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Abstract: In this paper, we apply the extended Fan’s sub equation method to analyze the optical solitons solutions of the coupled
nonlinear Schrodinger-Poisson system. The interplay of self-phase modulation, cross-phase modulation, and dispersion governs the
pulse dynamics in nonlinear media, where the propagation of ultrashort optical pulses can be best explained by the coupled nonlinear
Schrodinger-Poisson system. An effective analytical tool for solving a variety of nonlinear partial differential equations is the extended
Fan sub equation method, which is used in our paper. Explicit analytic optical solitons solutions can be determined by this method,
which also introduces an interesting auxiliary function and simplifies the coupled nonlinear Schrédinger-Poisson system. We construct
optical soliton solutions, including bright, dark, and singular types A to illustrate the method A efficacy. It is possible to better
comprehend the underlying nonlinear phenomena in optical systems by using the derived A optical A soliton solutions, which are
remarkably stable and robust. In short, this research provides a new approach for studying optical A solitons solutions inside the coupled
nonlinear Schrodinger-Poisson system framework and clarifies the complex interplay A between dispersive and nonlinear effects that
influence the behavior of optical pulses. The obtained optical A solitons solutions A have the potential to further our understanding
of nonlinear optics and enable in the development of new, more useful photonic devices. The solutionsA presentedA here provide a
solid basis for future research in the fields of nonlinear optics and plasma physics, and they make progress toward the current study of
coupled nonlinear systems soliton dynamics.

Keywords: Coupled nonlinear Schrodinger-Poisson system, optical solitons, extended Fan’s sub equation method, analytical solutions,
soliton dynamics.

1 Introduction

The significance of studying optical soliton solutions in
coupled nonlinear systems to a variety of domains, such
as nonlinear optics and plasma physics, has attracted a lot
of attention [21]. Ultrafast fiber laser with high repetition
rate have been extensively investigated owing to their
numerous applications in precision measurement,
telecommunication,  high-speed optical  sampling,

biomedical treatment and optical sensing. Typically, there
are several ways to achieve a high pulse repetition rate.
The direct method is by shortening the cavity length,
which usually brings difficulties to the design of cavity.
Alternatively, active modulation is another solution to
obtain high repetition rate pulses. However, active
modulation required a complex external system to achieve
the desired output. In all-fiber laser systems, harmonic
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mode-locked (HML) is the commonly adopted approach
to achieve high pulse repetition rate. By adopted HML
approach, the constraint of gain medium length is no
longer a limiting factor. To represent the complex
interaction  between  nonlinearity and  external
perturbations, the coupled nonlinear Schrodinger-Poisson
system is used in this context. This system appears in a
number of physical phenomena, including optical fiber
communication systems and plasma waves in
semiconductor devices [1-20]. The present article
investigates the extended Fan sub-equation method for
optical soliton solutions of the coupled nonlinear
Schrodinger-Poisson system. The evolution of complex
wave functions in the presence of both nonlinear
interactions and an external potential is described by the
coupled  Schrodinger-Poisson  system  of  partial
differential equations. The system can be expressed
mathematically as follows:

—i% = —Ay+ o)y, 0
—A¢ =yl*.

Physical meaning of the Schrodinger-Poisson System:
The complex-valued function y(x,7) represents the wave
function of a quantum particle or a field in a nonlinear
medium. The equation describes the temporal evolution
of the wave function, governed by its kinetic energy —Ay
and potential energy ¢(x)y, here A is a laplacian
operator. The wave function density determines the
potential ¢(x) self-consistently, establishing a feedback
loop between the behavior of the particles and their
surroundings. The electrostatic potential produced by the
charge density of the particle or field is represented by the
real-valued function ¢ (x). The Poisson equation connects
the electrostatic potential and the probability density of
the wave function through the source term |y|?. This
equation describes how the charge distribution of the
particle or field interacts with and changes the
surrounding  environment. The  system  models
circumstances in which the particle or field has a large
impact on the surroundings, leading to self-interaction
and nonlinear behavior. The Schrodinger equation is
fundamental for describing quantum systems, governing
wave-like behavior and probability distributions. The
Poisson equation, which relates charge density and
electric potential, comes from electrostatics. There is a
wealth of research on the coupled nonlinear
Schrodinger-Poisson system in the context of several
physical phenomena. The system appears in nonlinear
optics when optical pulse propagation in fiber optic
communication networks is studied [32-37].

A helpful method A for finding exact solutions to
nonlinear partial differential equations is the extended A
Fan’s sub-equation method, which was introduced
recently. Applying it to the coupled nonlinear
Schrodinger-Poisson system provides a promising way to
get solutions for optical soliton dynamics and
comprehend how an external potential affects them. With

this study, we want to contribute to the literature by
precisely solving the coupled nonlinear
Schrodinger-Poisson system with the extended Fan
sub-equation method [38—47]. This investigation of
soliton dynamics not only broadens our theoretical
knowledge but also has applications in nonlinear optics
and plasma physics for system design and optimization.
By combining the coupled Schrédinger Poisson system
system and the extended Fan’s sub equation method, we
aim to:

uncover new optical soliton solutions, expand the known
repertoire of optical soliton solutions for the coupled
Schrodinger Poisson system system, gain deeper insights,
reveal the influence of key system parameters on optical
soliton dynamics, contribute to optical soliton
applications, provide potential avenues for utilizing
newfound optical soliton properties in advanced photonic
devices.

2 Analysis of the Schrodinger Poisson system
by extended Fan’s sub equation method

In this section the focus is going to construct the optical solitons
solutions to the following Schrodinger Poisson system in the
form
.0

—i% =~ Ay +9(0)y, )

—A¢ = ‘w‘zy
using the definition of A the system can be converted into single
equation which is

. aW/ a4w , au/ aZw 5
—izag T aa ~20 W5~ g7 Hylw=0. )
Making wave transformation
Wix,1) =U(E) x e, @)

where y/(x,) is the complex wave function, and v is the
velocity of the wave, Kk and ® are arbitrary constants.
Substituting Eq. 4 into Eq.3, and separating the real and
imaginary parts of the equation gives a pair of relations.
Following is the constraint condition for imaginary part

2
V=K<2K'2—(O—¢(x)), Q)
and the real part is

UM(E)+[2ve -6k — 0 —¢ ()]U*(§)—[2¢' (x)]U' (§)
k' o+ (x) kMU (E)+ U (£)=0. (6)

The homogeneous balance principle is used to find the
value of the positive integer N, i.e, by balancing between
the highest order derivatives and the nonlinear terms
appearing in nonlinear ordinary differential equation.
More precisely, if the degree of U(&) is deg[U(&)] =N,
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then the degree of the other terms will be expressed as

follows:
0
aes|WE) (“EE) | =Npsv+a)

Applying balance principle to the Eq.6

deg[U™] =N +4 = deg[U®] =3N, 7

which leads to N = 2. Eq.6 has the following formal
solution

U(&)=Po+Bin(E)+pn*(E), ®)

where Sy, B; and f3, are to be determined later and 7 (&)
satisfies the following general elliptic equation [38—41],

n_ (dn(g)
"2’( a

Substituting Eq.8 along with Eq.9 into Eq.6, and
comparing the coefficients of like terms, we obtained
system of algebraic equations. This system of algebraic
equations is solved with the help of Maple then

)" — o+ 1 () 1o (©)+ s (©) + am* (0). ©)

(80 paptr — 15 u3%) /=30

Bo =

1204 ’
ﬁl =V _30[13,
B> =2v—-30u4.

(10)

Substituting Eq.10 along with Eq.8 into Eq.4, we get
the following optical soliton solutions of Eq.2
Case I:

If o = r?, ty = 2rp, o = 2rq + p*, 13 = 2pq, s = ¢*,
then 7 is one of the 24 n!(I = 1,2,---,24). For instance,
if we take [ = 1,3,5,7,9,11 then optical soliton
solutions [38—41] for the Eq.2 are

Type I: When p? —4gr > 0 and pq # 0, (gr # 0) then

Wi (o) = {ﬁo + Bi (— 3 (p+ v@ranh (1/2v/@1)) ) +
B, (—;—q(p+@tanh(1/2mg))>2} X oiKx—01

where Q| = p? —4qr.

V1.3 (x,1)

{ﬁo + B (—;,(p+@(tanhm&isechm))j
+ﬁz(—zlq<p+\@(tanh@§iisech@)))2} x

elK)Cf&)t

Vs (x,1) = {ﬁo +

b (4 o o () s (55))))

B (*ﬁ <2P+\/971(tanh<\/‘?‘é> +coth<\/?§>)>>2} X

ei(vocfa)z)7

l[/1ﬂ7 (X7Z) =

{ﬁo + B (“‘ﬁ(‘l’— \/(BzfAI:)Q;rjﬂi?j;nh mg)) N
cos 1

,zrsinh<@)

,2rsinh<@> ) ) 2] « eilKr-01)

& (Psinh(\/!zTIE) _mms}( \/KZTlé

Vig(x,t) =

Wit (x,1) =
2rsinh(V/Qr€)
{ﬁO + Bi (7psinh(\/!2715)+\/ﬂilcosh(\/ﬂil)ﬂ:(\/ﬂil))

B 2rsinh (Vi) : « el(kx—01)
2\ = psinh (V218 )+ cosh (V21 )£ (v ) ’

where

80 —15132)v/=30
.BO = ( “4“2120:‘3) 7ﬁl = V730:u3762 =

2/ —30u4.

Type II: When 4gr — p*> < 0 and pg # 0, (qr # 0) then
one of the twelve that are left etal1 (1=13,14,---,24). For
instance, if we take [ = 13,15,16,18,20,24 then

Vi3 (xt) = {ﬁo + B (ﬁ (—p+\/-(72tan(@)>) +
B> (%q (—p-‘—@tan (@)))2} « ei(K3—01)

where £, = 4qr — p>.

Wiis (x,1) _
{ﬁo + B (ﬁ(p—i—@(tan(\/ﬂizé)isec(\/ﬁz)))) +

B (3 (v fan (V) e (V) ) ) )

ei(mfwz)7

X

V16 (x,1) = {/30 1
B (-4(-revmovme seevm) )+
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2
/(A2-B2)(2,) -4,/ cos \/@; /(A2-B2)(2,)~A\/Q; cos \/@;
V18 (X,f):{ﬁ()+ﬁl (i(*ﬂ+i u A)S(i"2>ﬂ Chiad 2§>> +B (%(*P+i (257)(2) Ay Ryecn 25)) }Xf‘('(km),
N3 q Asin \/Q,E+B

where A and B are non-zero real constants, that fulfill A> — B> > 0.

\/@)

o VS

2
V/])20<x’l)_|:ﬁ0+ﬁl(@sin(@){pcqs(@))“—ﬂz(\/@sin([%)I)a)s([!;zi)) :|><gi(

Kx—t)

Vi (x,1) = [/30 +h (2pcos< \/@é)sin

T
4(#7‘5)(#7@) :
+ﬁ2 :| ><ei(;<x—wt)7
—chos(@z—é)sin(@>+2 _(22:‘0:2<@2—€)—\/!Tz

30#4#2*15%2)\/ -

30
where ﬁ() = (T, ﬁl =+/-30u3, Bz =2v/-3004.
Case II
If o = 72, ty = 2rp, =0, U3 = 2pq, s = ¢°, p* = —2rq, then 1 is one of the twelve n//(1=1,2,3,---12).

Type I: When gr < 0 and (gr # 0), for instance, if we take / = 1,3,5,7,8,12 then optical soliton solutions of 2 are.

V2,1 (x,1) _
{;;Hﬁ (—ziq (i\/TqH— Wtanh<@5)>) B (_217 <i\/Tq,+ /“6artanh (@5)))2} s eilis—on),

V23 (x,1) = {ﬁ’o +Bi (—2—151 (i\/—qu—i- V/—6grtanh (v/=64¢r&) +isech (\/—6qr&) )) +

B2 (—ﬁ (i\/—qu+ V/—6grtanh (y=6¢r&) £isech (/—6qr&) ))2} x el(kx—o1)

vas ) = { B o (b (29727 + V=6 (1 (/647738 )+ com (6732 ) ) )
o8 (& (22020 v (ann (o 577 o (v o)) ) ) e,

B2 — A2) (—6qr) +Ay/—6grsinh \/=64r&
V’2,7(X,l‘)={ﬁ0+ﬁ1 i(ZF —2qr— ( ) 4 q q >

Acos \/—6qré +B
2
| . (B2 — A?) (—6gr) +Ay/—6grsinh \/—6gré i(kx—r)
+ B2 Z(? —2qr— Acos v/—6¢rE + B > }Xe 7
- 2rcosh \/—6gr&
s = { B+ (mqrsmh(mqré) /g cosh (v 64rE) ii”qr)

B 2rcosh \/—6gré 2} « giKx—01)
V/=6grsinh (v/=6qr&) F \/=2qrcosh (v/=6qr&) +i/—6qr '
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4rcosh (@) sinh (@)
2T (S inh (Y ) 2 areot? (4455 -
4rcosh (@5 ) sinh (\/?5 ) 2

F2+/—2grcosh (@6) sinh (@5) +24/=6grcosh? (@) —\/—6gr

Yo 12 (x,1) = {ﬁo +B

+B2 } « ei(Kxfwt)7

(sou4u2715u32)«/730
120114 ’ ﬁl =

2
where iy = V3043, By = 2730w, v = SR,

Case III:

If tto = jt; = 0, l1p, 113, Us., are arbitrary constants then 7] is one of the ten /"' (1 = 1,2,3, ..., 10.).

4(2b+d) _ 2yap?1abd
T a4 ,LL4 - T

Type 3. For instance, if we take / = 3, then up =4, 3 = ;, the optical soliton solution of 2 is

2/3v/=30(c® +b? +4bd —3bd —3/4d*) N —4/-30(2b+4d) ( asech®& )

Ysa (61) = { a? a b+cseché

8(1/42 +b> +bd) V=30 [ asech®E » gilkr-01)
a? b+ cseché ’

a,b,c, and d are arbitrary constants.
Case IV:
If ) = pz =0, Uy, 1o, Ua, are arbitrary constants then 1) is one of the sixteen nl”/l(l =1,2,3,...,16).

For instance, if we take [ = 13, g = %, U = # and uy = %;then the following optical soliton solutions are obtained.
Vs (x,1) = {1/3 (1-2m2V=30) +1/2v/=30(ns¢ icsg))z} x ellkx=an), an

in the limiting case when m — 1 the solution 11 becomes the combined optical soliton solution

Vi3 (6,0) = {1/3 (1-2m?)v=30+ 1/2\/730((c0ﬂ1icsch§))2} X el(kx-00)
when m — 0, in this case we have periodic singular solution
Va3 (6,0) = {1/3 (1—2m*)v=30+1/2/=30 (cscicoté)z} x efler=o1),

Case V:
If up = g =0, 1o, ty, U3, are arbitrary constants then the system does not admit a solution of this group.

3 Graphical Representations

144 4001

(a) (b)

Fig. 1: 3-D and 2-D line plot of |y (x,t)| for v =0.075,p = 3.05,9 = 1.35,r = 1.25, k = 4.05, 0 = 0.22, up =
1.03, 13 = 1.4, g = 1.8, ¢(x) = 1.
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(el

(a)

Fig. 2: 3-D and 2-D line plot of |y 3(x,r)| for v =025, p = 3.25,g = 2.15,r = 0.015, k = 0.25, ® = 4.53, 1 =
5.02, 13 = 3.5, s = 3.7, ¢(x) = 1.

1 70601

(a)

Fig. 3: 3-D and 2-D line plot of |y 7(x,7)| for v = 0.25, p = 3.05,¢ = 1.35,r = 1.25, k = 8.085, @ = 3.53, it =
1.01, 13 =0.6, s = 1.8, A=2,B=3, ¢(x) = 1.

(a)

Fig. 4: 3-D and 2-D line plot of |y} o(x,1)| forv=0.85, p=4.05, g = 1.35, r=1.25, k =2.85, 0 =0.83, 11 = 1.02, i3 =
05, =17,A=2B=3,¢(x)=1
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(a) (b)

Fig. 5: 3-D and 2-D line plot of |y 11(x,t)| for v =10.45p =
1.02, 113 =0.5, s = 1.7,A=2,B =3, ¢(x) = 1.

13 450001

(a) (b)

Fig. 6: 3-D and 2-D line plot of |y 13(x,1)| for v = 0.85, p = 0.15,4 = 0.05, r = 0.025, k = 1.05, ® = 2.73, 1, =
1.02, 3 = 1.5, g = 2.7, ¢ (x) = 1.

2000~
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91 150001

2000

~3000
4

(a) (b)

Fig. 7: 3-D and 2-D line plot of |y i5(x,7)| for v =10.45, p = 0.10,4 = 0.15,r = 0.025, k = 2.85, @ = 0.43, i, =
1.02, 3 = 0.5, g = 21.7, ¢ (x) = L.
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Ryl

(a) (b)

Fig. 8: 3-D and 2-D line plot of |y 15(x,7)| for v = 0.25, p = 2.10, g = 3.25,r = 3.25, k = 0.85, @ = 0.43, 1 =
0.12, 43 =05, 13 =1.7,A=3,B=2,¢(x) = 1.

N AN o,
i
IO

() ®)
Fig. 9: 3-D and 2-D line plot of [y 3(x,7)| for v = 0.45, p = 0.25, ¢ = 0.015, r = 0.025, k = 10.85, ® = 0.43, iy =

P2 W =2rp, o =2rq+ p*, 113 =2pq, Us = ¢*, ¢(x) = 1.

(a) (b)

Fig. 10: 3-D and 2-D line plot of |y 3(x, )| for v=0.15, p = 0, g = 0.15, r = 0.25, k = 10.85, @ = 0.043, 1 = 1, 1o =
—2ca ', uyg = —b*a®, o(x) = 1.
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4 Discussion and Conclusion

In conclusion, this research has provided a comprehensive
investigation into the optical soliton solutions of the
coupled nonlinear Schrodinger-Poisson system using the
extended Fan’s sub-equation method. The study sheds
light on the rich dynamics of the system and explores the
influence of external potential on optical soliton profiles.
Furthermore, the analysis has been extended to include
the examination of dark soliton and bright soliton
solutions within the context of the coupled system. The
obtained optical soliton solutions exhibit intriguing
features, capturing the coexistence of dark and bright
solitons in the nonlinear evolution of the system. Dark
solitons, characterized by localized depressions in the
amplitude, and bright solitons, featuring localized peaks,
demonstrate the system’s ability to support a diverse
range of nonlinear structures. The stability and robustness
of these optical soliton solutions underscore their
significance in understanding the nonlinear dynamics of
coupled systems. Dark solitons, known for their unique
phase features and potential applications in signal
processing, introduce an additional layer of complexity to
the soliton dynamics in the coupled system. The interplay
between dark and bright solitons reveals intricate
interactions that can be harnessed for controlling and
manipulating optical pulses in fiber optic communication
systems. The findings of this study contribute to the
existing literature on optical soliton dynamics in coupled
nonlinear systems, providing exact optical soliton
solutions for the Schrodinger-Poisson system. The
inclusion of dark and bright solitons enhances our
understanding of the system’s nonlinear behavior and
offers new perspectives for applications in plasma physics
and nonlinear optics. In practical terms, these solutions
advance broadband access and sustainable transportation
infrastructure, and may enable more reliable,
energy-efficient and communication systems, where the
control and manipulation of solitons are crucial for signal
transmission and information processing. The insights
gained from this research pave the way for future
investigations into more complex coupled systems and
underscore the importance of analytical methods, such as
the extended Fan’s sub-equation method, in unveiling the
intricate dynamics of nonlinear phenomena.
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