ ) given by Eq. 38.

(a) (b)

Fig. 24: The 3-D and 2-D graphs of u26(ζ ) given by Eq. 39.
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(a) (b)

Fig. 25: The 3-D and 2-D graphs of u27(ζ ) given by Eq. 40.

(a) (b)

Fig. 26: The 3-D and 2-D graphs of u29(ζ ) given by Eq. 42.

(a) (b)

Fig. 27: The 3-D and 2-D graphs of u31(ζ ) given by Eq. 44.
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(a) (b)

Fig. 28: The 3-D and 2-D graphs of u32(ζ ) given by Eq. 45.

(a) (b)

Fig. 29: The 3-D and 2-D graphs of u34(ζ ) given by Eq. 47.
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5 Physical Interpretation

The (4+1)-dimensional Fokas equation is a
higher-dimensional extension of the well-known
Kadomtsev-Petviashvili equation, which models
nonlinear wave propagation in dispersive media. It finds
applications in various fields, including fluid mechanics,
plasma physics, and nonlinear optics. The traveling wave
solutions obtained in this study represent different types
of wave patterns that can emerge in the systems governed
by this equation. Soliton solutions, for example, are
associated with temporary, real, localized wave patterns
which do not deform or change their velocity while
propagating. Periodic solutions are those of wave like
form with some form of repetition whereas rational
solutions correspond to localized disturbances which
decay algebraically. Such solutions are highly useful for
understanding the behavior of physical systems that
underlie individual waves and can be applied for the
computation of many wave processes.

6 Discussion and Conclusion

In the present study, we were able to implement the recent
proposed new extended direct algebraic method to obtain
a general solution for the traveling wave solutions of the
(4 + 1)-dimensional Fokas equation. The acquires
solutions contain solitons, periodical functions, rational
function and so on. In doing so, the current work makes a
contribution to knowledge of the various solutions of this
largely nonlinear partial differential equation and lest a
potential application in the corresponding fields. The
effectiveness of the proposed method is shown in terms of
solving high-dimensional nonlinear PDEs while it can be
used for other nonlinear systems as well. further
investigations can be the stability analysis of the
solutions, the physical interpretation of the solutions and
last but not the least, numerical studies for the validation
of the theory.
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