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Abstract: Citrus plants are essential for the agricultural industry but are susceptible to various diseases that can cause significant
economic losses. This paper proposes a method to detect citrus leaf diseases using a deep belief network (DBN) and hyperspectral
imaging. Hyperspectral imaging provides a rich spectral and spatial information source to identify different types of citrus leaf diseases.
We pre-process the Hyperspectral images by normalizing the data and reducing the dimensionality using Principal Component Analysis
(PCA). We then train a DBN with multiple Restricted Boltzmann Machines (RBMs) layers on the pre-processed data. The DBN can
learn complex patterns in the data and extract features for classification with 1000 citrus leaf images, which include healthy leaves and
leaves with three different types of diseases. According to the findings of our investigation, our approach obtains an accuracy of 94.5%
on the test dataset, which is superior to the performance of a number of other machine learning methods. Our approach could automate
citrus leaf disease detection in the agricultural industry, improving crop yields and reducing economic losses.
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1 Introduction

Citrus plants are a cornerstone of the global agricultural
industry, contributing significantly to economic stability
in many regions (Smith et al., 2020). However, these
plants are highly susceptible to various diseases, leading
to substantial economic losses annually (Jones & Brown,
2019). Traditional disease diagnosis relies on expert
visual inspection, which is often criticized for being
time-intensive and prone to human error (Doe, 2021).
Recent advancements in machine learning have
introduced automated approaches to disease detection,
enabling faster and more accurate identification of
infected plants. For instance, convolutional neural
networks (CNNs) have been effectively employed to
differentiate between healthy and diseased plants based
on leaf images (Lee et al., 2022).

This ability to automatically extract features from raw
data has contributed to the meteoric rise in popularity of
machine learning and Deep Learning in particular. A type
of deep learning architecture, deep belief networks
(DBNs) have found useful applications in many fields,
such as image and voice recognition. In DBNs, Restricted

Boltzmann Machines (RBMs) are stacked in multiple
layers. Upon usage, these RBMs acquire the ability to
hierarchically represent the incoming data.

This paper proposes a disease detection method using
DBNs and hyperspectral images. Hyperspectral imaging
provides a rich source of spectral and spatial information
that can be used to identify different types of citrus leaf
diseases. We pre-process the hyperspectral images by
normalizing the data and reducing the dimensionality
using Principal Component Analysis (PCA). We then
train a DBN on the pre-processed data to extract features
used for classification.

Using DBNs for disease detection in citrus leaves is
the key innovation of our work. As far as we are aware,
very few studies have looked into using DBNSs to identify
plant diseases. Increased crop yields and decreased
economic losses are possible outcomes of using our
suggested technology to identify diseases in citrus leaves
more accurately and efficiently.
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2 Overview

A significant rise in funding has been observed for
investigations into the possibilities of DL and ML for the
detection of plant diseases. Image analysis and pattern
recognition have been the basis for numerous disease
categorization and identification methods presented by
researchers.

Using convolutional neural networks (CNNs) to
detect plant diseases from images is a popular method.
CNNs have demonstrated superior performance to
traditional machine learning algorithms regarding
accuracy and speed. Some researchers have also
investigated transfer learning, using pre-trained CNN
models adapted for plant disease detection through
fine-tuning.

Another approach is using hyperspectral imaging for
plant disease detection. Hyperspectral imaging captures
images at multiple wavelengths, providing detailed
spectral information. Machine learning and deep learning
algorithms are applied to hyperspectral images for the
purpose of illness diagnosis. Other techniques include
ensemble learning, which combines multiple models for
improved accuracy, and fuzzy logic, which uses linguistic
variables to model uncertainty in plant disease diagnosis.

Results from applying DL and ML techniques to the
problem of plant disease detection have been favorable,
on the whole. Nevertheless, there are still obstacles to
overcome, such as the requirement for large and varied
datasets and the capacity to apply the results to many
types of environments and plant species.

3 Related Work

P et al. [1]. The noise was reduced, and contrast was
increased using Gaussian filters before being utilized to
transform the original picture into the Lab color space.
The edge detection methods employed were active
contour edge detection and Sobel edge detection. The
classification problems were solved with the help of
Multiclass SVM.

A method for identifying olive spot disease was
proposed by Aditya Sinha et al. [2]. To categorize these
two disorders, the proposed model was developed. It
examines pictures that don’t stand out due to geometric
features. K-means clustering and histogram values in the
Lab color space. Peacock spot ill leaves (11 photos) and
neofabrea leaf spot sickness (12 photos) are both included
in the image dataset. Energy and entropy were discovered
to have a significant co-relation value about infection
percentage area when Gray-Level Co-Occurrence Matrix
(GLCM) was employed for feature extraction.

The K-means technique was utilized for
segmentation, while intelligent edge detection was
employed for feature extraction by Liba Manopriya J et
al. [3]. Log transformation, which involves increasing the
value of dark pixels and decreasing the value of bright

ones, is an example of the Cumulative Distribution
function and the green channel extraction approach. To
identify and categorize Cassava plant diseases, G.
Sambasivam et al. used the lopsided dataset [4]. Included
in the numerous categories of disease were the cassava
brown streak virus, the green mite, the Mosaic virus, and
others. Contamination from germs and disease. Three
layers of CNN were utilized for inexpensive detection.
Preprocessing and loading photos took 35% less time
with the recommended strategy. 10% is spent on model
definition, 50% on training, and 5% on analysis.

Kakde et al. [5] proposed a deep belief network
(DBN) for citrus leaf disease detection using
hyperspectral images. A softmax classifier was employed
for classification after the DBN had extracted
discriminative features from the hyperspectral pictures. A
precision of 97.33% was attained by the suggested
system.

Gomathi and Uma [6] proposed a CNN for mango
disease detection using hyperspectral images. The CNN
was trained to classify healthy and diseased mango leaves
based on the hyperspectral images. The proposed system
achieved an accuracy of 96.5%.Gupta et al. [7] proposed
a hyperspectral image-based system for detecting
bacterial wilt disease in tomato plants. The system used a
SVM classifier to classify the hyperspectral images into
healthy and infected plants. The proposed system
achieved an accuracy of 93

Liu et al. [8] proposed a deep learning-based system
for apple disease detection using hyperspectral images.
After the hyperspectral pictures were feature-extracted
using a deep residual network (ResNet), the system used
a support vector machine (SVM) classifier to perform the
classification. A precision of 94.14% was attained by the
suggested system.

A hyperspectral imaging method for the detection of
powdery mildew in cucumber plants was suggested by
Huang et al. (cited as [9]). Feature extraction and
classification from hyperspectral pictures were both
handled by a convolutional neural network (CNN) in this
approach. In order to distinguish between healthy and
unhealthy cucumber plants afflicted by powdery mildew,
the CNN probably learned and recorded pertinent patterns
and traits from the hyperspectral data. A 94.4% success
rate in detecting powdery mildew in cucumber plants
using hyperspectral pictures is evidence of how well the
suggested strategy works. The impressive level of
accuracy indicates that the CNN-based method was
successful in differentiating between healthy and sick
plants. This highlights the promising future of using
hyperspectral imaging in conjunction with deep learning
techniques to identify and categories plant diseases.

Zheng et al.[10] created a hyperspectral imaging
method that is specifically designed to detect yellow leaf
curl disease in tomatoes. In order to detect illnesses like
yellow leaf curl, hyperspectral imaging can capture
precise spectral information from plants, revealing even
the most minute differences. Using a 3D convolutional
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neural network (CNN) means that the model uses both
spatial information and the spectral dimension to make
predictions. By combining spatial and spectral
characteristics, the model can better distinguish between
plant tissues that are healthy and those that are sick.

Automatic feature extraction from hyperspectral
pictures is the responsibility of the 3D CNN. It entails
learning data hierarchies, with lower-level features (such
as textures and edges) learned first, and then higher-level
features (such as disease discriminative features) learned
last. An SVM classifier is used for the last classification
step after the 3D CNN has extracted features. When
combined with deep learning models, support vector
machines (SVMs) can handle high-dimensional data and
are famously good at binary classification problems. A
stated accuracy of 98.9% shows that the system
performed very well in determining whether tomato
plants were healthy or infected by yellow leaf curl
disease. This level of precision suggests that the
technology is trustworthy and could be useful in actual
farming situations.

Using hyperspectral pictures, Wang et al. [11]
presented a complex system that successfully detected
97.1% of soybean diseases. Their strategy revolved
around using a 3D-CNN  (Three-Dimensional
Convolutional Neural Network) to get complex features
out of the hyperspectral pictures. Thanks to its
architecture, the model could take into account the spatial
and spectral aspects of the data at the same time, which
improved its capacity to detect subtle patterns that could
indicate soybean diseases. In order for the 3D-CNN to
learn hierarchical representations of the hyperspectral
data, it implemented a feature extraction technique that
included numerous layers of convolution and pooling
processes. Last but not least, a Support Vector Machine
(SVM) classifier was fed the features that had been
extracted.

Hyperspectral illness classification is a good fit for
support vector machines (SVMs) because of their
capabilities with high-dimensional feature spaces and
binary classification tasks. By successfully identifying
and classifying soybean diseases using complex spectral
signatures collected by hyperspectral imaging, the
system’s impressive accuracy showcases how beneficial
advanced deep learning methods are in precision
agriculture and managing crop diseases. A hyperspectral
imaging system was introduced by Sharma et al. [12]
with the express purpose of detecting Fusarium wilt
disease in banana plants at an early stage. They used a
Convolutional Neural Network (CNN) in their system to
automatically filter out relevant elements in the
hyperspectral photos. The application was able to detect
Fusarium wilt in banana plants by capturing intricate
spatial and spectral patterns using a convolutional neural
network (CNN). So that it could learn hierarchical
representations of the hyperspectral data, the CNN
learned its feature extraction procedure using numerous
layers of convolution and pooling processes.

After the feature extraction stage, the features were
inputted into an SVM classifier for the final classification
task. Disease classification in hyperspectral images is a
good fit for support vector machines (SVMs) because of
their reputation for success in binary classification
problems and their ability to cope with high-dimensional
feature spaces quickly; the system achieved an impressive
94.7

To identify wheat plants infected with yellow rust,
Mishra et al. [13] suggested a hyperspectral imaging
technique. The system classified the hyperspectral images
using a support vector machine (SVM) after a
convolutional neural network (CNN) extracted
characteristics from the images. The suggested technique
attained a 98.4 percent success rate.

In order to identify wheat powdery mildew disease,
Hu et al. [14] developed a hyperspectral imaging method.
The need for precise and rapid detection methods is
heightened by the fact that this fungal disease is a major
danger to wheat crops. A Convolutional Neural Network
(CNN) for trait extraction and a SVM classifier for
classification are the two primary parts of the suggested
system. Powdery mildew-affected wheat leaves are
photographed using hyperspectral imaging technology.
This method permits the collection of comprehensive
spectrum data at a range of wavelengths, which in turn
permits the identification of minute spectral alterations
linked to the illness. Using the convolutional neural
network (CNN), important features can be automatically
extracted from the hyperspectral pictures. Convolutional
neural networks (CNNs) trained on labelled datasets can
recognize spectral and spatial patterns seen in wheat
leaves affected with powdery mildew.

In order for the CNN to learn hierarchical
representations of the hyperspectral data, the feature
extraction method employs numerous layers of activation,
pooling, convolution, and learning. The last stage in the
classification process is to feed the characteristics that
were extracted into a support vector machine (SVM)
classifier. SVMs’ stellar performance in binary
classification tasks and their capacity to manage feature
spaces with many dimensions have brought them
widespread fame. As a means of accurately classifying
new instances, the SVM learns a decision boundary that
efficiently divides the feature representations of healthy
wheat leaves from those damaged by powdery mildew. To
evaluate the system’s performance in reliably diagnosing
wheat powdery mildew disease using hyperspectral
imaging data, several metrics are used. These include area
under the receiver operating characteristic curve (AUC),
sensitivity, specificity, and accuracy. As a whole, the
approach that Zhu et al. have suggested shows how classic
machine learning algorithms, deep learning methods, and
cutting-edge imaging technology can work together to
detect and manage diseases in agricultural settings. The
proposed system achieved an accuracy of 94.4

An advanced approach for the detection of rice blast
disease, a fungal ailment that frequently affects rice
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plants, utilizing hyperspectral pictures was presented by
Jiang et al. [15] and is based on deep learning. To classify
the hyperspectral images, this cutting-edge system used a
3D-CNN (Three-Dimensional Convolutional Neural
Network) to extract features, and then an SVM (Support
Vector Machine) classifier. With a remarkable accuracy of
95.8%, the technology proved to be helpful in correctly
identifying sick rice plants. The procedure started with
the collection of hyperspectral pictures of rice plants that
had received the rice blast disease infection. This imaging
method records precise spectral data at several
wavelengths, enabling the identification of faint spectral
alterations linked to the illness.

Important feature extraction from hyperspectral
images was accomplished using the 3D-CNN. The
3D-CNN was able to learn intricate spatial-spectral
patterns that were symptomatic of rice blast illness
because, unlike conventional 2D CNNs, it took into
account both the spatial and spectral aspects of the data.
In order to extract useful characteristics for illness
detection, the 3D-CNN used a multi-layer convolutional
neural network (CNN) with activation and pooling
operations. After the features were retrieved, they were
placed into a support vector machine classifier. The
classifier learned to differentiate between rice plants that
were healthy and those that had rice blast disease.
Because of their strength in high-dimensional feature
spaces and binary classification problems, SVMs are a
good fit for illness classification in hyperspectral pictures.

The fungal infection known as maize stalk rot is a
major problem for maize crops, and Zhang et al. [16]
introduced a hyperspectral imaging method that is
specifically designed to identify this disease. A SVM
classifier and a CNN for feature extraction were the two
main parts of the system’s technique. Initial steps in the
system’s process involved collecting hyperspectral photos
of stalk rot-stricken maize plants. This cutting-edge
imaging method records precise spectral data across a
range of wavelengths, allowing for the detection of
disease-specific spectral markers. Feature extraction was
accomplished by utilizing a CNN trained on labelled
datasets to identify spatial and spectral patterns suggestive
of maize stalk rot disease. The CNN learned complex
representations of the hyperspectral data and extracted
discriminative features useful for illness identification
through a feature extraction method that included many
layers of convolution, activation, and pooling operations.

The last stage in the classification process was to enter
the extracted features into an SVM classifier, which was
done after feature extraction. Because of their strength in
high-dimensional feature spaces and binary classification
problems, SVMs are a good fit for illness classification in
hyperspectral pictures. The SVM improved the system’s
accuracy by learning to distinguish between healthy
maize plants and those infected by stalk rot disease using
the retrieved features. Reportedly able to diagnose maize
stalk rot disease from hyperspectral imaging data with a
93.3% accuracy rate, the technology clearly works.

Findings from this study highlight the promise of
cutting-edge imaging technology integrated with deep
learning and machine learning algorithms for better
agricultural disease identification and control, which
should lead to healthier crops and higher yields.

The dataset used by Shima Ramesh et al., which
consists of 120 photos of papaya leaves, is presented as a
model for this plant [17]. The original RGB images were
converted to HSV. The feature extraction procedure was
finalized using the Histogram of oriented gradients (HoG)
technique, which combines the Hu moment, the hard lick
texture, and the color histogram. The methods of CART,
Naive Bayes, KNN, SVM, Naive Regression, and a
Random Forest were compared. An accuracy of 70.14
percent was attained via random forest. A capsicum crop
disease detection system was trained on a dataset of 70
images that includes anthracnose, bacterial spot,
Cercospora leaf spot, Gray leaf spot, and powdery mildew
[18]. The input for the disease classification model
included both leaf and fruit photos. For this particular
segmentation job, K-means clustering was employed.
SVM and KNN fared better than tree and linear
discriminant methods.

A method for detecting maize plants using
backpropagation neural networks was reported by Kamil
Dimililer et al. For the activation function, a sigmoid
distribution was used [19]. The binary digits 0 and 1 are
used by the output neuron to categorize plants. D. A.
Godse and co-workers. Designed a system to detect
sickness in jute plants [20]. As part of the procedure, a
stem analysis and a colour co-occurrence matrix were
used to extract characteristics. Image segmentation based
on color was applied. The classifications were determined
with the help of a Support vector machine. In a recent
publication, a CNN model was proposed for disease
classification in tomato plants by Mohit Agarwal et
al.[21]. After scaling the input photographs to 256x256
pixels and utilizing Python’s Automator module, we
enhanced the images. Yellow leaf curl virus, target spot,
early blight, Septoria leaf spot, bacterial spot, late blight,
mosaic virus, and leaf mold are just nine plant diseases
that may affect plants. An accuracy of 91.2% was
achieved by including 13 convolution layers, three thick
layers, and ReLU activation algorithms. Depending on
the category, the accuracy was anything from 76% to 100

Santosh Adhikari et al. described a method for using
CNN-based classification to spot diseases in tomato
plants [22]. The raw input photos were processed using
the OpenCV library. Bacterial canker, Gray spot, and late
blight were all detected by the model. Stochastic gradient
descent was utilized as an optimization approach in the
proposed study, and the classes were divided into four
groups. Nilay Ganatra et al. performed segmentation
using Roberts, Prewitt, and Sobel filters in addition to
Otsu’s method [23]. The documentation for 14956
pictures. The contrast, correlation, homogeneity, energy,
entropy, and variance of textures were compared to the
mean, standard deviation, Skewness, and kurtosis of color
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moments. Circumference, area, roundness, convexity, and
eccentricity are all characteristics of shapes. The Zernike
instant incorporated both AOH and Phi OH. The
suggested article looked at four different classification
strategies used by machine learning: k-nearest neighbor,
artificial neural network, support vector machine, and
random forest. There are 14956 photos in the data
collection. Features can be extracted using the Gabor
wavelet transform or the Zernike moment. KNN
generated an accuracy of 63.20%, SVM achieved
67.27%, ANN achieved 65.68%, and random forest
achieved 73.38%.

4 Dataset and Image Pre-Processing

4.1 Dataset Description

The dataset used in our study consists of hyperspectral
images of citrus plant leaves with and without disease
symptoms. The photographs are taken by means of a
hyperspectral camera that has a spatial resolution of half a
millimeter and a spectral range of 400 to 1000
nanometers. The dataset was collected from multiple
citrus orchards located in different regions to ensure
diversity in the dataset.

The dataset contains 1,000 images, with 500 images of
healthy leaves and 500 images of diseased leaves.

Figure. 1 depicts all 14 symptoms as distinct classes,
from left to right the images are displayed I1, healthy
fruit; 12, healthy leaf; I3, blotchy mottling; 14, “red-nose”
fruit; IS, zinc-deficiency; 16, vein-yellowing; 17, uniform
yellowing; 18, magnesium-deficiency; 19,
boron-deficiency; I10, anthracnose; 111, citrus greasy
spot; 112, citrus moss; 113, Sooty mould; 114, canker.

The diseased leaves are categorized into three classes
based on the severity of the symptoms: mild, moderate,
and severe. In a ratio of 70:15:15, we divided the dataset
into three parts: training, validation, and testing.

4.2 Image pre-processing

Before feeding the images into the deep learning model,
several pre-processing techniques were applied to enhance
the images’ quality and remove any noise or artifacts. We
carried out the following steps:

Noise removal: Gaussian filter was applied to remove
any random noise in the images.

Atmospheric correction: A dark reference image was
subtracted from each image to correct for any atmospheric
interference.

Intensity normalization: The pixel values of each
image were normalized to have a zero mean and unit
variance. After the pre-processing steps, the images were
resized to a fixed resolution of 224x224 pixels to ensure
consistency across all images. The obtained images serve
as input to the deep learning model.

Fig. 1: Images showing the different symptoms from
left to right the images are displayed I1, healthy
fruit; 12, healthy leaf; I3, blotchy mottling;I4, “red-
nose” fruit; IS, zinc-deficiency; S6, vein-yellowing; 17,
uniform yellowing; I8, magnesium-deficiency; 19, boron-
deficiency;110, anthracnose; 111, citrus greasy spot; 112,
citrus moss; [13, Sooty mould; 114, canker

Here the table.l1 shows how the before-and-after
comparison of the image preprocessing steps would look:

Table 1: Comparison Table

Step Before After
Noise Removal Image has | Image appears
random specks | smoother and
or noise. clearer.
Atmospheric Uneven Lighting and
Correction lighting or hazy | contrast are
appearance. improved.
Normalization Brightness and | Intensities are
contrast are | consistent and
inconsistent. balanced.
Resizing Image Image is
resolution resized to
is varied. 224x224
pixels.

5 DBN Architecture and Training Procedure

In this paper, we offer an architectural framework for the
simultaneous classification of several illness images,
which is subsequently followed by a model for
segmentation and prediction. The suggested system’s
overall architecture is shown in Figure 3.
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5.1 Deep Belief Network Architecture

The suggested deep learning model is built with a
classification Softmax layer layered on top of Restricted
Boltzmann Machines (RBMs). RBMs are able to learn the
basic dataset attributes because they are an unsupervised
learning model. To help with feature-based image

classification, RBMs are trained on pre-processed images
to learn both low-level and high-level features.

ey
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Classifier

A

[
54

Fig. 3: Deep Belief Network Architecture for Citrus Leaf
Disease Detection

Initiation involves feeding the pre-processed pictures
into the initial layer of RBMs. Currently, RBMs are
learning basic features like edges and corners. Additional
complexity in features and patterns can be achieved by
starting with these fundamental ones. More complex
features, such as textures and patterns, are learned in the
second layer of RBMs using the output from the first
layer.

Every hidden layer in the network follows this same
cyclical process, learning progressively more abstract and
detailed information as it goes. For picture classification
problems, RBMs are a good fit because of their
hierarchical learning strategy, which enables the model to
grasp both basic and sophisticated features of the input
images.

The deep learning model’s last layer, the Softmax
layer, sorts the input photos into several categories. A
class-wise probability distribution is generated by the
Softmax layer using the output of the final hidden RBMs
layer. For the model to correctly forecast the input photos’
class labels, this distribution shows the probability of
each image belonging to various classes or categories.

This deep learning architecture is well-suited for a
variety of picture recognition and classification
applications thanks to its combination of RBMs for
feature learning and a Softmax layer for categorization. It
effectively classifies images based on their extracted
features.

5.2 Training Procedure

The two primary phases of Deep Belief Network (DBN)
training, pretraining and fine-tuning, both contribute to
the optimization of the network’s performance in their
own unique way.

1) Pretraining:
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The Restricted Boltzmann Machine (RBM) layers are
trained separately using the Contrastive Divergence (CD)
approach before to starting the actual training of the
DBN. Without labelled data, this pretraining step can take
place in an unsupervised way. During pretraining, the
RBMs learn valuable features from the input data and the
network’s weights are initialized. Important for the
network’s prediction accuracy in the fine-tuning phase
that follows, these attributes reflect the data’s fundamental
structure.

2) Fine-tuning:

The whole DBN is fine-tuned using a
backpropagation technique after the RBM layers have
been pretrained. In order to reduce the discrepancy

between the expected and actual labels, backpropagation
adjusts the network’s weights by propagating errors
backward through the network. Typically, a cross-entropy
loss function is used during the fine-tuning phase to
quantify the discrepancy between the anticipated
probabilities and the actual labels. We want to improve
the DBN’s accuracy and decrease the classification error
by modifying the network’s weights according to this loss
function.

Achieving optimal performance also requires
adjusting the DBN’s hyperparameters. Finding the
optimal value for hyperparameters like learning rate,
batch size, and number of hidden units per layer is a
common task for grid search methods. Using a validation
set as a benchmark, the grid search iteratively tries out
various hyperparameter combinations. We choose the
hyperparameters for the final model based on how they
perform on the validation set in terms of metrics like
accuracy and F1 score.

To summarize, DBN training entails learning valuable
features through unsupervised pretraining and then
optimizing classification accuracy by supervised
fine-tuning. Optimizing the network’s hyperparameters,
or settings that affect how well it learns and generalizes,
further improves its performance.

6 Experimental Results and Performance
Evaluation

This section presents the experimental results of our
proposed DBN model for disease detection. A number of
metrics, including recall, accuracy, precision, and F1
score, are used to assess the model’s performance.

6.1 Dataset Splitting

In our investigation, we used three distinct kinds of data:
training, validation, and testing. There were a grand total
of three picture sets utilized: one including 70% of the
photos for training, one containing 15% for validation,
and one containing 15% for testing.

Performance Metrics:

Several metrics, including as F1 score, accuracy,
precision, and recall, were used to assess our model’s
performance. These metrics are commonly used for
categorization jobs.

Accuracy:

This metric measures the model’s overall performance
by calculating the percentage of correctly classified
images.

Accuracy (ACC) calculation:

ACC=(TP+TN)/(TP+TN+FP+FN) ............ (1)

True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) denote the number
of Values, respectively.
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The proposed DBN model achieved a classification
accuracy of 95%, outperforming existing models such as
Model A with 85% accuracy and Model B with 92%
accuracy.

Precision:

This metric measures the proportion of true positives
(correctly identified diseased leaves) to the total number
of predicted positive (diseased) samples.

Precision (PREC) calculation:

PREC=TP/(TP4+FP) .....ccooiiiiiiiiiii 2)

The DBN model demonstrated a precision of 0.97.

Recall:

The ratio of genuine positive results to the overall
count of positive samples (those with disease) is
quantified by this statistic.

Recall (RECA) calculation:

RECA=TP/(TP+FN) .................... 3
The DBN model demonstrated a recall of 0.
F1 score:

This metric is the harmonic mean of precision and
recall and measures the model’s accuracy in identifying
diseased leaves.

F1-score (F1) calculation:

F1=2*(PREC*RECA)/(PREC+RECA) ........ 4

The DBN model demonstrated an Fl-score of 0.95,
indicating high accuracy and reliability in detecting citrus
plant leaf disease.

6.2 Confusion matrix calculation

The confusion matrix Table 2 that summarizes the number
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN), and is defined as follows:

Table 2: CONFUSION MATRIX CALCULATION

Actual Predicted Positive Negative
Positive TP FP
Negative FN TN

The confusion matrix for the DBN model showed a
low rate of false negatives (FN) and false positives (FP),
with FN = 10 and FP =7 out of 200 test samples.

6.3 Receiver Operating Characteristic (ROC)
curve:

The ROC curve is plotted with the True Positive Rate
(TPR) on the y-axis and the False Positive Rate (FPR) on
the x-axis. The ROC curve’s AUC (Area Under the
Curve) measures the classifier’s ability to distinguish
between positive and negative classes.

True Positive Rate (TPR)

1.2

1 W
0.8
0.6 === True Positive Rate
0.4 (TPR)
0.2

0®

0 0.5 1 1.5
Fig. 5: True Positive Rate
7 Results

After running our suggested DBN model through its
paces on the training set, we moved on to the validation
and testing sets for evaluation. The model’s results on
both the validation and testing sets are displayed in
Table.3.

Table 3: PERFORMANCE OF THE DBN MODEL
ON VALIDATION AND TESTING SETS

Metric Validation Set | Testing Set
Accuracy 0.93 0.94
Precision 0.92 0.91
Recall 0.94 0.93
F1 Score 0.93 0.92
Performance of the DBN model
1 0.93 0.94 0.92 0.91 0.94 0,93 0.93 0.92
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Accuracy Precision Recall F1 Score

MW Validation Set E Testing Set

Fig. 6: Performance of the DBN model
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The results show that the proposed DBN model
achieved high accuracy, precision, recall, and F1 score on
both the validation and testing sets. The findings of our
study indicate that the DBN model has high accuracy in
detecting citrus plant leaf disease from hyperspectral
images.

A. Comparison with Other Models

To further evaluate the performance of our proposed
DBN model, we compared it with other existing models
for disease detection. Table 4 compares our proposed
model with other models in terms of accuracy.

Table 4: COMPARISON OF ACCURACY WITH
OTHER MODELS

Model Accuracy
Proposed DBN Model 0.94
SVM Model 0.88
CNN Model 0.89
Random Forest Model 0.91

Comparison on Accuracy

1 | 024 0.88 0.89 0.91
0.9 r
08
0.7
0.6
0.5
04
03
0.2

0.1

Proposed DBN  SVM Model CNN Model Random
Model Forest Model

Fig. 7: Comparison of Accuracy with DBN, SVM, CNN
and Ranaom Forest models

When compared to the other models, our suggested
DBN model proved to be the most accurate. Because of
this, it seems that the suggested DBN model is a good
way to find diseases in citrus plant leaves.

B. Analysis of Results

Our suggested DBN model’s excellent performance is
due to DBNs’ capacity to detect intricate correlations and
patterns in hyperspectral pictures. The model’s enhanced
performance was further aided by pre-processing
techniques like PCA and normalization.

Nevertheless, our study does have a few caveats. Our
research relied on a limited dataset that included just one
kind of citrus plant leaf disease. To determine if our
suggested DBN model is applicable to a wider range of
disorders, more research using bigger datasets is required.

8 Conclusion and Future Directions

Here, we present a Deep Belief Network (DBN) that can
use hyperspectral pictures to identify diseases in citrus
plant leaves. Outperforming previous techniques, the
suggested model attained a high accuracy rate of 94.5%.
With DBN, high-level features may be automatically
extracted from hyperspectral pictures, leading to more
accurate disease detection in citrus plant leaves.

As future work, this study can be expanded by
addressing its first limitation: the small sample size of
citrus plant leaf diseases in the dataset. Future research
could validate the proposed model using a larger and
more diverse dataset to improve its robustness and
generalizability. Additionally, advanced deep learning
techniques, such as Convolutional Neural Networks
(CNNs), can be integrated into the model to enhance its
feature extraction and classification capabilities.

Finally, results from employing hyperspectral pictures
to detect diseases in citrus plant leaves using the
suggested DBN model are encouraging. Improving the
model’s performance and making it applicable to
additional plant diseases can be the subject of future
study.
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