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Abstract: In this paper, soliton solutions of the (1+ 1)-dimensional Boussinesq equation are studied with an improved scheme of
the direct algebraic method. The Boussinesq equation as concerns the propagation of long waves in shallow water in addition to other
physical systems, exhibit both dispersal and nonlinearity. With this new approach we obtain analytical soliton solutions and make a
study of their characteristics. The obtained solutions are said in terms of positive forms and this is an improvement of the perception
of the dynamics of the equation. The performance of the method is illustrated by calculation, and further use of the method in the
related nonlinear systems is also discussed. This work adds to an ongoing research on the analysis of the solution of nonlinear partial
differential equations and provides understanding on the solitons in the dispersive media. The obtained solutions as well have been
depicted graphically for better understanding.

Keywords: Boussinesq equation, traveling wave solutions, new extended direct algebraic method for Boussinesq equation.

1 Introduction

Nonlinear evolution equations (NLEEs) as a class of equa-
tions are derived from the nonlinear sciences and those
have important roles in analyze of the nonlinear phenomenon.
Another well preserved by self-reinforcement wave packet
is referred to as soliton or solitary wave that moves at a
constant velocity. The nonlinearity and dispersion of the
medium are eliminated which in a result cause the forma-
tion of solitons. The class of weakly nonlinear dispersive
PDEs which models physical systems has so-called soli-
tons In nonlinear PDEs, more striking phenomena exist
than soliton solutions. A specific kind of a localized travel-
ing wave solution of a nonlinear PDE which is immensely
stable is known as a soliton [1–20].

It is used for analysis of long waves with small am-
plitude in shallow water and other physical processes in
nonlinear lattice theory and plasma physics. In its (1+1)-
dimensional form, the equation is expressed as:

Qtt −Qxx = λQxxxx +(Q2)xx, (1)

where Q(x, t) the wave profile and λ is a parameter
that determines the scale of dispersion. The coordinates
nonlinearity and dispersion in order to form soliton solu-
tions i.e., localized increments that retain their form and
propagate at a uniform velocity. The investigation of soli-
tons in the framework of the Boussinesq equation is im-
portance for the analysis of wave processes in different
physical systems. Computational procedures of classical
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analysis to solve a system of nonlinear PDEs encounter
difficulties in finding exact expressions. Thus, it is criti-
cal to develop new analytical approaches that will help to
study such systems.

The Boussinesq equation captures the interplay between
dispersion and nonlinearity in wave propagation. The term
λQxxxx â represents the dispersive effect, which tends to
spread the wave out, while the term (Q2)xx accounts for
the nonlinear interaction, which can lead to wave steepen-
ing and the formation of solitons.

From a physical perspective of one and a half-dimensional
Boussinesq equation, especially the newly derived soli-
tons, one can easily see the complexities of the interaction
between the dispersion and nonlinearity in wave motion.
Using the new extended direct algebraic method we have
been able to found types of traveling wave solutions which
include singular soliton solutions, periodic soliton solu-
tions, rational soliton solutions and both dark and bright
soliton solutions. These stand for different wave phenom-
ena which are possible in dispersive medium, for example,
shallow water waves or nonlinear lattices. For example, the
bright solitons correspond to the localized wave of eleva-
tion while the dark solitons describe localized drops of the
wave profile. This should give a guarantee to the efficiency
of the proposed method and the possibility to analyze the
waves behaviors in different physical systems by the help
of such opportunities to find soliton solutions with the use
of different forms of initial functions. The results obtained
in this work have an important implications for the anal-
ysis of wave processes in the dispersive media and also
in the fields such as mathematical biology, physics, chem-
istry and fluid dynamics where similar nonlinear partial
differential equations are used for modeling of the com-
plex phenomena.

A vast amount of work has been carried out in the
last few decades studying the properties of nonlinear par-
tial differential equations for the reason that they provide
very ideal models of phenomena in various science and
engineering disciplines. In fact, the exact solutions of the
above equations help hand and glove in analyzing the var-
ious global physical phenomena and dynamism of the pro-
cess. These kinds of solutions are required for interpret-
ing the qualitative properties of a number of occurrences
in various branches of the natural science. In the last few
years much attention has been paid to attempt to find exact
solutions by using nonlinear partial differential equation
models. Since most nonlinear PDEs do not have closed-
form solutions, the study of such solutions whether they
are travelling wave solutions or other classes of solutions
are desirable for developing the understanding of these
systems.

The methods for obtaining exact explicit solutions of
nonlinear partial differential equations are the tanh-function
method [41], the exp-function method [42], the F-expansion

method [43], Hirota’s direct method [44], Kudryashov method
[45], the modified extended direct algebraic method [64],
the extended auxiliary equation method [47], modified method
of simplest equation [48] and the new extended direct al-
gebraic method [62].Examples of the methods for solving
nonlinear partial differential equations numerically are the
finite element method [31, 32], finite volume method [33,
34], generalized finite difference method [35,36], colloca-
tion method [37, 38] and Galerkin finite element method
[39, 40].

2 Algorithm for New Extended Direct
Algebraic Method

In this section, the algorithm for the new extended direct
algebraic method is introduced, see [49,50]. In the follow-
ing we will outline the main steps of our method.

Consider a general nonlinear PDE in the form

Q(u,ux,uy,uz,uw,ut ,utt , ....) = 0, (2)

where Q is a polynomial function of its argument, and the
subscripts denote partial derivatives. We seek its traveling
wave solutions by using transformation wave

u(x,y,z,w, t) =U(ζ ), ζ = ax+by+ cz+d w+ vt. (3)

Substituting Eq. 3 into Eq. 2 yields a nonlinear ordinary differ-
ential equation

Q(u,u
′
,u

′′
,u

′′′
, ...) = 0, (4)

where the prime denotes differentiation with respect to
ζ .
Let us consider that Eq.4 has a formal solution of the form

U(ζ ) =
n

∑
j=0

H jP j(ζ ), Hn ̸= 0, (5)

where the H j (0 ≤ j ≤ n) are constants coefficients to
be determined later, and n is a positive integer which is
found by homogenous balancing principle between the high-
est nonlinear term and the highest derivative in Eq. 4 and
P(ζ ) satisfies the NODE Eq. 4 in the form of

P
′
(ζ ) = ln(A)

(
Θ +ΨP(ζ )+Γ P2(ζ )

)
, A ̸= (0,1), (6)

where Θ , Ψ and Γ are constants. Some special solu-
tions of the NODE are given in [49, 50].
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3 Application of the new extended direct
algebraic method

In numerical models, water waves, and coastal engineer-
ing, the Boussinesq equation is a long-wavelength and weakly
nonlinear approximation that is used to simulate water waves
in shallow seas and harbours.

A Scottish engineer named John Scott Russell closely ob-
served solitary waves. John Scott Russell’s observation served as
the basis for Joseph Boussinesq’s approximation. Boussinesq’s
simulation of one-dimensional water waves in 1872 established
that, in addition to the water depth, the vertical velocity is linear
and the horizontal velocity is constant [27].

Considering (1+1) dimensional Boussinesq equation

Qtt −Qxx = λQxxxx +
(
Q2)

xx . (7)

where Q = Q(x, t) represents the wave envelope con-
taining x as a spatial variable and t as a temporal variable.
Here λ is an arbitrary constant.

When water waves of various wavelengths are related,
this is referred to as a frequency dispersion phenomena; in
the case of an infinitesimal wave amplitude, it is also re-
ferred to as a linear frequency dispersion. This makes the
approximation accurate. Although waves can propagate in
multiple directions according to the Boussinesq equation,
it is more advantageous to take these into account. The
Boussinesq equation utilizing a new extended direct alge-
braic technique for generating strong and reliable soltons.
Now using the traveling wave transformation for this pur-
pose

Q(x, t) = q(ζ ) , (8)

where ζ = k x+ vt,

Q(x, t) = q(k x+ vt) , (9)

substituting Eq. 9 into Eq. 7. We have the following
NODE

v2q′′ (ζ )− k2 q′′ (ζ )− k2 (q2 (ζ )
)′′−λ k4qiv (ζ ) = 0, (10)

Integrating Eq.10 twice and neglecting the constants of
integration

(
v2 − k2)q(ζ )− k2q2 (ζ )−λ k4q′′ (ζ ) , (11)

Balancing q′′ with q2 in Eq. 11 gives N = 2. Thus, Eq.
11 has the formal solution

q(ζ ) = H0 +H1P(ζ )+H2P2 (ζ ) , (12)

substituting Eq. 12 along with Eq. 6 into Eq. 11 and
setting the coefficients of all powers of Pi, i = 0,1 · · · , to
zero, we yield the a system of algebraic equations and
solved this system with the aid of Maple or Mathematica,
we obtained following values for constants;

Case 1

H0 =−6λ k2Γ Θ ln2(A),

H1 =−6λ k2ΨΓ ln2(A),

H2 =−6λ k2Γ 2 ln2(A),

v =
√

1+λ k2Ψ2 −4λ k2Γ Θ ln(A).

(13)

Case 2

H0 =−λ k2
(
Ψ2 +2Γ Θ

)
ln2(A),

H1 =−6λ k2ΨΓ ln2(A),

H2 =−6λ k2Γ 2 ln2(A),

v = k
√

1−λ k2Ψ2 +4λ k2Γ Θ ln(A).

(14)

We established following families of exact solutions
using Eq.13 along with Eq.12 into Eq. 7
Family1. When Ψ2 − 4ΘΓ < 0 and Γ ̸= 0, then the trav-
eling wave solutions are given by
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Q1,1 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

2Γ
tanA

(√
−(Ψ2 −4Θ Γ ) ζ

2

)]

−6λ k2 ln2(A)Γ
2
[
− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

2Γ
tanA

(√
−(Ψ2 −4Θ Γ ) ζ

2

)]2
(15)

Q2,1 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A)

[
− Ψ

2Γ
−
√

−(Ψ2 −4Θ Γ )

2Γ
cotA

(√
−(Ψ2 −4Θ Γ ) ζ

2

)]

−6λ k2 ln2(A)Γ
2
[
− Ψ

2Γ
−
√

−(Ψ2 −4Θ Γ )

2Γ
cotA

(√
−(Ψ2 −4Θ Γ ) ζ

2

)]2
(16)

Q3,1 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ[

− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

2Γ

(
tanA

(√
−(Ψ2 −4Θ Γ ) ζ

)
±√

pqsecA

(√
−(Ψ2 −4Θ Γ ) ζ

))]
−6λ k2 ln2(A)Γ

2[
− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

2Γ

(
tanA

(√
−(Ψ2 −4Θ Γ ) ζ

)
±√

pqsecA

(√
−(Ψ2 −4Θ Γ ) ζ

))]2
(17)

Q4,1 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ[

− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

2Γ

(
−cotA

(√
−(Ψ2 −4Θ Γ ) ζ

)
±√

pqcscA

(√
−(Ψ2 −4Θ Γ ) ζ

))]
−6λ k2 ln2(A)Γ

2

[
− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

2Γ

(
−cotA

(√
−(Ψ2 −4Θ Γ ) ζ

)
±√

pqcscA

(√
−(Ψ2 −4Θ Γ ) ζ

))]]2
(18)

Q5,1 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ{

− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

4Γ

(
tanA

(
1
4

√
−(Ψ2 −4Θ Γ ) ζ

)
− cotA

(
1
4

√
−(Ψ2 −4Θ Γ ) ζ

))}
−6λ k2 ln2(A)Γ

2
{
− Ψ

2Γ
+

√
−(Ψ2 −4Θ Γ )

4Γ

(
tanA

(
1
4

√
−(Ψ2 −4Θ Γ ) ζ

)
− cotA

(
1
4

√
−(Ψ2 −4Θ Γ ) ζ

))}2
. (19)

Family2. When Ψ2 −4ΘΓ > 0 and Γ ̸= 0, then the traveling wave solutions are given by

Q6,2 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A)

[
− Ψ

2Γ
−
√

(Ψ2 −4Θ Γ )

2Γ
tanhA

(√
(Ψ2 −4Θ Γ ) ζ

2

)]

−6λ k2 ln2(A)Γ
2
[
− Ψ

2Γ
−
√

(Ψ2 −4Θ Γ )

2Γ
tanhA

(√
(Ψ2 −4Θ Γ ) ζ

2

)]2
(20)

Q7,2 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A)

[
− Ψ

2Γ
−
√

(Ψ2 −4Θ Γ )

2Γ
cothA

(√
(Ψ2 −4Θ Γ ) ζ

2

)]

−6λ k2 ln2(A)Γ
2
[
− Ψ

2Γ
−
√

(Ψ2 −4Θ Γ )

2Γ
cothA

(√
(Ψ2 −4Θ Γ ) ζ

2

)]2
(21)
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Q8,2 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A){

− Ψ

2Γ
+

√
(Ψ2 −4Θ Γ )

2Γ

(
− tanhA

(√
(Ψ2 −4Θ Γ ) ζ

)
± i

√
pqsechA

(√
(Ψ2 −4Θ Γ ) ζ

))}
−6λ k2 ln2(A)Γ

2
{
− Ψ

2Γ
+

√
(Ψ2 −4Θ Γ )

2Γ

(
− tanhA

(√
(Ψ2 −4Θ Γ ) ζ

)
± i

√
pqsechA

(√
(Ψ2 −4Θ Γ ) ζ

))}2
(22)

Q9,2 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ{

− Ψ

2Γ
+

√
(Ψ2 −4Θ Γ )

2Γ

(
−cothA

(√
(Ψ2 −4Θ Γ ) ζ

)
±√

pqcschA

(√
(Ψ2 −4Θ Γ ) ζ

))}
−6λ k2 ln2(A)Γ

2
{
− Ψ

2Γ
+

√
(Ψ2 −4Θ Γ )

2Γ

(
−cothA

(√
(Ψ2 −4Θ Γ ) ζ

)
±√

pqcschA

(√
(Ψ2 −4Θ Γ ) ζ

))}2
(23)

Q10,2 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A)[

− Ψ

2Γ
−
√
(Ψ2 −4Θ Γ )

4Γ

{
tanhA

(√
(Ψ2 −4Θ Γ ) ζ

4

)
+ cothA

(√
(Ψ2 −4Θ Γ ) ζ

4

)}]
−6λ k2 ln2(A)Γ

2

[
− Ψ

2Γ
−
√
(Ψ2 −4Θ Γ )

4Γ

{
tanhA

(√
(Ψ2 −4Θ Γ ) ζ

4

)
+ cothA

(√
(Ψ2 −4Θ Γ ) ζ

4

)}]2
(24)

Family3. When Θ Γ > 0 and Ψ= 0, then the traveling wave solutions are given by

Q11,3 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A)

(√
Θ

Γ
tanA

(√
Θ Γ ζ

))

−6λ k2 ln2(A)Γ
2
[√

Θ

Γ
tanA

(√
Θ Γ ζ

)]2
(25)

Q12,3 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2ΨΓ ln2(A)

(
−
√

Θ

Γ
cotA

(√
Θ Γ ζ

))

−6λ k2 ln2(A)Γ
2
[
−
√

Θ

Γ
cotA

(√
Θ Γ ζ

)]2
(26)

Q13,3 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[√
Θ

Γ

(
tanA

(
2
√

Θ Γ ζ

)
±
√

pqΘ

Γ

)
secA

(
2
√

Θ Γ ζ

)]

−6λ k2 ln2(A)Γ
2
[√

Θ

Γ

(
tanA

(
2
√

Θ Γ ζ

)
±
√

pqΘ

Γ

)
secA

(
2
√

Θ Γ ζ

)]2
(27)

Q14,3 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[√
Θ

Γ

(
cotA

(
2
√

Θ Γ ζ

)
±
√

pqΘ

Γ

)
cscA

(
2
√

Θ Γ ζ

)]

−6λ k2 ln2(A)Γ
2
[√

Θ

Γ

(
cotA

(
2
√

Θ Γ ζ

)
±
√

pqΘ

Γ

)
cscA

(
2
√

Θ Γ ζ

)
]2 (28)

Q15,3 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
1/2

√
Θ

Γ

(
tanA

(
1
2

√
Θ Γ ζ

)
− cotA

(
1
2

√
Θ Γ ζ

))]
−6λ k2 ln2(A)Γ

2
[

1
2

√
Θ

Γ

(
tanA

(
1
2

√
Θ Γ ζ

)
− cotA

(
1
2

√
Θ Γ ζ

))]2
(29)
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Family4. When Θ Γ < 0 and Ψ= 0, then the traveling wave solutions are given by

Q16,4 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
−
√
−Θ

Γ
tanhA

(√
−Θ Γ ζ

)]
−6λ k2 ln2(A)Γ

2
[
−
√

−Θ

Γ
tanhA

(√
−Θ Γ ζ

)]2
(30)

Q17,4 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
−
√
−Θ

Γ
cothA

(√
−Θ Γ ζ

)]
−6λ k2 ln2(A)Γ

2
[
−
√

−Θ

Γ
cothA

(√
−Θ Γ ζ

)]2
(31)

Q18,4 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[√
−Θ

Γ

(
− tanh

(
2
√
−Θ Γ ζ

))
± i

√
pqsechA(2

√
−Θ Γ ζ )

]
−6λ k2 ln2(A)Γ

2
[√

−Θ

Γ

(
− tanh

(
2
√
−Θ Γ ζ

))
± i

√
pqsechA(2

√
−Θ Γ ζ )

]2
(32)

Q19,4 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[√
−Θ

Γ

(
−cothA

(
2
√
−Θ Γ ζ

)
±√

pqcschA

(
2
√
−Θ Γ ζ

))]
−6λ k2 ln2(A)Γ

2
[√

−Θ

Γ

(
−cothA

(
2
√
−Θ Γ ζ

)
±√

pqcschA

(
2
√
−Θ Γ ζ

))]2
(33)

Q20,4 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
− 1

2

√
−Θ

Γ

(
tanhA

(
1
2

√
−Θ Γ ζ

)
+ cothA

√
−Θ Γ ζ

)]
−6λ k2 ln2(A)Γ

2
[
− 1

2

√
−Θ

Γ

(
tanhA

(
1
2

√
−Θ Γ ζ

)
+ cothA

√
−Θ Γ ζ

)]2
(34)

Family5: when Ψ= 0 and Γ =Θ , then the singular periodic solutions are given by

Q21,5 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
tanA (Θζ )

]
−6λ k2 ln2(A)Γ

2
[

tanA (Θζ )

]2
(35)

Q22,5 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− cotA (Θζ )

]
−6λ k2 ln2(A)Γ

2
(

ln2 A
)[

− cotA (Θζ )

]2
(36)

Q23,5 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
(tanA (2Θζ )±√

pq)secA (2Θζ )

]
−6λ k2 ln2(A)Γ

2
[
(tanA (2Θζ )±√

pq)secA (2Θζ )

]2
(37)

Q24,5 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− (cotA (2Θζ )±√

pq)cscA (2Θζ )

]
−6λ k2 ln2(A)Γ

2
[
− (cotA (2Θζ )±√

pq)cscA (2Θζ )

]
(38)
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Q25,5 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[1
2

(
tan
(

1
2

Θζ

)
− cot

(
1
2

Θζ

))]
−6λ k2 ln2(A)Γ

2
[

1
2

(
tan
(

1
2

Θζ

)
− cot

(
1
2

Θζ

))]2
(39)

Family6. When Ψ= 0 and Γ =−Θ , then the traveling wave solutions are given by

Q26,6 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− tanhA (Θζ )

]
−6λ k2 ln2(A)Γ

2
[
− tanhA (Θζ )

]2
(40)

Q27,6 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− cothA (Θζ )

]
−6λ k2 ln2(A)Γ

2
[
− cothA (Θζ )

]2
(41)

Q28,6 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− tanhA (2Θζ )± i

√
pqsechA (2Θζ )

]
−6λ k2 ln2(A)Γ

2
[
− tanhA (2Θζ )± i

√
pqsechA (2Θζ )

]2
(42)

Q29,6 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− cothA (2Θζ )±√

pqcschA (2Θζ )

]
−6λ k2 ln2(A)Γ

2
[
− cothA (2Θζ )±√

pqcschA (2Θζ )

]2
(43)

Q30,6 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− 1

2

(
tanhA

(
1
2

Θζ

)
+ cothA

(
1
2

Θζ

))]
−6λ k2 ln2(A)Γ

2
[
− 1

2

(
tanhA

(
1
2

Θζ

)
+ cothA

(
1
2

Θζ

))]2
(44)

Family7. When Ψ2 = 4Θ Γ and Γ =−Θ , then the traveling wave solutions are given by

Q31,7 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
−2

Θ (Ψζ LnA+2)
Ψ2ζ LnA

]
−6λ k2 ln2(A)Γ

2
[
−2

Θ (Ψζ LnA+2)
Ψ2ζ LnA

]2
(45)

Family 8: When Ψ= 0,Θ = mk,(m ̸= 0) and Γ = k, then

Q32,8 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

[
Ak ζ −m

]
−6λ k2 ln2(A)Γ

2
[

Ak ζ −m
]2

(46)

Family 9 . When Ψ= Γ = 0, then

Q33,9 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
Θ ζ ln(A)

]
−6λ k2 ln2(A)Γ

2
[
Θ ζ ln(A)

]2
(47)
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Family 10 . When Ψ=Θ = 0 then

Q34,10 (ζ ) =
(

6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[ −1
Γ ζ ln(A)

]
−6λ k2 ln2(A)Γ

2
[

−1
Γ ζ ln(A)

]2
(48)

Family 11 . When Ψ ̸= 0,Θ = 0, then the traveling wave solutions are given by

Q35,11 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

)[
− pΨ

Γ (coshA(Ψζ )− sinhA (Ψζ )+ p)

]
−6λ k2 ln2(A)Γ

2
[
− pΨ

Γ (coshA(Ψζ )− sinhA (Ψζ )+ p)

]2
(49)

Q36,11 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6λ k2 ln2(A)ΨΓ

(
ln2 A

){
− Ψ(sinhA(Ψζ )+ coshA(Ψζ ))

Γ (sinhA(Ψζ )+ coshA(Ψζ )+q)

}
−6λ k2 ln2(A)Γ

2
{
− Ψ(sinhA(Ψζ )+ coshA(Ψζ ))

Γ (sinhA(Ψζ )+ coshA(Ψζ )+q)

}2
(50)

Family 12 : When Ψ= l,Γ = m(m ̸= 0), and Θ = 0 then the rational solution is given by

Q37,12 (ζ ) =
(
−6λ k2 ln2(A)Γ Θ

)
−6 l k2ΨΓ ln2(A)

(
ln2 A

){
− pAl ζ

q−m pAl ζ

}
−6 l k2

Γ
2 ln2(A)

{
− pAl ζ

q−m pAl ζ

}2
. (51)

where ζ is an independent variable, p and q are arbitrary constants greater than zero and called deformation parameters.

4 The graphical representation

(a) (b)

Fig. 1: The 3-D and 2-D graphs of q1(ζ ) given by Eq. 15.
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(a) (b)

Fig. 2: The 3-D and 2-D graphs of q2(ζ ) given by Eq. 16.

(a) (b)

Fig. 3: The 3-D and 2-D graphs of q3(ζ ) given by Eq. 17.

(a) (b)

Fig. 4: The 3-D and 2-D graphs of q4(ζ ) given by Eq. 18.
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(a) (b)

Fig. 5: The 3-D and 2-D graphs of q5(ζ ) given by Eq. 19.

(a) (b)

Fig. 6: The 3-D and 2-D graphs of q6(ζ ) given by Eq. 20.

(a) (b)

Fig. 7: The 3-D and 2-D graphs of q7(ζ ) given by Eq. 21.
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(a) (b)

Fig. 8: The 3-D and 2-D graphs of q8(ζ ) given by Eq. 22.

(a) (b)

Fig. 9: The 3-D and 2-D graphs of q9(ζ ) given by Eq. 23.

(a) (b)

Fig. 10: The 3-D and 2-D graphs of q10(ζ ) given by Eq. 24.
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(a) (b)

Fig. 11: The 3-D and 2-D graphs of q11(ζ ) given by Eq. 25.

(a) (b)

Fig. 12: The 3-D and 2-D graphs of q12(ζ ) given by Eq. 26.

(a) (b)

Fig. 13: The 3-D and 2-D graphs of q13(ζ ) given by Eq. 27.
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(a) (b)

Fig. 14: The 3-D and 2-D graphs of q14(ζ ) given by Eq. 28.

(a) (b)

Fig. 15: The 3-D and 2-D graphs of q15(ζ ) given by Eq. 29.

(a) (b)

Fig. 16: The 3-D and 2-D graphs of q16(ζ ) given by Eq. 30.
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(a) (b)

Fig. 17: The 3-D and 2-D graphs of q20(ζ ) given by Eq. 34.

(a) (b)

Fig. 18: The 3-D and 2-D graphs of q21(ζ ) given by Eq. 35.

(a) (b)

Fig. 19: The 3-D and 2-D graphs of q26(ζ ) given by Eq. 40.
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(a) (b)

Fig. 20: The 3-D and 2-D graphs of q27(ζ ) given by Eq. 41.

(a) (b)

Fig. 21: The 3-D and 2-D graphs of q28(ζ ) given by Eq. 42.

(a) (b)

Fig. 22: The 3-D and 2-D graphs of q29(ζ ) given by Eq. 43.
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(a) (b)

Fig. 23: The 3-D and 2-D graphs of q30(ζ ) given by Eq. 44.

(a) (b)

Fig. 24: The 3-D and 2-D graphs of q31(ζ ) given by Eq. 45.

(a) (b)

Fig. 25: The 3-D and 2-D graphs of q35(ζ ) given by Eq. 41.
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(a) (b)

Fig. 26: The 3-D and 2-D graphs of q37(ζ ) given by Eq. 51.
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5 Discussion and Conclusion

In this study, we have applied a new extended direct al-
gebraic method to obtain soliton solutions of the (1+ 1)-
dimensional Boussinesq equation. The derived solutions
are presented in explicit forms, showcasing the method’s
capability to handle complex nonlinear PDEs. Our results
contribute to the understanding of soliton dynamics in dis-
persive media and provide a foundation for future research
in related areas. The success of this method in finding ex-
act solutions highlights its potential as a valuable tool in
the study of nonlinear wave equations, with implications
across various physical and engineering disciplines. By the
application of new extended direct algebraic method we
have obtained a series of traveling wave solutions namely:
singular solitons, periodic solitons, rational solitons, dark
and bright soliton solutions for (1+ 1)-Boussinesq equa-
tion. The proposed method is straight forward and more
powerful in constructing exact traveling wave solutions of
NLPDE’s. It can also be applied to other nonlinear partial
differential appearing in mathematical biology, physics, chem-
istry, fluid mechanics and many other fields.
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