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Abstract: In this paper, we introduce a novel age-structured mathematical model for HIV/AIDS, incorporating two distinct stages
of infection: individuals who are aware of their infection and those who are unaware. Additionally, we include the dynamics of
treated individuals to analyze the impact of treatment in reducing the transmission of HIV/AIDS. To establish the mathematical
well-posedness of our age-structured model, we employ semigroup theory to demonstrate the existence and uniqueness of solutions.
Furthermore, we derive the equilibrium states and analyze their local stability, as well as compute the basic reproduction number R0
and its role in determining the stability of these steady states. Finally, in the numerical simulations section, we validate our theoritical
findings regarding the stability of the steady states. We also explore the dynamics of the virus in scenarios where one of the infected
compartments (aware or unaware individuals) is absent. Additionally, we investigate the impact of treatment on the overall dynamics
of HIV/AIDS.
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1 Introduction

The human immunodeficiency virus (HIV) attacks and
weakens the immune system, potentially progressing to
acquired immunodeficiency syndrome (AIDS), the most
severe stage of the infection. HIV spreads through bodily
fluids such as blood, breast milk, semen, and vaginal
secretions but cannot be transmitted through casual
contact, including hugging, kissing, or sharing food.
Additionally, the virus can be passed from mother to child
during pregnancy, childbirth, or breastfeeding [4,6,7].

Antiretroviral therapy (ART) is the primary treatment
and prevention strategy for HIV. If left untreated, HIV can

develop into AIDS, often years after the initial infection.
Symptoms vary depending on the stage of the disease. In
the first few months, when HIV is most contagious, many
individuals are unaware of their infection. Some may
experience no symptoms, while others develop flu-like
signs such as fever, headache, rash, and sore throat.

Certain behaviors and conditions increase the risk of
HIV transmission, including unprotected anal or vaginal
sex, coexisting sexually transmitted infections (STIs), and
drug or alcohol use during sexual activity. Additionally,
sharing contaminated needles or undergoing unsafe
medical procedures heightens the risk.
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Although there is no cure for HIV, ART effectively
controls the virus by suppressing its replication within the
body. While it does not eliminate HIV, ART strengthens
the immune system, reducing susceptibility to
opportunistic infections. To remain effective, treatment
must be taken daily for life. ART significantly lowers the
viral load, preventing disease progression and enabling
individuals to lead healthy lives. Importantly, people
undergoing ART who maintain undetectable viral levels
cannot transmit HIV to their sexual partners.
Furthermore, HIV-positive pregnant women should
initiate ART as early as possible to protect their health
and prevent transmission of the virus to their unborn child
during pregnancy, childbirth, or breastfeeding. [5,7].

Globally, there were a displayed 39.9 million
HIV-positive individuals in 2023, with 1.3 million new
infections and 630,000 deaths from AIDS-related causes.
Despite these obstacles, 30.7 million patients were
receiving antiretroviral therapy, demonstrating the
advancements in treatment. The fact that 42.3 million
people have died from AIDS-related illnesses and that
88.4 million people have contracted HIV since the
epidemic’s beginning highlights the disease’s continued
effect [9].

For HIV/AIDS and other infectious diseases,
mathematical models are created using four main
modeling approaches: deterministic models, stochastic
models, statistical models (such as the state
back-calculation method and direct extrapolation), and
Space-Kalman filter models [8,6].

The focus of this research is on HIV/AIDS
deterministic models. These models make use of HIV
transmission dynamics, including the development of
AIDS. And usually divide the population into groups such
as susceptible individuals, individuals in different stages
of infection, and those in the AIDS phase. Transitions
between these compartments—through infection, AIDS
progression to the next stage, migration, or death—are
characterized by differential equations or systems of
difference in deterministic transmission models.

In the deterministic models, there are many models
provided for studying HIV/AIDS transmission by using
ordinary differential equations. In 2013, Hai-Feng and
Li-Xiang [10] proposed a HIV/AIDS model with
different latent stages and treatments. They analyzed the
model and established it using the reproduction number;
If the basic reproduction number (R0) is less than 1, then
the disease-free equilibrium point will be globally and
asymptotically stable, while if R0 is greater than 1, then
the endemic equilibrium point will be globally
asymptotically stable. 2016 Hai-Feng Rui and Xun-Yang
[11] studied a novel model treated with
susceptible-infected AIDS and recovered SIAT R that
included a new compartment T of treated individuals.
They also determined the stability of the endemic
equilibrium using the reproduction number; if the basic
reproduction number (R0) is greater than 1.

In 2023, Nadiah Wan-Arfah, Ling Shing Wong stated
that [11] Multivariable analysis is extremely important to
statistically adjust the estimated effect of each variable in
the model and for more comprehensive statistical
modeling. However, the equilibrium point will be
globally and asymptotically stable.

A structured population model is a framework for
studying population dynamics in which the distribution of
persons throughout a range of values is defined as the
state variable that reflects the population at any given
time. Each individual is associated with one specific value
at each moment. In age-structured models, for example,
people are classified according to their age, and people
who are in the same age group at a certain point in time
are referred to as a cohort or age structure.

In age-structured models, compartmental modeling is
employed to partition the population into distinct
subgroups, each characterized by specific attributes.
These models are typically represented using
integropartial differential equations. Notable examples
include the age-structured measles model [12], where the
authors are studied an age-structured epidemic model
with vaccination and standard incidence rate for measles
disease. The HIV model in [13] is about an age-structured
model where they take into consideration three groups,
T (t), V (t), and i(a, t), where T (t) and V (t) denote the
densities of uninfected target T cells and infectious, also
i(a, t) denotes the density of infected T cells of infection
age a at time t free virion at time t. The tuberculosis (TB)
model [14] was studied by Juan Pablo Aparicio et al. in
2009. Further, the Buruli ulcer model [15] is studied by
using age-strecture models.

In this research, we study an age-structured model of
HIV population dynamics. First, we divide the total
population into five subgroups: the susceptible, the
infected individuals who are aware of their infection, the
infected individuals who are unaware of their infection,
those with AIDS, and those receiving treatment. Then, we
formulate a mathematical model that incorporates the age
distribution a at time t. Next, we analyze the
well-posedness of our integropartial differential system.
Furthermore, we derive the explicit form of the steady
states and examine their stability in relation to R0.
Finally, we present numerical findings to validate our
theoretical results, illustrate the dynamics of HIV/AIDS
over time and age, and assess the impact of treated
individuals in reducing disease spread and controlling the
infection.

The reminder of this paper is structured as follows: In
Section 2 we have proposed our age structure model of
HIV/AIDS. In Section 3 the mathematical well-posedness
is established by using the semigroup theory. The
existence of steady states and their stability are given in
Section 4. In Section 5 we have illustrated our numerical
finding with a discussion to clarify each scenario. Finally
we finish by the conclusion in Section 6.
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2 Mathematical model

In this part, we disscussing and exploring each step in our
model. Then, the first step in modeling the dynamics of
HIV-AIDS is to grouping the total population into five
important sub-populations. The first sub-population is the
susceptible individuals, then the infected who know their
infection, and the compartment of those who don’t know
their infection, also, those who develop the infection to be
infected with AIDS, finally the individuals who take
treatment see figure 1. Before giving the equations

Fig. 1

associated with the model let us set some notations,
definitions and assumptions
The distribution of susceptible individuals S(a, t) is the
distribution given at time t and age a, are those persons
who have the risk of contacting the HIV virus, a contact
with an infected individual provides one of the two types
of infections, the individuals who aware their infection
and those who unware infection.
The distribution of individuals known their infection
I1(a, t) is the distribution given at time t and at age a, are
the humans known to their infection. The individuals in
this compartment may go to treatment or develop the
virus and become infected with AIDS; additionally, those
individuals may increase due to stopping using
medications against the virus for treated individuals, or
the inefficacy of treatment, or due to the infection with
other diseases.
The infected who don’t know infection I2(a, t) The
distribution at time t and age a represents individuals who
are unaware of their infection. These individuals belong
to a compartment where their numbers decrease over time
as they become aware of their infection status.
Additionally, individuals in this compartment may

progress to develop the disease and transition to an
AIDS-infected state.
The treated individuals T (a, t) is the distribution given
at time t and at age a, are the humans who go to
treatment.
The infected individuals with AIDS A(a, t) is the
distribution given at time t and at age a, are the humans
who have infected and develop the infection to later stage
with HIV (AIDS ).

The total population N(a, t) is the distribution by age
a and at time t of the total population. Also, note that the
total size of the population at time t given by

N(t) =
∫

∞

0
N(a, t)da. (1)

The parameters that we used it in this model are defined
as
β1(a,b) : is the average number of new contact per unit of
time of one infective that know his infection of age b with
a susceptible individual of age a.
β2(a,b) : is the average number of new contact per-unit of
time of one infective that do not know his infection of age
b with a susceptible individual of age a.
γ(a) : is the rate at which the individuals of age a in I2
become in the sub-population I1.
k1(a) : is the rate of infected individual with age a, I1,
become infected with AIDS.
k2(a) : is the rate of infected individual with age a, I2,
become infected with AIDS.
σ1(a) : is the rate at which an infected with AIDS with
age a go to treatment.
σ2(a) : is the inficacity or stopping using treatment for
individuals with AIDS of age a.
η1(a) : is the rate at which an infected with age a (I1) go
to treatment.
η2(a) : The inficacity or stopping using treatment.
d(a): is the natural death rate for individuals with age a.
δ1(a): is the additional rate of mortality due to AIDS
infection.
δ2(a): is the additional rate of mortality due to
complications of AIDS or the incompability of treatment
with the immune system.

We note that the number of contact at time t with age
a of susceptivble individuals with another one of infected
of age b is given by β1(a,b)I1(b, t). The same for infected
I2, the number of comtact with one individual with age b
with susceptible individual with age a is given by
β2(a,b)I2(b, t). Therefore, the number of contacts at time
t due to one infected I1 are given by∫

∞

0
β1(a,b)I1(b, t)db. (2)

Also, the number of contacts due to infected one from I2,
are ∫

∞

0
β2(a,b)I2(b, t)db. (3)

However, not all individuals sussceptible contact
individuals in I1 or I2 are infected, thus, we multiply with
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the susceptible function, then, the loss from age-a
susceptible class given by

−
∫

∞

0
β1(a,b)I1(b, t)db× S(a, t)

N(a, t)
−

∫
∞

0
β2(a,b)I2(b, t)db× S(a, t)

N(a, t)
. (4)

The loss from age-a susceptible due to natural death is
given by −d(a)S(a, t). Also the loss from infected I1,
infected I2, infected with AIDS A, and the treated T , is
given by ”−d(a)I1(a, t)”, ”−d(a)I2(a, t)”,
”−d(a)A(a, t)”, and ”−d(a)T (a, t)” respectively. The
additional loss from the class A, and T due to additional
death rate is given by ”−δ1(a)A(a, t)”, and
”−δ2(a)T (a, t)” respectively.

Assumptions 1We assume that,

(H1) :d(.), γ(.), k1(.), k2(.), σ1(.), σ2(.), η1(.), η2(.), δ1(.), and
δ2(.) are in L∞

+(0,σ), and β1,2(., .) ∈ L∞
+((0,σ)× (0,σ)),

also, all of those functions are extended by zero outside of
intervall (0,σ), also they are locally integrable

(H2) :(P1ϕ2)(.) ∈ L∞
+(0,σ), and (P2ϕ3)(.) ∈ L∞

+(0,σ).
(H3) :β1(a,b) = θ1(a)λ1(b), with θ1(a) is the probability of

individuals susceptible becoming infected aware infection.
Additionally, β2(a,b) = θ2(a)λ2(b), with θ2(a) is the
probability of individuals susceptible becoming infected not
aware infection.

According to above hypothesis, definitions, notations, and
the descriptive scheme 1 we have the following system of
equations

This system is equipied with boundary and initial
conditions as follows

S(0, t) = Λ , I1(0, t) = 0, I2(0, t) = 0, A(0, t) = 0, T (0, t) = 0,

Where, Λ is the newborn. Also the initial conditions are

S(a,0)= S0(a), I1(a,0)= I1,0(a), I2(a,0)= I2,0(a), A(a,0)=A0(a), T (a,0)=T0(a).

Let N(a) with 0 ≤ a ≤ σ the density with respect to the
age of the total number of individuals. Under assumption
N(a) satisfie

N(a) = m∗Ne(−
∫ a

0 d(σ)dσ), (6)

where the constant N is the total size of the population and
m∗ indicates the crude death rate, is determined such that

m∗
∫

σ

0
l(a)da = 1, (7)

where,
l(a) = e(−

∫
σ
0 d(a)da),

is the survival function, is proportional to the individuals
who survive to age a, then

N(a) = m∗Nl, (8)

Let Λ = m∗N, and consider the functions

s(a, t) =
S(a, t)
N(a, t)

, i1(a, t) =
I1(a, t)
N(a, t)

, i2(a, t) =
I2(a, t)
N(a, t)

,

x(a, t) =
A(a, t)
N(a, t)

, y(a, t) =
T (a, t)
N(a, t)

.

(9)

We noted by

β1(a, t) = θ1(a)
∫

σ

0
λ1(b)i1(b, t)db,

β2(a, t) = θ2(a)
∫

σ

0
λ2(b)i2(b, t)db,

(10)

Therefore, the system (5) be modified to
Where, ∂a =

∂

∂a , and ∂t =
∂

∂ t are the partial derivatives
according age a and time t respectively. With the boundary
and initial conditions as follows

s(0, t)= 1, i1(0, t)= 0, i2(0, t)= 0, x(0, t)= 0, y(0, t)= 0,

and

s(a,0) =
S(a,0)
N(a,0)

= s0(a), i1(a,0) =
I1(a,0)
N(a,0)

= i1,0(a)

, i2(a,0) =
I2(a,0)
N(a,0)

= i2,0(a),

x(a,0) =
A(a,0)
N(a,0)

= x0(a), y(a,0) =
T (a,0)
N(a,0)

= y0(a),

respectively.
Now, we are going to descussing the mathematical
propreities of the proposed model

3 Well-posedness of the model

This section interessed in providing the existence of the
solution for the system (11). First, we introduce a new
variable s̃(a, t) = s(a, t) − 1, the system (11) can be
written as

Under the boundary and initial conditions

s̃(0, t) = 0, i1(0, t) = 0, i2(0, t) = 0, x(0, t) = 0, y(0, t) = 0,

and

s̃(a,0) = s̃0(a), i1(a,0) = i1,0(a)

, i2(a,0) = i2,0(a), x(a,0) = x0(a), y(a,0) = y0(a),

respectively.
We define the Banach space,
X = L1(0,σ)×L1(0,σ)×L1(0,σ)×L1(0,σ)×L1(0,σ), with
L1− norm which is defined for ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5) ∈ X

∥ϕ∥X =
5

∑
i=1

∥ϕi∥L1 , (13)

© 2025 NSP
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∂S
∂ t

(a, t)+
∂S
∂a

(a, t) =−
∫

∞

0
β1(a,b)I1(b, t)db× S(a, t)

N(a, t)
−

∫
∞

0
β2(a,b)I2(b, t)db× S(a, t)

N(a, t)

−d(a)S(a, t),

∂ I1

∂ t
(a, t)+

∂ I1

∂a
(a, t) =

∫
∞

0
β1(a,b)I1(b, t)db× S(a, t)

N(a, t)
+ γ(a)I2(a, t)+η2(a)T (a, t)

− (k1(a)+η1(a)+d(a))I1(a, t),

∂ I2

∂ t
(a, t)+

∂ I2

∂a
(a, t) =

∫
∞

0
β2(a,b)I2(b, t)db× S(a, t)

N(a, t)
− (k2(a)+ γ(a)+d(a))I2(a, t),

∂A
∂ t

(a, t)+
∂A
∂a

(a, t) = k1(a)I1(a, t)+ k2(a)I2(a, t)+σ2(a)T (a, t)

− (σ1(a)+d(a)+δ1(a))A(a, t),

∂T
∂ t

(a, t)+
∂T
∂a

(a, t) = σ1(a)A(a, t)+η1(a)I1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))T (a, t).

(5)

(∂a +∂t)s(a, t) =−β1(a, t)s(a, t)−β2(a, t)s(a, t)−d(a)s(a, t),

(∂a +∂t)i1(a, t) = β1(a, t)s(a, t)+ γ(a)i2(a, t)+η2(a)y(a, t)− (k1(a)+η1(a)+d(a))i1(a, t),

(∂a +∂t)i2(a, t) = β2(a, t)s(a, t)− (k2(a)+ γ(a)+d(a))i2(a, t),

(∂a +∂t)x(a, t) = k1(a)i1(a, t)+ k2(a)i2(a, t)+σ2(a)y(a, t)− (σ1(a)+d(a)+δ1(a))x(a, t),

(∂a +∂t)y(a, t) = σ1(a)x(a, t)+η1(a)i1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))y(a, t).

(11)

(∂a +∂t)s̃(a, t) =−(β1(a, t)+β2(a, t)+d(a))(s̃(a, t)+1) ,

(∂a +∂t)i1(a, t) = β1(a, t)(s̃(a, t)+1)+ γ(a)i2(a, t)+η2(a)y(a, t)− (k1(a)+η1(a)+d(a))i1(a, t),

(∂a +∂t)i2(a, t) = β2(a, t)(s̃(a, t)+1)− (k2(a)+ γ(a)+d(a))i2(a, t),

(∂a +∂t)x(a, t) = k1(a)i1(a, t)+ k2(a)i2(a, t)+σ2(a)y(a, t)− (σ1(a)+d(a)+δ1(a))x(a, t),

(∂a +∂t)y(a, t) = σ1(a)x(a, t)+η1(a)i1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))y(a, t).

(12)

where,

∥ϕi∥L1 =
∫

σ

0
|ϕi(a)|da.

Additionally, we define the linear operator A : D(A ) ⊂ X →
X as

A(ϕ)(a) =
(
−dϕ1

da
,−dϕ2

da
,−dϕ3

da
,−dϕ4

da
,−dϕ5

da

)t
. (14)

where, D(A ) is the domain of A

D(A ) =
{

ϕ ∈ X , ϕi ∈W 1,1(0,σ), ϕ(0) = (0,0,0,0,0)t
}
.

Furthermore, we define the non-linear operator F : X → X as
where,
Let u(t) = (s̃(., t), i1(., t), i2(., t),x(., t),y(., t)), then

we can rewrite the system (12) as an abstract semilinear
problem

du
dt

= A (u(t))+F (u(t)), u ∈ D(A ). (16)

with the initial conditions u(0) = (s̃0, i1,0, i2,0,x0,y0)∈X .
To demonstrate the existence and uniqueness of the

system, it’s necessary the following achievements

Lemma 1
(i)The linear operator A is the infinitesimal generator of

c0−semigroup T = {etA }.
(ii)The non-linear operator F is locally Lipshitz.

Proof.

(i)By applying (Hille-Yosida) [1], A is a linear operator,
A is the infinitesimal generator of c0−semigroup
T (t) if and only if,
(a)D(A ) = X ,
(b)(λ I −A )−1 is bounded from X into itself
(c)The resolvent set ρ(A ) = {λ ∈ C : λ I −A :

D(A )→ X is bijective} [2] contain R+, and for
every λ > 0

∥(λ I −A )−n∥ ≤ 1
λ n , n ≥ 1.

Then it is clear that D(A ) = X .
For the second and third properties, we consider the
following abstract Cauchy problem,{

du
dt = A u(t), t ≥ 0,
u(0) = u0 ∈ X ,

(17)
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(Fϕ)(a) =


− [(P1ϕ2)(a)+(P2ϕ3)(a)+d(a)] (ϕ1(a)+1)

(P1ϕ2)(a)(ϕ1(a)+1)+ γ(a)ϕ3(a)+η2(a)ϕ5(a)− (k1(a)+η1(a)+d(a))ϕ2

(P2ϕ3)(a)(ϕ1(a)+1)− (k2(a)+ γ(a)+d(a))ϕ3(a)

k1(a)ϕ2(a)+ k2(a)ϕ3(a)+σ2(a)ϕ5(a)− (σ(a)+d(a)+δ1(a))ϕ4(a)

σ1(a)ϕ4(a)+η1(a)ϕ2(a)− (σ2(a)+η2(a)+δ2(a)+d(a))ϕ5(a)

 , (15)

β1(.) :=
∫

σ

0
β1(.,b)ϕ2(b)db = θ1(.)

∫
σ

0
λ1(b)ϕ2(b)db := (P1ϕ2)(.) ∈ L∞(0,σ),

β2(.) :=
∫

σ

0
β2(.,b)ϕ3(b)db = θ2(.)

∫
σ

0
λ2(b)ϕ3(b)db := (P2ϕ3)(.) ∈ L∞(0,σ).

and the linear operator A is given in the above
equation (14).
To demonstrate that λ I −A is bijective function, it
suffices that
(λ I −A )ϕ(a) = Ψ(a) ⇔ ϕ(a) = (λ I −A )−1Ψ(a),
with the determination of (λ I −A )−1(.). Therefore,
for each λ > 0 and all a ∈ (0,σ), we have:

(λ I −A )ϕ(a) =Ψ(a)⇔ λϕ(a)+ϕ
′(a) =Ψ(a),

⇔ ϕ(a) =
∫

σ

0
e−λ (s−a)

Ψ(s)ds,

⇔ (λ I −A )−1
Ψ(a) =

∫
σ

0
e−λ (a−s)

Ψ(s)ds,

(18)
which means that (λ I −A ) is a bijection from D(A )
to X , and

∥(λ I −A )−1
Ψ∥X ≤

5

∑
i=1

∫
σ

0

∣∣∣∣∫ a

0
e−λ (a−s)

Ψi(s)ds
∣∣∣∣da,

⇔∥(λ I −A )−1∥ ≤
∫

σ

0
e−λ (a−s)da ≤ 1

λ
,

⇔∥(λ I −A )−n∥ ≤ 1
λ n ,

(19)
By Hille-Yosida Theorem, A is the infinitesimal
generator of a c0-semigroup T (t) = {etA }t≥0.

(ii)The nonlinear operator F of system (16) is Lipshitz
continuous in X , i.e., for ϕ , and Ψ ∈ X then there
exists a constant L ∈ R such that

∥(Fϕ)− (FΨ)∥ ≤ L∥ϕ −Ψ∥. (20)

Therefore, for every u0 ∈ X there exists a maximal
interval of existence (0,T) and a unique mild solution
t 7→ u(t,u0) such that,

u(t,u0)=T (t)u0+
∫ t

0
T (t−s)F (u(s,u0))ds, t ∈ (0,T ),

(21)
also for t = ∞ or limt→T∥u(t,u0)∥ = ∞. Furthermore, if
u0 ∈ D(A ), then for t ∈ (0,T ), u(t,u0) ∈ D(A ) and the
function t 7→ u(t,u0) is continuously differentiable and
satisfies (16) on (0,T) [3].

Currently, allow us to note by

Ω := {(s̃, i1, i2,x,y)∈X , s̃≥−1, i1 ≥ 0, i2 ≥ 0,x≥ 0,y≥ 0},

and

Ω0 := {(s̃, i1, i2,x,y) ∈ X , −1 ≤ s̃+ i1 + i2 + x+y ≤ 1},

state space or admissible region , and the feasible
subregion respectively.

Lemma 2The mild solution u(t,u0), u0 ∈ Ω of (12) enter
into Ω0 after finite time and the set Ω0 is positively
invariant.

Proof.According to the system (12), we have following
presentation

s(a, t) =


e
−

∫ a

0
(β1(γ, t −a+ γ)+β2(γ, t −a+ γ)+d(γ))dγ

, (t −a)> 0,

s0(a− t)e
−

∫ t

0
(β1(a− t + γ,γ)+β2(a− t + γ,γ))dγ

, a− t > 0,
(22)

Since we know that the exponential function is always
positive, we also know that s0(a) ≥ 0, which means that
s(a, t)≥ 0. Consequently, s̃(a, t)≥−1.
For the second equation in (12) is now rewritten as an
abstract Cauchy problem

d
dt

i1(t) = (P1i1(t))(s̃(t)+1)+ γi2(t)+η2y(t)+B1i1(t),
(23)

where, the operator B1 is defined by

B1 = − d
da

− (k1 + η1 + d), and the domaine of this
operatos is defined as
D(B1) =

{
ψ ∈ L1(0,σ) | ψ(0) = 0

}
. Therefore, the

solutio of this last equation is given by

i1(t) = T1(t)i1(0)+
∫ T

0
T1(t − s) [P1i1(s)(s̃(s)+1)+ γi2(s)+η2y(s)]ds (24)

with T1(t) := etB1 , is a c0-semigroup generated by the
operator B1. Therefore, we have s̃ ≥ −1, and i1,0 ≥ 0,
also the operator T1, is a positive semigroup, then we
show that i1(t) is a positive function.
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As the same for the third, fourth, and fifth equations we
can express them as

d
dt

i2(t) = (P2i2(t))(s̃(t)+1)−B2i2(t),

d
dt

x(t) = k1i1(t)+σ2y(t)+B3x(t),

d
dt

y(t) = σ1x(t)+η1i1(t)+B4y(t).

(25)

Where the operators B2,B3, and B4 and their domaines
are defined as

B2 =− d
da

− (k1 + γ +d), D(B2) = {ψ ∈ L1(0,σ),ψ(0) = 0},

B3 =− d
da

− (σ1 +δ1 +d), D(B3) = {ψ ∈ L1(0,σ),ψ(0) = 0},

B4 =− d
da

− (σ2 +η2 +δ2 +d), D(B4) = {ψ ∈ L1(0,σ),ψ(0) = 0}.

The solutions given by equation (25) are

i2(t) = T2(t)i2(0)+
∫ T

0
T2(t − s)[P2i2(s)(s̃+1)]ds,

x(t) = T3(t)x(0)+
∫ T

0
T3(t − s)[k1i1(s)+ k2y(s)]ds,

y(t) = T4(t)y(0)+
∫ T

0
T4(t − s)[σ1x(s)+η1i1(s)]ds,

(26)
with, T2 := etB2 , T3 := etB3 , and T4 := etB4 are the
c0-semigroups generated by the operators B2, B3, and
B4 respectively. As we observe, i2(0), x(0), and y(0) are
positives also from (26), (23), and(22) i1(t) ≥ 0 and
s̃(t) + 1 ≥ 0, for t ≥ 0, then i2(t), x(t), and y(t) are
positives. Hence, we know that u(t,u0) ∈ Ω for all
u0 ∈ Ω .
Next we note ω = s̃+ i1 + i2 + x+ y, then we have

(∂t +∂a)ω(a, t)=−d(a)ω(a, t)−δ1(a)x(a, t)−δ2(a)y(a, t),

this last equation can be written as an abstract semilinear
Cauchy problem

d
dt

ω(t) =−δ1x(t)−δ2y(t)+B5ω,

where B5 = − d
da − d, and ω(0) = s̃(0)+ i1(0)+ i2(0)+

x(0)+ y(0) = 0 also, the domain of this linear operator is
defined as D(B5) = {ψ ∈ L1(0,σ),ψ(0) = 0}. Therefore,
we deduce the solution as follows,

where T5 := e(tB5) is the positive c0-semigroup
generated by the operator B5.
Thus, we have two results,
Case 1; if u0 ∈ Ω0 it is clear that the mild solution
u(t,u0) ∈ Ω0 for all t ≥ 0.
Case 2; if u0 ∈ Ω , Then the mild solution enters into Ω0
for all a > t.

By the Lemma 2, we have the following results:

Theorem 1.The abstract Cauchy problem (16) has a
unique global classical solution on X for the initial
conditions in u0 ∈ Ω ∩D(A ).

4 Existence of steady states and their stability

4.1 Existence of disease-free steady states

Let us represent the disease-free steady states for the set of
equations (11) by E 0 =

(
s0(a), i01(a), i

0
2(a),x

0(a),y0(a)
)
.

Since we assume that there is no sickness in this steady
state scenario, i01(a), i

0
2(a), and x0(a) are all equal to zero.

Therefore, we obtain the following
d
da s0(a) =−d(a)s0(a),
y0(a) = 0, i01(a) = 0, i02(a) = 0, and x0(a) = 0,
s0(0) = 1.

(28)

The solution of this system is given by

s0(a) = e(−
∫ a

0 d(τ)dτ).

Then, the disease-free steady state existe and given by
E 0 =

(
s0(a),0,0,0,0

)
.

4.2 Local stability of the disease-free steady
state

To demonstrate the local stability of the disease-free
steady state, we need to calculate the linearized system of
our model at this steady state.
Let us first make the following translations
ŝ = s(a, t) − s0(a), î1 = i1(a, t) − i01(a),
î2 = i2(a, t) − i02(a), x̂ = x(a, t) − x0(a), and
ŷ = y(a, t)− y0(a). Therefore, the system is transformed
to

The linearized part of the above system is written as
follows.

where,

β̂1(a, t) = θ1(a)
∫

σ

0
λ1(b)î1(b, t)db,

β̂2(a, t) = θ2(a)
∫

σ

0
λ2(b)î2(b, t)db,

(31)

Currently, let’s consider the non-zero exponential solution
of the system (30), ŝ(a, t) = ŝ(a)eλ t , î1(a, t) = î1(a)eλ t ,
î2(a, t) = î2(a)eλ t , x̂(a, t) = x̂(a)eλ t , and ŷ(a, t) = ŷ(a)eλ t ,
then the last system become

β̂1(a) = θ1(a)
∫

σ

0
λ1(b)î1(b)db,

β̂2(a) = θ2(a)
∫

σ

0
λ2(b)î2(b)db.

(33)

Define, Λ1, and Λ2 as

Λ1 =
∫

σ

0
λ1(b)î1(b)db,

Λ2 =
∫

σ

0
λ2(b)î2(b)db.

(34)
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ω(t) = T5(t)ω(0)−
∫ T

0
T5(t − s)[δ1x(s)+δ2y(s)]ds ≤ T5(t)ω(0)≤ e(−t( d

da ω(0)+dω(0))) ≤ 1, (27)

(∂a +∂t)ŝ(a, t) =−β̂1(a, t)ŝ(a, t)− β̂2(a, t)ŝ(a, t)− β̂1(a, t)s0(a)− β̂2(a, t)s0(a)−d(a)ŝ(a, t),

(∂a +∂t)î1(a, t) = β̂1(a, t)ŝ(a, t)+ β̂1(a, t)s0(a)+ γ(a)î2(a, t)+η2(a)ŷ(a, t)− (k1(a)+η1(a)+d(a))î1(a, t),

(∂a +∂t)î2(a, t) = β̂2(a, t)ŝ(a, t)+ β̂2(a, t)s0(a)− (k2(a)+ γ(a)+d(a))î2(a, t),

(∂a +∂t)x̂(a, t) = k1(a)î1(a, t)+ k2(a)î2(a, t)+σ2(a)ŷ(a, t)− (σ1(a)+d(a)+δ1(a))x̂(a, t),

(∂a +∂t)ŷ(a, t) = σ1(a)x̂(a, t)+η1(a)î1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))ŷ(a, t).

(29)

(∂a +∂t)ŝ(a, t) =−β̂1(a, t)s0(a)− β̂2(a, t)s0(a)−d(a)ŝ(a, t),

(∂a +∂t)î1(a, t) = β̂1(a, t)s0(a)+ γ(a)î2(a, t)+η2(a)ŷ(a, t)− (k1(a)+η1(a)+d(a))î1(a, t),

(∂a +∂t)î2(a, t) = β̂2(a, t)s0(a)− (k2(a)+ γ(a)+d(a))î2(a, t),

(∂a +∂t)x̂(a, t) = k1(a)î1(a, t)+ k2(a)î2(a, t)+σ2(a)ŷ(a, t)− (σ1(a)+d(a)+δ1(a))x̂(a, t),

(∂a +∂t)y(a, t) = σ1(a)x̂(a, t)+η1(a)î1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))ŷ(a, t).

(30)

d
da

ŝ(a)+λ ŝ(a) =−β̂1(a)s0(a)− β̂2(a)s0(a)−d(a)ŝ(a),

d
da

î1(a)+λ î1(a) = β̂1(a)s0(a)+ γ(a)î2(a)+η2(a)ŷ(a)− (k1(a)+η1(a)+d(a))î1(a),

d
da

î2(a)+λ î2(a) = β̂2(a)s0(a)− (k2(a)+ γ(a)+d(a))î2(a),

d
da

x̂(a)+λ x̂(a) = k1(a)î1(a)+ k2(a)î2(a)+σ2(a)ŷ(a)− (σ1(a)+d(a)+δ1(a))x̂(a),

d
da

ŷ(a)+λ ŷ(a) = σ1(a)x̂(a)+η1(a)î1(a)− (σ2(a)+η2(a)+δ2(a)+d(a))ŷ(a).

(32)

ŝ(a) =−Λ1

∫ a

0
θ1(σ)s0(σ)e{−

∫ a
σ

d(ξ )+λdξ}dσ −Λ2

∫ a

0
θ2(σ)s0(σ)e{−

∫ a
σ

d(ξ )+λdξ}dσ ,

î1(a) =
∫ a

0

[
Λ1θ1(σ)s0(σ)+ γ(σ)î2(σ)+η2(σ)ŷ(σ)

]
e{−

∫ a
σ

λ+k1(ξ )+η1(ξ )+d(ξ )dξ}dσ

î2(a) = Λ2

∫ a

0
θ2(σ)s0(σ)e{−

∫ a
σ

λ+k2(ξ )+γ(ξ )+d(ξ )dξ}dσ ,

x̂(a) =
∫ a

0

[
k1(σ)î1(σ)+ k2(σ)î2(σ)

]
e{−

∫ a
σ

λ+σ1(ξ )+d(ξ )+δ1(ξ )dξ}dσ ,

ŷ(a) =
∫ a

0

[
σ1(τ)x̂(τ)+η1(τ)î1(τ)

]
e{−

∫ a
σ

λ+σ2(ξ )+η2(ξ )+δ2(ξ )+d(ξ )dξ}dτ.

(35)

Then, β̂1 = Λ1θ1(a), and β̂2 = Λ2θ2(a), and the solution
of the system (32) is given by

Now, we shall to calculate the basic reproduction
number, which gives a direct relation between the
equilibrium and its stability. This rate is the number of
infections caused by one infected individual in a
population totally susceptible. Then this last is expressed
without taking treatment strategy into consideration, then
for this purpose we consider,
η1(a) = η2(a) = σ1(a) = σ2(a) = 0. Then, the solutions

ŝ(a), î1(a), î2(a), and x̂(a) are expressed in this case as
follows

From the third equation of system (36) and the second
equation in (34), we have,

Λ2 = Λ2

∫
σ

0
λ2(b)Φ2(a,λ )db. (37)
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ŝ(a) =−Λ1

∫ a

0
θ1(σ)s0(σ)e{−

∫ a
σ

d(ξ )+λdξ}dσ −Λ2

∫ a

0
θ2(σ)s0(σ)e{−

∫ a
σ

d(ξ )+λdξ}dσ ,

î1(a) =
∫ a

0

[
Λ1θ1(σ)s0(σ)+ γ(σ)î2(σ)

]
e{−

∫ a
σ

λ+k1(ξ )+d(ξ )dξ}dσ

î2(a) = Λ2

∫ a

0
θ2(σ)s0(σ)e{−

∫ a
σ

λ+k2(ξ )+γ(ξ )+d(ξ )dξ}dσ ,

x̂(a) =
∫ a

0

[
k1(σ)î1(σ)+ k2(σ)î2(σ)

]
e{−

∫ a
σ

λ+d(ξ )+δ1(ξ )dξ}dσ .

(36)

Further, from the second equation in (36) and the first in
(34) we have

Λ1 = Λ1

∫
σ

0
λ1(b)Φ1(b,λ )db+Λ2

∫
σ

0
λ1(b)Ψ(b,λ )db,

(38)
where,

Φ1(b,λ ) =
∫ b

0
θ1(σ)s0(σ)e{−

∫ b
σ λ+k1(ξ )+d(ξ )dξ}dσ ,

Φ2(b,λ ) =
∫ b

0
θ2(σ)s0(σ)e{−

∫ b
σ λ+k2(ξ )+γ(ξ )+d(ξ )dξ}dσ ,

Ψ(b,λ ) =
∫ b

0
γ(σ)Φ2(σ ,λ )e{−

∫ b
σ λ+k1(ξ )+d(ξ )dξ}dσ .

(39)

From (38) we have

Λ2 = Λ1

(
1−

∫
σ

0 λ1(b)Φ1(b,λ )db
)∫

σ

0 λ1(b)Ψ(b,λ )db
, (40)

replacing this last into equation (37), we obtain

1 =
∫

σ

0
λ1(b)Φ1(b,λ )db+

(
1−

∫
σ

0
λ1(b)Φ1(b,λ )db

)
×

∫
σ

0
λ2(b)Φ2(b,λ )db.

(41)

Let us noted by F the right hand side of equation (41),

F(λ ) =
∫

σ

0
λ1(b)Φ1(b,λ )db+

(
1−

∫
σ

0
λ1(b)Φ1(b,λ )db

)
×

∫
σ

0
λ2(b)Φ2(b,λ )db. (42)

Therefore, the basic reproduction number, R0, is
defined as R0 = F(0). This represents the total number of
infections caused by both infected individuals who are
aware of their infection and those who are unaware of it.
The variables and expressions describe various
probabilities and parameters in the model: θ1(σ)
represents the probability of infection, while γ(σ)
denotes the probability of transmission to infected
individuals who are aware of their infection. The rate
s0(σ) indicates the initial number of susceptible
individuals. The term e{−

∫ a
σ k1(ξ )dξ} expresses the

probability of becoming infected with AIDS. Similarly,
e{−

∫ a
σ d(ξ )dξ} represents the probability of death.

Furthermore, θ2(σ) is the probability of infection from
individuals in the i2 compartment, e{−

∫ a
σ k2(ξ )dξ} signifies

the probability of being in the AIDS compartment, and
e{−

∫ a
σ γ(ξ )dξ} represents the transition probability to the i1

compartment.

Theorem 2.The disease-free steady state, E 0, is locally
asymptotically stable if R0 < 1, indicating that the
disease will eventually die out. Conversely, it becomes

unstable if R0 > 1, suggesting that the disease will
persist and potentially spread within the population.

Proof.By the definition of F(λ ), we have,

lim
λ→+∞

F(λ ) = 0, (43)

and the limite at −∞ is given as

lim
λ→−∞

F(λ ) = +∞, (44)

furthermore,

If
∫

σ

0
λ1(b)Φ1(b,λ )db ≤ 1, and∫

σ

0
λ2(b)Φ2(b,λ )d ≤ 1, then F ′(λ )< 0.

Therefore, this function F is a decreasing function with
the limite at +∞ is zero and at −∞ is the +∞ then the
courb of this function is cross the axe of ordonnee at a
positif point see the figure 2
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F ′(λ ) =
∂

∂λ

(∫
σ

0
λ1(b)Φ1(b,λ )db+

(
1−

∫
σ

0
λ1(b)Φ1(b,λ )db

)
×

∫
σ

0
λ2(b)Φ2(b,λ )db

)
. (45)

Fig. 2: Courbe representatif of the function F.

Then, there exists a unique root λ ∗ solution of F(λ ∗)=
1. And we have the two following cases,

–case 1: It is clear that if we have R0 < 1 the solution
λ ∗ ≤ 0, see figure 2 .

–case 2: if F(λ ) = 1 has a complex roots, and let λ =
a+ ib a root satisfying F(λ ) = 1, Then Re(F(λ )) = 1
and Im(F(λ )) = 0. Also,

Re(e(λ ))=Re(e(ai+b))= e(a)cos(b)≤ exp(a)= eRe((λ ))

Then,

1=Re(F(λ ))≤F(Re(λ ))⇔F(λ ∗)≤F(Re(λ ))⇔Re(λ )≤ λ
∗ < 0 (R0 <F(λ ∗)),

.

Therefore, the disease-free steady state is stable if and only
if R0 < 1, Then we complete the proof of the theorem.

4.3 Existence of endemic steady state

The endemic steaday state satisfy the following system
with the initial conditions

s∗(0) = 1, i∗1(0) = 0, i∗2(0) = 0, x∗(0) = 0, y∗(0) = 0.

Where,

β
∗
1 (a) = θ1(a)

∫
σ

0
λ1(b)i∗1(b)db

β
∗
2 (a) = θ2(a)

∫
σ

0
λ2(b)i∗2(b)db

(47)

Let, as denote by

Λ
∗
1 =

∫
σ

0
λ1(b)i∗1(b)db ⇒ β

∗
1 (a) = θ1(a)Λ ∗

1 ,

Λ
∗
2 =

∫
σ

0
λ2(b)i∗2(b)db ⇒ β

∗
2 (a) = θ2(a)Λ ∗

2 ,

(48)

the solution of each differential equation in system (46) are
given by

Therefore, simillarly to equations (37), and (38) we
have

Λ
∗
1 = Λ

∗
1

∫
σ

0
λ1(b)ψ1(b)db+Λ2

∫
σ

0
λ1(b)ψ3(b)db,

Λ2 = Λ2

∫
σ

0
λ2(b)ψ2(a)db,

(50)
where,

ψ1(b) =
∫ b

0
θ1(σ)s∗(σ)e{−

∫ b
σ +k1(ξ )+d(ξ )dξ}dσ ,

ψ2(b) =
∫ b

0
θ2(σ)s∗(σ)e{−

∫ b
σ k2(ξ )+γ(ξ )+d(ξ )dξ}dσ ,

ψ3(b) =
∫ b

0
γ(σ)ψ2(σ)e{−

∫ b
σ k1(ξ )+d(ξ )dξ}dσ .

(51)
From (51)

Λ
∗
2 = Λ

∗
1

(
1−

∫
σ

0 λ1(b)ψ1(b)db
)∫

σ

0 λ1(b)ψ3(b)db
, (52)

replacing this last into equation (37), we obtain

1 =
∫

σ

0
λ1(b)ψ1(b)db+

(
1−

∫
σ

0
λ1(b)ψ1(b)db

)
×

∫
σ

0
λ2(b)ψ2(b)db (53)

Let us define the functional G as follows

G(Λ ∗
2 ) =

∫
σ

0
λ1(b)ψ1(b)db+

(
1−

∫
σ

0
λ1(b)ψ1(b)db

)
×

∫
σ

0
λ2(b)ψ2(b)db.

(54)

It is clear that when Λ ∗
1 = Λ ∗

2 = 0, the functional
G(0) = F(0) = R0. Also, we can show that there exists a
unique endemic steady state if and only if there exists a
unique Λ ∗

2 such that G(Λ ∗
2 ) = 1, and Λ ∗

2 > 0,
furtheremore, we have G′(Λ ∗

2 ) < 0 ,
limΛ∗

2 →−∞ G(Λ ∗
2 ) = +∞, G(0) = R0. Then, if R0 > 1 the

equation G(Λ ∗
2 ) = 1 has a unique positive real root noted
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d
da

s∗(a) =−β
∗
1 (a)s

∗(a)−β
∗
2 (a)s

∗(a)−d(a)s∗(a),

d
da

i∗1(a) = β
∗
1 (a)s

∗(a)+ γ(a)i∗2(a)+η2(a)y∗(a)− (k1(a)+η1(a)+d(a))i∗1(a),

d
da

i∗2(a) = β
∗
2 (a)s

∗(a)− (k2(a)+ γ(a)+d(a))i∗2(a),

d
da

x∗(a) = k1(a)i∗1(a)+ k2(a)i∗2(a)+σ2(a)y∗(a)− (σ1(a)+d(a)+δ1(a))x∗(a),

d
da

y∗(a) = σ1(a)x∗(a)+η1(a)i∗1(a)− (σ2(a)+η2(a)+δ2(a)+d(a))y∗(a).

(46)

s∗(a) = e{−
∫ a

0 Λ ∗
1 θ1(σ)+Λ ∗

2 θ2(σ)+d(σ)dσ},

i∗1(a) =
∫ a

0
[θ1Λ

∗
1 s∗(σ)+ γ(σ)i∗2(σ)+η2(σ)y∗(σ)]e{−

∫ a
σ

k2(ξ )+η2(ξ )+d(ξ )dξ}dσ ,

i∗2(a) =
∫ a

0
θ2(σ)Λ∗

2 s∗(σ)e{−
∫ a

σ
k2(ξ )+γ(ξ )+d(ξ )dξ}dσ ,

x∗(a) =
∫ a

0
[k1(σ)i∗1(a)+ k2(σ)i∗2(σ)+σ2(σ)y∗(σ)]e{−

∫ a
σ

σ1(ξ )+d(ξ )+δ1(ξ )dξ}dσ ,

y∗(a) =
∫ a

0
[σ1(σ)x∗(σ)+η1(σ)i∗1(σ)i∗1(σ)]e{−

∫ a
σ

σ2(ξ )+η2(ξ )+δ2(ξ )d(ξ )dξ}dσ .

(49)

as Λ ∗
2∼ > 0, see figure 3, from (52) we get also a unique

Λ ∗
1∼ > 0. Therefore, the system has a unique positive

endemic steady state.
E ∗ = (s∗(a), i∗1(a), i

∗
2(a),x

∗(a),y∗(a)) with
s∗(a),e∗(a),v∗(a), and i∗(a) defined above.

Fig. 3: Courbe representative of the function G.

4.4 Local stability of the endemic steady state

In this part, we looking to demonstrate the local stability
of the endemic steady state. First, we have to introduce
the linearized system associated to the system (11), let
denote by š(a, t) = s(a, t) − s∗(a),
ǐ1(a, t) = i1(a, t) − i∗1(a), ǐ2(a, t) = i2(a, t) − i∗2(a),
x̌(a, t) = x(a, t)−x∗(a), and y̌(a, t) = y(a, t)−y∗(a). Then
the system (11) take the form

with,

β̌1(a, t) =θ1(a)
∫

σ

0
λ1(b)ǐ1(b, t)db, and, β̌2(a, t) = θ2(a)

∫
σ

0
λ2(b)ǐ2(b, t)db,

β1(a, t) =β̌1(a, t)+β
∗
1 (a), and, β2(a, t) = β̌2(a, t)+β

∗
2 (a).

(56)

The linearized part in system (55) is expressed as
This system is equipied with boundary conditions :

š(0, t) = 0, ǐ1(0, t) = 0, ǐ2(0, t) = 0, x̌(0, t) = 0, and
y̌(0, t) = 0, also the initial conditions are š(a,0) = š0(a),
ǐ1(a,0) = ǐ1,0(a), ǐ2(a,0) = ǐ2,0(a), x̌(a,0) = x̌0(a), and
y̌(a,0) = y̌0(a).
We consider the following exponential solution of system
(57)

therefore, the variables š(a), ǐ1(a), ǐ2(a), x̌(a), and y̌(a)
are satisfies the folowwing equations

where,

Λ̌1 =
∫

σ

0
λ1(b)ǐ1(b)db, and Λ̌2 =

∫
σ

0
λ2(b)ǐ2(b)db.

(59)
The states solution for this last system take the following
form

Theorem 3.The endemic steady state E ∗ exists if and only
if R0 > 1, furthermore, this equilibrium is stable if the
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(∂a +∂t)š(a, t) =−β̌1(a, t)š(a, t)− β̌1(a, t)s∗(a)−β
∗
1 (a)š(a, t)

− β̌2(a, t)š(a, t)− β̌2(a, t)s∗(a)−β
∗
2 (a)š(a, t)−d(a)š(a, t),

(∂a +∂t)ǐ1(a, t) = β̌1(a, t)š(a, t)+ β̌1(a, t)s∗(a)+β
∗
1 (a)š(a, t)+ γ(a)ǐ2(a, t)

+η2(a)y̌(a, t)− (k1(a)+η1(a)+d(a))ǐ1(a, t),

(∂a +∂t)ǐ2(a, t) = β̌2(a, t)š(a, t)+ β̌2(a, t)s∗(a)+β
∗
2 (a)š(a, t)− (k2(a)+ γ(a)+d(a))ǐ2(a, t),

(∂a +∂t)x̌(a, t) = k1(a)ǐ1(a, t)+ k2(a)ǐ2(a, t)+σ2(a)y̌(a, t)− (σ1(a)+d(a)+δ1(a))x̌(a, t),

(∂a +∂t)y̌(a, t) = σ1(a)x̌(a, t)+η1(a)ǐ1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))y̌(a, t),

(55)

(∂a +∂t)š(a, t) =−β̌1(a, t)s∗(a)−β
∗
1 (a)š(a, t)− β̌2(a, t)s∗(a)−β

∗
2 (a)š(a, t)−d(a)š(a, t),

(∂a +∂t)ǐ1(a, t) = β̌1(a, t)s∗(a)+β
∗
1 (a)š(a, t)+ γ(a)ǐ2(a, t)+η2(a)y̌(a, t)− (k1(a)+η1(a)+d(a))ǐ1(a, t),

(∂a +∂t)ǐ2(a, t) = β̌2(a, t)s∗(a)+β
∗
2 (a)š(a, t)− (k2(a)+ γ(a)+d(a))ǐ2(a, t),

(∂a +∂t)x̌(a, t) = k1(a)ǐ1(a, t)+ k2(a)ǐ2(a, t)+σ2(a)y̌(a, t)− (σ1(a)+d(a)+δ1(a))x̌(a, t),

(∂a +∂t)y̌(a, t) = σ1(a)x̌(a, t)+η1(a)ǐ1(a, t)− (σ2(a)+η2(a)+δ2(a)+d(a))y̌(a, t).

(57)

š(a, t) = š(a)eωt , ǐ1(a, t) = ǐ1(a)eωt , ǐ2(a, t) = ǐ2(a)eωt , x̌(a, t) = x̌(a)eωt , y̌(a, t) = y̌(a)eωt ,

d
da

š(a) =−ω š(a)−θ1(a)Λ̌1s∗(a)−θ1(a)Λ∗
1∼š(a)−θ2(a)Λ̌2s∗(a)−θ2(a)Λ∗

2∼š(a)−d(a)š(a),

d
da

ǐ1(a) =−ω ǐ1(a)+θ1(a)Λ̌1s∗(a)+θ1(a)Λ∗
1∼š(a)+ γ(a)ǐ2(a)+η2(a)y̌(a)− (k1(a)+η1(a)+d(a))ǐ1(a),

d
da

ǐ2(a) =−ω ǐ2(a)+θ2(a)Λ̌2s∗(a)+θ2(a)Λ∗
2∼š(a)− (k2(a)+ γ(a)+d(a))ǐ2(a),

d
da

x̌(a, t) =−ω x̌(a)+ k1(a)ǐ1(a)+ k2(a)ǐ2(a)+σ2(a)y̌(a)− (σ1(a)+d(a)+δ1(a))x̌(a),

d
da

y̌(a) =−ω y̌(a)+σ1(a)x̌(a)+η1(a)ǐ1(a)− (σ2(a)+η2(a)+δ2(a)+d(a))y̌(a).

(58)

š(a) =− Λ̌1

∫ a

0
θ1(σ)s∗(σ)e{−

∫ a
σ

ω+Λ ∗
1∼θ1(ξ )+Λ ∗

2∼θ2(ξ )+d(ξ )dξ}dσ

− Λ̌2

∫ a

0
θ2(σ)s∗(σ)e{−

∫ a
σ

ω+Λ ∗
1∼θ1(ξ )+Λ ∗

2∼θ2(ξ )+d(ξ )dξ}dσ ,

ǐ1(a) =
∫ a

0

[
Λ̌1θ1(σ)s∗(σ)+Λ

∗
1∼θ1(σ)š(σ)+ γ(σ)ǐ2(σ)+η2(σ)y̌(σ)

]
× e{−

∫ a
σ

ω+k1(ξ )+η1(ξ )+d(ξ )dξ}dσ ,

ǐ2(a) =
∫ a

0

[
Λ̌2θ2(σ)s∗(σ)+Λ

∗
2dimθ2(σ)š(σ)

]
× e{−

∫ a
σ

ω+k2(ξ )+δ1(ξ )+d(ξ )dξ}dσ ,

x̌(a) =
∫ a

0

[
k1(σ)ǐ1(σ)+ k2(σ)ǐ2(σ)+σ2(σ)y̌(σ)

]
× e{−

∫ a
σ

ω+σ1(ξ )+δ1(ξ )+d(ξ )dξ}dσ

y̌(a) =
∫ a

0

[
σ1(σ)x̌(σ)+η1(σ)ǐ1(σ)

]
× e{−

∫ a
σ

ω+σ2(ξ )+η2(ξ )+δ2(ξ )+d(ξ )dξ}dσ .

(60)

eigenvalues of the linearized system (57) have a negative
real part.

5 Numerical simulations

In this section, we will show the behavior of each state
(susceptible, infected aware of the infection, infected
unaware of infection, infected with AIDS, and treated
individuals ) with the consideration of age a and the time
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Table 1: Values of model parameters for simulations

Parameter value Parameter value
k1 0.25 k2 0.03
σ1 0.45 σ2 0.02
η1 ∈ (0,2) η2 0.45
γ 0.05 δ1 0.0909
δ2 0.0679 λ1 ∈ (0,0.03)
λ2 ∈ (0,0.02) Λ 100
θ1 1 θ2 1

t. For this purpose we consider the age-function
d(a) = (a−30)2

104 , is depend of age variable a. Also, the
rates of transmission λ1 ∈ (0,0.03), λ2 ∈ (0,0.02).
Further, the other parameters values are given in table 1.

Senario 1 : This paragraph discusses the stability and
convergence to the equilibrium steady states. We begin by
selecting the parameters λ1(a) = 0.01 and λ2(a) = 0.001,
which clearly demonstrate the stability of the disease-free
steady state E 0, as the corresponding R0 value is less
than one. As illustrated in Figures 4, 5, 6, 7, and 8, which
depict the behavior of state variables over time, it is
evident that the system converges to the equilibrium
E 0 = (2826,0,0,0,0). On the other hand we fixed the
parameters λ1, and λ2 at the values 0.03, and 0.02
respectively. Figures 9, 10,11,12, and 13, show the
behavior of those state in the presense of the disease, and
the convergence to the disease steady state
E ∗ = (1037,14.39,260.6,36.39,7.25), where R0 > 1.

Fig. 4: Behaviour of the susceptible individuals∫
σ

0
S(a, t)da over the time when R0 < 1

The distribution of the system’s states with respect to
age and time is illustrated in the figures 14-18. We
consider two distinct cases: the first case corresponds to
λ1(a) = 0.01 and λ2(a) = 0.001 where the basic

Fig. 5: Behaviour of the infected aware of infection∫
σ

0
I1(a, t)da over the time when R0 < 1

Fig. 6: Behaviour of the infected unware of infection∫
σ

0
I2(a, t)da over the time when R0 < 1

reproduction number R0 is less than one ( R0 < 1). The
second case involves higher values of λ1 = 0.03, and
λ2 = 0.02 resulting in R0 > 1. Figure 14 depicts the age
distribution of susceptible individuals for the case
R0 < 1. Here, we observe that the dynamics occur
primarily when t < a, meaning that the behavior of the
system is influenced by individuals whose age a exceeds
the elapsed time t. On the other hand, when examining
the distribution over time, the number of susceptible
individuals remains positive and constant, while the other
states (such as infected or treated individuals) gradually
diminish and eventually vanish. This indicates a clear
convergence to the disease-free steady state when R0 < 1.
These findings are further supported by Figures 15, 16,
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Fig. 7: Behaviour of the infected with AIDS
∫

σ

0
A(a, t)da

over the time when R0 < 1

Fig. 8: Behaviour of thetreaated individuals
∫

σ

0
T (a, t)da

over the time when R0 < 1

17, and 18, which illustrate the temporal evolution of the
system’s states.

In the case where, R0 > 1, Figures 19, 20,21, 22, and
23 show the distribution of susceptible S, Infected I1,
Infected I2, Infected with AIDS A, and Treated T
individuals over time t and age a. These dynamics are
showd when t < a, this condition The condition arises
naturally because, at time t = 0, the population consists of
individuals of all ages a ≥ 0, as time progresses (t > 0),
the age of individuals increases, and the dynamics of the
system are influenced by the interaction between time and
age. The condition t < a ensures that only individuals
who were already present at the start of the simulation
(i.e., those with age a ≥ t) are considered in the

Fig. 9: Behaviour of the susceptible individuals∫
σ

0
S(a, t)da over the time when R0 > 1

Fig. 10: Behaviour of the infected aware of infection∫
σ

0
I1(a, t)da over the time when R0 > 1

dynamics. In the distribution of infected individuals, the
majority are situated between the ages of 10 and 30. This
age range represents the most vulnerable group for the
development of HIV/AIDS, as individuals within this
demographic are more likely to contract the infection or
transmit it to others.

Senario 2 : In this scenario, we demonstrate the
impact of infected individuals who are aware of their
infection to transmit the disease. To illustrate this, we set
the transmission rate λ2 to zero (λ2 = 0), effectively
eliminating the contribution of unaware infected
individuals (I2) to the spread of the disease. The results
are depicted in Figures 24, 25, 26, and 27. From these
figures, we observe that the dynamics of I2 over time
become null, confirming that aware infected individuals
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Fig. 11: Behaviour of the infected unware of infection∫
σ

0
I2(a, t)da over the time when R0 > 1

Fig. 12: Behaviour of the infected with AIDS∫
σ

0
A(a, t)da over the time when R0 > 1

do not contribute to new unware infections when λ2 = 0.
However, we note the continued existence of AIDS cases
over time, which is attributed to the presence of infected
individuals who are aware of their status (I1).
Additionally, the model shows the presence of treated
individuals over time, highlighting the positive impact of
awareness on disease management. When infected
individuals (I1) that aware of their infection, they are
more likely to demand for treatment, thereby reducing
their infectiousness and contributing to the overall control
of the disease.

Senario 3 : Now, we evaluate the effectiveness of
infected individuals who are unaware of their infection
(I2) in transmitting the disease. To achieve this, we set the
transmission rate λ1 to zero (λ1 = 0), effectively

Fig. 13: Behaviour of thetreaated individuals
∫

σ

0
T (a, t)da

over the time when R0 > 1

Fig. 14: The behaviors of susceptible individuals
according to time and age, when R0 < 1

removing the contribution of aware infected individuals
(I1) to the spread of the disease. The dynamics of
HIV/AIDS under this scenario are illustrated in Figures
29, 30, 31, 32, and 33. These figures reveal that the
presence of unaware infected individuals (I2) can lead to
the emergence of aware infected individuals (I1) due to
the transition rate γ , which represents the rate at which
unaware individuals become aware of their infection
[16]-[21].

Over time and across different age groups, we observe
the distribution of both types of infected individuals:
those who are aware (I1) and those who are unaware (I2)
of their infection. Additionally, the model shows the
presence of individuals with AIDS, as well as treated
individuals. The latter group arises because aware
infected individuals (I1) are more likely to demand
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Fig. 15: The behaviors of infected individuals I1 according
to time and age, when R0 < 1

Fig. 16: The behaviors of infected individuals I2 according
to time and age, when R0 < 1

treatment, thereby reducing their infectiousness and
contributing to the control of the disease.

Senario 4 : In this scenario, we increase the treatment
rate to a higher value (η1 = 2) to evaluate its impact on
the dynamics of the HIV/AIDS disease. The results are
illustrated in Figures 34, 35, 36, 37, and 38, which depict
the behavior of the susceptible individuals (S), unaware
infected individuals (I1), aware infected individuals (I2),
individuals with AIDS (A), and treated individuals (T ),
respectively. Compared to Figures 19, 20, 21, 22, and 23,
it is evident that the number of treated individuals
increases significantly when η1 = 2. Furthermore, the
populations of both unaware (I1) and aware (I2) infected
individuals decrease due to the higher transition rate to
treatment.

Fig. 17: The behaviors of infected with AIDS individuals
according to time and age, when R0 < 1

Fig. 18: The behaviors of treated individuals according to
time and age, when R0 < 1

These findings underscore the critical role of
treatment in controlling the spread of HIV/AIDS. By
increasing the treatment rate, more infected individuals
are moved into the treated category, reducing their
infectiousness and preventing further transmission
[22]-[28].

This highlights the importance of awareness
campaigns and early detection programs, as they
encourage infected individuals to demand for treatment
promptly. Such interventions not only reduce the number
of new infections but also improve overall public health
outcomes by curbing the spread of the disease.
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Fig. 19: The behaviors of susceptible individuals
according to time and age, when R0 > 1.

Fig. 20: The behaviors of infected individuals I1 according
to time and age, when R0 > 1.

Fig. 21: The behaviors of infected individuals I2 according
to time and age, when R0 > 1.

Fig. 22: The behaviors of infected with AIDS individuals
according to time and age, when R0 > 1.

Fig. 23: The behaviors of treated individuals according to
time and age, when R0 > 1.

Fig. 24: The behaviors of susceptible individuals in the
absence of infected I2.
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Fig. 25: The behaviors of infected individuals I1in the
absence of infected I2.

Fig. 26: The behaviors of infected individuals I2 in the
absence of infected I2.

Fig. 27: The behaviors of infected with AIDS individuals
in the absence of infected I2.

Fig. 28: The behaviors of treated individuals in the
absence of infected I2.

Fig. 29: The behaviors of susceptible individuals in the
absence of infected I1

Fig. 30: The behaviors of infected individuals I1 in the
absence of infected I1.
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Fig. 31: The behaviors of infected individuals I2 in the
absence of infected I1.

Fig. 32: The behaviors of infected with AIDS individuals
in the absence of infected I1.

Fig. 33: The behaviors of treated individuals in the
absence of infected I1.

Fig. 34: The behaviors of susceptible individuals with
η1 = 2.

Fig. 35: The behaviors of infected individuals I1 with η1 =
2.

Fig. 36: The behaviors of infected individuals I2 with η1 =
2.
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Fig. 37: The behaviors of infected with AIDS individuals
with η1 = 2.

Fig. 38: The behaviors of treated individuals with η1 = 2.

6 Conclusion

In this paper, we proposed a novel age-structured
mathematical model for HIV/AIDS, incorporating two
distinct stages of infection: individuals who are aware of
their infection and those who are unaware. Additionally,
we included a compartment for treated individuals to
account for those undergoing treatment. To demonstrate
the mathematical well-posedness of the model, we
reformulated it as an abstract semi-linear Cauchy problem
on a Banach space and proved the existence and
uniqueness of solutions. Furthermore, we focused on
analyzing the existence and stability of disease steady
states, which are crucial for understanding the dynamics
of diseases with long latent periods. In the numerical
simulations section, we demonstrated the convergence of
state variables to the steady states in two scenarios: when
R0 < 1 (stability of the disease-free steady state) and
when R0 > 1 (stability of the endemic steady state).

Additionally, we investigated the role of individuals
unaware of their infection in spreading HIV and
developing AIDS, with a particular focus on the age
group most affected by the disease (10 to 30 years). We
also examined the impact of treatment in reducing
infection rates and controlling the spread of HIV/AIDS
[16]. Our analysis demonstrates that enhancing treatment
accessibility and promoting awareness are essential
strategies for managing HIV/AIDS. By prioritizing early
detection and timely treatment, the burden of the disease
can be significantly reduced, leading to healthier
communities and better long-term outcomes [17].

References

[1] Magal, P., Ruan, S., et al. *Theory and applications of
abstract semilinear Cauchy problems*, Springer, 2018.

[2] Brezis, H. *Analyse Fonctionnelle*, Masson, 1983.
[3] Webb, G. F. *Theory of nonlinear age-dependent population

dynamics*, CRC Press, 1985.
[4] Waziri, A. S., Massawe, E. S., Makinde, O. D.

”Mathematical modelling of HIV/AIDS dynamics with
treatment and vertical transmission”, *Appl. Math*, vol. 2,
no. 3, pp. 77–89, 2012.

[5] Ozioko, A. L., Nnamani, N. T., Nwosu, C. N., Fadugba, S.
E., Malesela, K., Aja, R. O., Obiora, C. C. ”Quantitative
assessment of targeted testing and antiretroviral therapy
integration in mathematical modeling of HIV/AIDS
dynamics”, *Scientific African*, vol. 25, p. e02291, 2024.

[6] Akpa, O. M., Oyejola, B. A. ”Modeling the Transmission
Dynamics of HIV/AIDS epidemics: an introduction and
a review”, *The Journal of Infection in Developing
Countries*, vol. 4, no. 10, pp. 597–608, 2010.

[7] Obeagu, E. I., Obeagu, G. U. ”Eosinophil Dynamics
in Pregnancy among Women Living with HIV: A
Comprehensive Review”, *Int. J. Curr. Res. Med. Sci*, vol.
10, no. 1, pp. 11–24, 2024.

[8] Tan, W.-Y. *Stochastic modeling of AIDS epidemiology and
HIV pathogenesis*, World Scientific, 2000.

[9] UNAIDS, ”Joint United Nations Programme on
HIV/AIDS”, *Fact sheet 2024: Global HIV statistics
Fact Sheet*, 2024.

[10] Huo, H.-F., Feng, L.-X. ”Global stability for an HIV/AIDS
epidemic model with different latent stages and treatment”,
*Applied Mathematical Modelling*, vol. 37, no. 3, pp.
1480–1489, 2013.

[11] Huo, H.-F., Chen, R., Wang, X.-Y. ”Modelling and stability
of HIV/AIDS epidemic model with treatment”, *Applied
Mathematical Modelling*, vol. 40, no. 13-14, pp. 6550–
6559, 2016.

[12] Huang, J., Kang, H., Lu, M., Ruan, S., Zhuo, W.
”Stability analysis of an age-structured epidemic model
with vaccination and standard incidence rate”, *Nonlinear
Analysis: Real World Applications*, vol. 66, p. 103525,
2022.

[13] Wang, J., Zhang, R., Kuniya, T. ”Mathematical analysis
for an age-structured HIV infection model with saturation
infection rate”, *Electron. J. Differ. Equ*, no. 33, pp. 1–19,
2015.

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1219-1239 (2025) / www.naturalspublishing.com/Journals.asp 1239

[14] Aparicio, J. P., Castillo-Chavez, C. ”Mathematical
modelling of tuberculosis epidemics”, *Mathematical
Biosciences and Engineering: MBE*, vol. 6, no. 2, pp.
209–237, 2009.

[15] Bonyah, E., Dontwi, I., Nyabadza, F., et al. ”An age-
structured model for the spread of Buruli Ulcer: Analysis
and simulation in Ghana”, *British Journal of Mathematics
& Computer Science*, vol. 4, no. 16, pp. 2298–2319, 2014.

[16] Liu, C., Liu, L., Cao, J., and Abdel-Aty, M. (2023).
Intermittent Event-Triggered Optimal Leader-Following
Consensus for Nonlinear Multi-Agent Systems Via
Actor-Critic Algorithm. IEEE Transactions on Neural
Networks and Learning Systems, 34(8), 3992–4006.
doi:10.1109/TNNLS.2021.3122458

[17] Wang, Z., Cao, J., Lu, G., and Abdel-Aty, M. (2020). Fixed-
Time Passification Analysis of Interconnected Memristive
Reaction-Diffusion Neural Networks. IEEE Transactions
on Network Science and Engineering, 7(3), 1814–1824.
doi:10.1109/TNSE.2019.2954463

[18] Wang, Z., Cao, J., Cai, Z., Abdel-Aty, M. ”A novel
Lyapunov theorem on finite/fixed-time stability of
discontinuous impulsive systems”, *Chaos*, vol. 30,
no. 1, pp. 013139, 2020.

[19] Abdel-Aty, M., Moya-Cessa, H. ”Sudden death and long-
lived entanglement of two trapped ions”, *Physics Letters
A*, vol. 369, no. 5, pp. 372–376, 2007.

[20] Abdalla, M. S., Abdel-Aty, M., Obada, A.-S. F. ”Degree of
entanglement for anisotropic coupled oscillators interacting
with a single atom”, *Journal of Optics B*, vol. 4, no. 6, p.
396, 2002.

[21] Abdel-Aty, M. ”General formalism of interaction of a
two-level atom with cavity field in arbitrary forms of
nonlinearities”, *Physica A*, vol. 313, no. 3, pp. 471–487,
2002.

[22] Abdalla, M. S., Obada, A.-S. F., Abdel-Aty, M. ”Von
Neumann entropy and phase distribution of two mode
parametric amplifier interacting with a single atom”,
*Annals of Physics*, vol. 318, no. 2, pp. 266–285, 2005.

[23] Abdel-Aty, M., Abdel-Khalek, S., Obada, A.-S. F.
”Pancharatnam phase of two-mode optical fields with Kerr
nonlinearity”, *Optical Review*, vol. 7, pp. 499–504, 2000.

[24] Obada, A.-S. F., Abdel-Hafez, A. M., Abdelaty, M. ”Phase
properties of a Jaynes-Cummings model with Stark shift and
Kerr medium”, *Eur. Phys. J. D*, vol. 3, pp. 289–294, 1998.

[25] Barakat, E., Abdel-Aty, M., El-Kalla, I. L. ”Hyperchaotic
and quasiperiodic behaviors of a two-photon laser with
multi-intermediate states”, *Chaos, Solitons & Fractals*,
vol. 152, p. 111316, 2021.

[26] Barakat, E., El-Kalla, I. L., Abdel-Aty, M. ”Pancharatnam
phase control of atomic ensembles based on quantum
memory effects in photonic cavities”, *Int. J. Geom.
Methods Mod. Phys.*, vol. 0, no. 0, p. 2550097, [n.d.].

[27] Barakat, E., El-Kalla, I. L., Abdel-Aty, M. ”New prospective
on information entropy using different initial states of the
atom–field interaction”, *Int. J. Mod. Phys. B*, vol. 37, no.
31, p. 2350278, 2023.

[28] Barakat, E., Youssef, A. A.-R., El-Kalla, I. L., Abdel-Aty,
M. ”Teleportation of Qubits in a Kicked Nonlinear Cavity
with Ultra-short Pulses via Quantum Noisy Channels”,
*Arabian J. Sci. Eng.*, vol. 50, no. 9, pp. 6893–6902, 2025.

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Mathematical model 
	Well-posedness of the model 
	Existence of steady states and their stability
	Numerical simulations 
	Conclusion 

