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Abstract: In this work, a new family of distributions is proposed without adding any new parameters to any known baseline
distribution. This family, the Kavya-Manoharan Dinesh-Umesh-Sanjay (KM-DUS) family, is the mixture of the Kavya-Manoharan
(KM) and the Dinesh-Umesh-Sanjay (DUS) families. A new two-parameter distribution, the KM-DUS- Weibull (KM-DUS-W), is
built on the foundation of the Weibull distribution to model time-to-event data sets. The KM-DUS-W is a more convenient and
computationally tractable alternative to the Weibull distribution and a parsimonious but effective modeling aid for survival and
reliability data. The primary statistical properties including the probability density function, cumulative distribution function, quantile
function, moments, order statistics and entropy are obtained. Parameter estimation is accomplished with numerous classical and
Bayesian estimators. Maximum Likelihood, Least Squares, Weighted Least Squares, Maximum Product Spacing (MPS), Cramér-von
Mises, Anderson-Darling, Right-Tailed Anderson-Darling, Percentile estimation, and Bayesian approaches under Squared Error,
LINEX, and General Entropy loss functions. Amongst these, the non-Bayesian ones always provide the most efficient estimates for
any sample size. Applicability of the KM-DUS-RIW distribution in real life is illustrated through failure times of the 84 Aircraft
Windshield, COVID-19 death rate for Angola between 14/06/2020 and 20/2/2022, carbon fibers breaking stress and 30 observations of
the March precipitation pattern (in inches) in Minneapolis/St Paul. Comparative goodness-of-fit of log-likelihood, AIC, BIC, HQIC,
and Kolmogorov-Smirnov statistics give evidence that KM-DUS-W model is better performing than other alternative models like
Weibull, Gumbel, log-normal, new generalized logistic-x transformed exponential and Burr type XII distributions. These results give
support to the KM-DUS-W distribution as an alternative option for modeling complex lifetime data.
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1 Introduction

One prominent method for generating flexible family of distributions involves using generator functions, as seen in the
Beta-Generated Family introduced by [7] and extended by [8]. The Kumaraswamy distribution has been a particularly
fruitful generator, leading to the Kumaraswamy-G (K-G) family by [17], and the Kumaraswamy-G Poisson family by
[9]. Other Kumaraswamy-based families include the Sine Kumaraswamy-G [10], gamma Kumaraswamy-G [11], new
Kumaraswamy Kumaraswamy [12], Kavya-Manoharan Kumaraswamy by [26], unit exponentiated half logistic power
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series class by [27], Kumaraswamy Poisson-G [13], and generalized inverted Kumaraswamy-G [14]. Beyond these,
authors have developed distributions based on diverse transformations and generators. For example, the logistic-X family
[15], and odd-Perks-G [16] are other examples of general families. Specific applications and transformations have also
been used to develop families such as the Odd log-logistic Poisson-G family [39], the Topp-Leone-G [19], and the
Dinesh-Umesh-Sanjay (DUS) family [20], with the latter being used in the DUS Topp Leone family [77]. Other families,
such as the Gamma-X [33] and Topp-Leone-G [61], use specific distributions as generators, while the Rank
Transmutation Maps (RTM) [32] and Type-I Heavy Tailed (TI-HT) [40] employ unique transformation methods to create
new models. The Generalized Family of Odd-Lindley Distribution was developed by [6], the Chen-G Class of
Distributions by [18], the Type I Half-Logistic Family by [21], and the Sine generalized family of distributions by [76].
[31] introduced the Alpha-log-power transformed-G (ALPT-G), while [36] created the Burr-Hatke-G. The EHL-PGW-G
was developed by [29], the extended cosine-G by [43], and the extended odd Frechet by [38]. [37] proposed the
generalized odd log-logistic-G and [41] the new flexible Generalized Family (NFGF). The odd Lindley-G was a
contribution of [34], the Odd log-logistic Topp-Leone G of [39], and the Power Lindley-G of [35]. The Transmuted-G
(Quadratic) was introduced by [32], the Type I half-logistic exponentiated-G by [30], and the Type II log-logistic by [22],
sine-exponentiated Weibull-H by [23], truncated Muth by [24], odd inverse power generalized Weibull-G by [25], .
Finally, the Weighted cosine-G was developed by [42].

The pursuit of more flexible probability distributions has become a significant driving force in modern statistical
research, as traditional models like the exponential, Weibull, and Rayleigh distributions often prove inadequate for
accurately modeling real-world phenomena characterized by non-monotonic hazard rates, heavy tails, or varying
skewness. To address these limitations, researchers have developed new distribution families by extending or
transforming existing ones, as evidenced by the works of [46], [47], [49], and [50]. One notable recent innovation is the
Kavya-Manoharan (KM) family, introduced by [2], which gained attention for its simple yet effective exponential
transformation of the baseline CDF to reshape tail behavior and improve model fit without adding extra parameters.
Concurrently, the Dinesh-Umesh-Sanjay (DUS) generator, proposed by [20], offers a general framework for creating
new distribution families by embedding a baseline distribution into a new functional form involving the exponential
function, which is particularly effective at modifying baseline hazard functions for applications in survival analysis and
reliability engineering. The KM-DUS family was proposed as a novel generalization approach to overcome the rigid
functional forms and limitations present even in some existing generalized distributions by combining these two
frameworks. This fusion significantly expands the range of shapes that the resulting distributions can capture while
preserving parsimony, thereby enhancing modeling power and adaptability beyond what classical and some generalized
distributions offer. To illustrate this utility, this study focuses on modifying the Weibull (W) distribution [1], which,
despite its inherent flexibility, can still be constrained by its rigid functional form in more complex scenarios. By
embedding the W distribution into the KM-DUS framework, the resulting KM-DUS-W distribution inherits and
amplifies the desirable features of both families—greater flexibility in the hazard function, enhanced adaptability to
various data types, and maintained mathematical simplicity-making it a significant contribution to the literature on
generalized distributions and aligning with the trend toward constructing versatile, analytically tractable models for a
wide variety of datasets [51,52,53,54,55,56,57]. Ultimately, the KM-DUS-W distribution offers both theoretical
richness and practical utility for modeling complex survival, reliability, environmental, and financial data where
traditional models often prove insufficient.

The remaining components of this study are arranged as follows: Section 2 details the construction of the KM-DUS
family of distributions. Following this, Section 3 presents a special case of this family. Section 4 then outlines the
properties, and Section 5 covers the inference methods. The study proceeds with a simulation in Section 6, followed by
the application of the model in Section 7, and concludes with a summary in Section 8.

2 Construction of KM-DUS Family of Distributions

Ref. [2] introduced the Kavya-Manoharan (KM) family of distributions with CDF and PDF respectively given as ;

G(x;ζ ) =
e

e−1

[
1− e−F(x;ζ )

]
; x ∈ ℜ, (1)

and

g(x;ζ ) =
e

e−1
f (x;ζ )e−F(x;ζ ). (2)

[20] proposed a generalized generator of distributions known as the Dinesh-Umesh-Sanjay (DUS) with CDF and PDF
respectively denoted as
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F(x;ζ ) =
eH(x;ζ )−1

e−1
, (3)

and

f (x;ζ ) =
h(x;ζ )eH(x;ζ )

e−1
. (4)

If we substitute equations (1) and (2) into equations (3) and (4), a new generalized family of distributions named Kavya-
Manoharan Dinesh-Umesh-Sanjay (KM-DUS) family is formulated, with CDF and PDF respectively presented as;

G(x;ζ ) =
e

e−1

[
1− e−

1
e−1 (eH(x;ζ )−1)

]
; x > 0, (5)

and

g(x;ζ ) =
e

(e−1)2 h(x;ζ )exp
(

H(x;ζ )− 1
e−1

(
eH(x;ζ )−1

))
. (6)

Notice that there is no additional parameter in equations (5) and (6), hence parsimony is guaranteed.

2.1 Linearization of the KM-DUS Family

To present the CDF and PDF of the KM-DUS family in an infinite compact form, we utilize the power series e−x =
∞

∑
j=0

(−1) j x j

j! , so that

G(x;ζ ) =
e

e−1

1−
∞

∑
j=0

(−1) j
(

1
e−1

) j
(

eH(x;ζ )−1
) j

j!

 .
Since (x−1) j =

j
∑

k=0
(−1)k

( j
k

)
x j−k, then the final compact form for the CDF is

G(x;ζ ) =
e

e−1

[
1−

∞

∑
j=0

j

∑
k=0

(−1) j+k

j!

(
1

e−1

) j( j
k

)
e( j−k)H(x;ζ )

]
.

Similarly, the PDF can be written as

g(x;ζ ) =
e

(e−1)2 h(x;ζ )
∞

∑
i=0

i

∑
h=0

i−h

∑
l=0

(−1)h+l

i!

(
i
h

)(
i−h

l

)(
1

e−1

)i−h

H i(x;ζ )e(i−h−l)H(x;ζ ).

2.2 Generic Quantile Function

Let X ∼ G(ζ ) and 0 < u < 1, the quantile function is obtained by inverting equation (5), so that

Q(u,ζ ) = H−1
{

ln
(

1+(1− e) ln
[

1−
(

1− 1
e

)
u
])}

,

with Q(u,ζ ), generation random samples that assume the KM-DUS based distribution is first done by generating random
samples that follow H(x;ζ ).
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3 Special case of the KM-DUS Family

Classical models such as the Weibull are limited in several ways which include failing to model data with non-standard
hazard patterns, sensitivity in the presence of influential observations, Consider the Weibull (W) distribution constructed
by [1], with CDF and PDF respectively expressed as

H(x;α,β ) = 1− e−βxα

; x ≥ 0, (7)

and

h(x;α,β ) = αβxα−1e−βxα

. (8)

In an attempt to enhance the usability of this Weibull distribution, this study utilizes the proposed KM-DUS family to alter
the functional form of the RIW distribution. This is achieved by substituting equations (7) and (8) into equations (5) and
(6) to obtain the CDF, PDF and Hazard function of the Kavya-Manoharan Dinesh-Umesh-Sanjay Weibull (KM-DUS-W)
distribution given respectively as;

G(x;α,β ) =
e

e−1

[
1− exp

(
− 1

e−1

(
e1−e−βxα

−1
))]

; x > 0, α > 0, β > 0, (9)

and

g(x;α,β ) =
e

(e−1)2 αβxα−1e−βxα

exp
(

1− e−βxα − 1
e−1

(
e1−e−βxα

−1
))

; x > 0, α,β > 0, (10)

and

h(x;α,β ) =
αβxα−1e−βxα

exp
(

1− e−βxα
)

exp
(

1− 1
e−1

(
e1−e−βxα −1

))
−1

. (11)

Remark.The functional form of the Weibull distribution was altered in the KM-DUS-W distribution without introducing
additional parameter(s). This improves the flexibility of the Weibull distribution which is observed in the shapes of the
hazard function in Figure (2).

Figure (1) shows the graph of the PDF. The distribution takes the shape of L, bump, leptokurtic, mesokurtic, platikurtic
and asymmetric. Figure (2) contains the plots of the hazard function with different unique shapes reflecting the versatility
of the distribution.

3.1 Mixture Specification

Theorem 1.Let X ∼ KM-DUS-W (α,β ), with PDF in equation (10), then the mixture representation is given as;

g(x;α,β ) =
αβe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q
β

s+ixα(i+s+1)−1e−qβxα

.

(12)

Proof.To derive the mixture representation of the given function g(x;α,β ), we can express it as a series expansion using
the following identities;

e−x =
∞

∑
i=0

(−1)i xi

i!
; (x− y) j =

j

∑
k=0

(−1)k
(

j
k

)
x j−kyk; and (x−1)k =

k

∑
r=0

(−1)r
(

k
r

)
xk−r.

The rest is trivial.
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Fig. 1: PDF Plots of KM-DUS-W Distribution

4 Properties

A thorough investigation of properties of the KM-DUS-W distribution, including the quantile function, moments and other
related measures, moment-generating function, stress-strength reliability analysis, mean residual life function, distribution
of sth order statistic, and entropy, will be dealt with in this section.

4.1 Moment

The r−th moment is defined as µ
′
ω = EXω =

∞∫
−∞

xω(x;α,β ) dx. Substituting equation (12) for g(x;α,β ), the moment

becomes

µ
′
ω =

αβe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q
β

s+i
∫

∞

0
xω+α(i+s+1)−1e−qβxα

dx.
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Fig. 2: Hazrad Function Plots of KM-DUS-W Distribution

Let u = qβxα =⇒ x =
(

u
qβ

) 1
α

and dx = u
1
α −1

α(qβ )
1
α

du. By change of variable when x = 0; u = 0 and when x = ∞; u = ∞,

so that

µ
′
ω =

βe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q

β
ω
α
+1q

ω
α
+i+s+1

Γ

[
ω

α
+ i+ s+1

]
; for ω = 1,2, · · ·

(13)

The first moment obtained when ω = 1 in equation (13) is the mean of the KM-DUS-W distribution given as;

µ =
βe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q

β
1
α
+1q

1
α
+i+s+1

Γ

[
1
α
+ i+ s+1

]
.

The second, third and fourth moments are important measures required in determining the variance, standard deviation,
skewness and kurtosis are obtained when r = 2,3 and 4 respectively.

Figures (3) represents 3D plots of the Mean, Variance, Skewness and Kurtosis of the proposed KM-DUS-RIW
distribution. Based on the provided three-dimensional plots, we can infer the behavior of the mean, variance, skewness,
and kurtosis of the KM-DUS-RIW distribution as its parameters, α and σ , are varied. The plots collectively demonstrate
the distribution’s considerable flexibility and its ability to model a diverse range of data characteristics. The plot for the
mean (a) shows a clear and consistent relationship with the parameters. As the shape parameter σ increases, the mean of
the distribution also increases, particularly when the other parameter, α , is large. This suggests that the distribution shifts
to the right as σ grows. The variance plot (b) follows a similar trend, showing that the spread of the distribution increases
with larger values of σ . This indicates that the parameters not only shift the location of the distribution but also influence
its dispersion. The plots for skewness (c) and kurtosis (d) reveal a more complex and interesting relationship. The
skewness is consistently positive for all plotted parameter combinations, but it is at its highest for smaller values of α and
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larger values of σ . The surface shows a steep drop-off, indicating a rapid change in skewness as the parameters move
away from this region. A similar behavior is observed with kurtosis, which also exhibits a positive, heavy-tailed
distribution across the parameter space. The plots for both skewness and kurtosis show a unique flat region for high
values of α and low values of σ , after which they steeply rise, suggesting that the distribution becomes highly skewed
and leptokurtic in specific parameter regions. This flexibility in controlling the tail behavior makes the distribution useful
for modeling data with extreme values.
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Fig. 3: Plots of (a) Mean, (b) Variance, (c) Skewness and (d) Kurtosis of KM-DUS-RIW distribution

Table (1) shows the empirical summary statistics—mean (µ), variance (σ2), standard deviation (σ), skewness (Sk),
kurtosis (Ku), and coefficient of variation (CV)—for different combinations of shape parameters (α,β ) and sample sizes
n ∈ {25,50,100,200,500,1000}. As would be expected, larger n stabilizes estimates of µ and reduces variability. Larger
values of α and β would yield larger mean estimates and lower relative dispersion (CV), while the extreme values of
skewness and kurtosis at low n are indicative of large variability and non-normality, particularly for low α values.

4.2 Quantile Function

The u−th quantile function for the KM-DUS-W distribution is derived as the inverse of the CDF in equation (9).

xu =

(
− 1

β
ln
(

1− ln
[

1+(1− e) ln
{

1−
(

1− 1
e

)
u
}])) 1

α

; u ∈ (0,1). (14)
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Table 1: Summary of Basic Statistics

Parameters n µ σ2 σ Sk Ku CV

α = 0.05,β = 0.75

25 0.03318 0.00071 0.02662 2.13429 4.98791 0.80236
50 0.07318 0.03151 0.17750 4.14230 17.48965 2.42543
100 0.03905 0.00107 0.03269 1.60763 2.25682 0.83710
200 0.04096 0.00376 0.06133 6.38540 56.10753 1.49720
500 0.04268 0.00524 0.07236 7.71392 81.25716 1.69566

1000 0.04920 0.02126 0.14580 13.10721 202.11051 2.96376

α = 0.5,β = 0.75

25 0.71474 0.32889 0.57349 2.13434 4.98765 0.80237
50 1.57668 14.62379 3.82411 4.14229 17.48947 2.42541

100 0.84124 0.49593 0.70422 1.60766 2.25680 0.83712
200 0.88251 1.74589 1.32132 6.38551 56.10907 1.49723
500 0.91935 2.43054 1.55902 7.71400 81.25905 1.69578
1000 1.05986 9.86757 3.14127 13.10724 202.11099 2.96385

α = 0.05,β = 1.25

25 0.12246 0.00290 0.05388 1.39762 2.12205 0.43995
50 0.15985 0.03220 0.17944 3.37554 11.54481 1.12251

100 0.13313 0.00418 0.06464 1.06624 0.47825 0.48555
200 0.13057 0.00764 0.08740 3.20392 16.80312 0.66937
500 0.13308 0.00857 0.09260 4.01334 25.02845 0.69577
1000 0.13629 0.01580 0.12570 7.00607 72.74627 0.92233

α = 0.5,β = 1.5

25 0.79741 0.08216 0.28664 1.20704 1.54260 0.35946
50 0.96004 0.66838 0.81754 3.12661 9.94955 0.85157

100 0.85196 0.11656 0.34141 0.93250 0.14918 0.40073
200 0.83190 0.19140 0.43750 2.59530 11.27701 0.52590
500 0.84548 0.20493 0.45269 3.29479 17.21825 0.53542
1000 0.85595 0.32753 0.57230 5.50241 48.03277 0.66861

α = 0.05,β = 1.75

25 0.21942 0.00445 0.06672 1.07014 1.17137 0.30409
50 0.25210 0.02938 0.17141 2.93216 8.79434 0.67994

100 0.23173 0.00625 0.07903 0.83718 -0.05746 0.34105
200 0.22608 0.00962 0.09809 2.21727 8.26887 0.43385
500 0.22934 0.00998 0.09990 2.84354 12.94875 0.43559
1000 0.23090 0.01466 0.12106 4.55886 34.39667 0.52431

α = 0.5,β = 2.0

25 0.83493 0.04845 0.22011 0.96800 0.91908 0.26362
50 0.93126 0.27535 0.52474 2.77772 7.92751 0.56347

100 0.87451 0.06736 0.25954 0.76604 -0.19621 0.29679
200 0.85364 0.09956 0.31553 1.96308 6.44925 0.36964
500 0.86470 0.10096 0.31775 2.53746 10.35448 0.36747
1000 0.86798 0.14044 0.37475 3.93510 26.30485 0.43175

Remark.Simulation of random sample from G(x;α,β ) is done by first simulating random sample Ui ∼ Uniform
(0,1); i = 1,2, · · · ,n. Then the random sample

Xi =
(
− 1

β
ln
(
1− ln

[
1+(1− e) ln

{
1−
(
1− 1

e

)
u
}])) 1

α

; i = 1,2, · · · ,n follow G(x;α,β ).
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4.3 Moment Generating Function

Utilizing equation (12), the moment generating function MX (t) = E
(
etX
)

can easily be obtained as;

MX (t) = E[etX ] =
∫

∞

0
etxg(x;α,β )dx,

which simplifies to

MX (t) =
αβe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q
β

s+i
∫

∞

0
etxxα(i+s+1)−1e−qβxα

dx.

Recall that etx =
∞

∑
p=0

t pxp

p! , so that

MX (t) =
αβe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
p=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!p!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q
β

s+it p
∫

∞

0
etxxα(i+s+1)−1e−qβxα

dx.

Let u = qβxα =⇒ x =
(

u
qβ

) 1
α

and dx = u
1
α −1

α(qβ )
1
α

du, so that

MX (t) =
βe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
p=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!p!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)q
β

s+it p
∞∫

0

(
u

qβ

) 1
α
[p+α(i+s+1)−1] u

1
α
−1e−u

α(qβ )
1
α

du.

After simplification, the final results is

MX (t) =
βe2

e−1

∞

∑
i=0

∞

∑
j=0

∞

∑
s=0

∞

∑
p=0

∞

∑
q=0

j

∑
k=0

k

∑
r=0

(−1)i+ j+k+r+s+q

i! j!s!p!q!

(
j
k

)(
1

e−1

)k(k
r

)
e(k−r)( j− k)s

× (k− r)qt p Γ
[ p

α
+ i+ s+1

]
β

p
α
+1q

p
α
+i+s+1

; t ∈ ℜ.

(15)

4.4 Distribution of k-th Order Statistics

The distribution of the k−th order statistics for a random variable X is mathematically defined thus;

fX(k)(x;α,β ) =
n!

(k−1)!(n− k)!
[G(x;α,β )]k−1 [1−G(x;α,β )]n−k g(x;α,β ),

For a random variable X ∼ KM-DUS-W (α,β ), with G(x;α,β ) and g(x;α,β ) as the CDF and PDF defined in equations
(9) and (10) respectively, the fX(k)(x;α,β ), can be constructed as;

Expanding [G(x;α,β )]k−1, to obtain

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


596 E. I. Obisue et al.: Kavya-Manoharan DUS Family of Distributions...

[G(x;α,β )]k−1 =

(
e

e−1

)k−1 [
1− exp

(
− 1

e−1

(
e1−e−βxα

−1
))]k−1

=

(
e

e−1

)k−1 ∞

∑
i=0

(−1)i
(

k−1
i

)
exp
(
− i

e−1

(
e1−e−βxα

−1
))

; |i| ≤ 1

=

(
e

e−1

)k−1 ∞

∑
i=0

∞

∑
j=0

(−1)i+ j

j!

(
k−1

i

)(
i

e−1

) j (
e1−e−βxα

−1
) j

=

(
e

e−1

)k−1 ∞

∑
i=0

∞

∑
j=0

j

∑
r=0

(−1)i+ j+r

j!

(
k−1

i

)(
j
r

)(
i

e−1

)
e( j−r)

(
1−e−βxα

)
; r ∈ Z

=

(
e

e−1

)k−1 ∞

∑
i=0

∞

∑
j=0

∞

∑
p=0

j

∑
r=0

(−1)i+ j+r+p

j!p!

(
k−1

i

)(
j
r

)(
i

e−1

) j

e j−r
(

1− e−βxα
)p

=

(
1

e−1

)k−1 ∞

∑
i=0

∞

∑
j=0

∞

∑
p=0

∞

∑
q=0

j

∑
r=0

(−1)i+ j+r+p+q

j!p!

(
k−1

i

)(
j
r

)(
p
q

)(
i

e−1

) j

e j+k−r−1e−qβxα︸ ︷︷ ︸
Not Merged

.

Similarly

[1−G(x;α,β )]n−k =

{
1− e

e−1

[
1− exp

(
− 1

e−1

(
e1−e−βxα

−1
))]}n−k

=
∞

∑
d=0

(−1)d
(

n− k
d

)(
e

e−1

)d [
1− exp

(
− 1

e−1

(
e1−e−βxα

−1
))]d

; |d| ≤ 1

=
∞

∑
d=0

∞

∑
g=0

(−1)d+g
(

n− k
d

)(
d
g

)(
e

e−1

)d

exp
(
− g

e−1

(
e1−e−βxα

−1
))

; |g| ≤ 1

=
∞

∑
d=0

∞

∑
g=0

∞

∑
f=0

(−1)d+g+ f

f !

(
n− k

d

)(
d
g

)(
e

e−1

)d( g
e−1

) f (
e1−e−βxα

−1
) f

=
∞

∑
d=0

∞

∑
g=0

∞

∑
f=0

f

∑
h=0

(−1)d+g+ f+h

f !

(
n− k

d

)(
d
g

)(
f
h

)(
e

e−1

)d( g
e−1

) f

e( f−h)
(

1−e−βxα
)
; h ∈ Z

=
∞

∑
d=0

∞

∑
g=0

∞

∑
f=0

∞

∑
l=0

f

∑
h=0

(−1)d+g+ f+h+l

f !l!

(
n− k

d

)(
d
g

)(
f
h

)(
e

e−1

)d( g
e−1

) f

e( f−h)
(

1− e−βxα
)l

=
∞

∑
d=0

∞

∑
g=0

∞

∑
f=0

∞

∑
l=0

∞

∑
m=0

f

∑
h=0

(−1)d+g+ f+h+l+m

f !l!

(
n− k

d

)(
d
g

)(
f
h

)(
l
m

)(
e

e−1

)d

×
(

g
e−1

) f

e( f−h)e−mβxα︸ ︷︷ ︸
Not Merged

; |m| ≤ 1,

and to conflict in the series expand, replace i, j,k,q and r with a,b, t,c and w respectively in equation (13), so that

g(x;α,β ) =
αβe2

e−1

∞

∑
a=0

∞

∑
b=0

∞

∑
s=0

∞

∑
c=0

b

∑
t=0

t

∑
w=0

(−1)a+b+t+w+s+c

a!b!s!c!

(
b
t

)(
1

e−1

)t(t
r

)
e(t−c)(b− t)s

× (t −w)c
β

s+axα(a+s+1)−1e−cβxα

.

Therefore;
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fX(k)(x;α,β ) =
n!

(k−1)!(n− k)!
[G(x;α,β )]k−1 [1−G(x;α,β )]n−k g(x;α,β )

=
n!

(k−1)!(n− k)!
·
(

e
e−1

)k−1 ∞

∑
a=0

∞

∑
b=0

∞

∑
p=0

∞

∑
c=0

b

∑
w=0

p

∑
r=0

(−1)a+b+p+c+w+r

b!p!

(
k−1

a

)(
b
w

)(
p
r

)

×
(

a
e−1

)b

eb+k−w−1e−rβxα︸ ︷︷ ︸
Not Merged

×
∞

∑
d=0

∞

∑
g=0

∞

∑
f=0

∞

∑
l=0

∞

∑
m=0

f

∑
h=0

(−1)d+g+ f+h+l+m

f !l!

(
n− k

d

)(
d
g

)(
f
h

)(
l
m

)

×
(

e
e−1

)d( g
e−1

) f

e f−he−mβxα︸ ︷︷ ︸
Not Merged

× αβe2

e−1

∞

∑
a=0

∞

∑
b=0

∞

∑
s=0

∞

∑
c=0

b

∑
t=0

t

∑
w=0

(−1)a+b+t+w+s+c

a!b!s!c!

(
b
t

)(
1

e−1

)t(t
r

)
× e(t−c)(b− t)s(t −w)c

β
s+axα(a+s+1)−1e−cβxα

.

4.5 Measure of Uncertainty

The Rény entropy is a common measure of information loss or gained [28,63,64]. The Rény entropy of order γ , (γ >
0,γ ̸= 1) for a r.v X with a PDF defined in equation (10) is

Hγ(g) =
1

1− γ
log

∞∫
−∞

g(x;α,β )γ dx

=
1

1− γ
log

α
γ−1

β
γ−1

α

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

j

∑
k=0

(−1)i+ j+k+l

i! j!l!

(
j
k

)
γ i+ je2γ+ j−k

(e−1)2γ+ j

Γ

[
γ − γ+1

α

]
(γ + i+ l)γ− γ+1

α

.
(16)

Proof.Substituting the expression for g(x;α,β ), we get:

Hγ(g) =
1

1− γ
log
[∫

∞

0

(
e

(e−1)2 αβxα−1e−βxα

exp
(

1− e−βxα − 1
e−1

(e1−e−βxα

−1)
))γ

dx
]

=
1

1− γ
log
[

eγ αγ β γ

(e−1)2γ

∫
∞

0
xγ(α−1)e−βγxα

exp
{

γ

(
1− e−βxα − 1

e−1
(e1−e−βxα

−1)
)}

dx
]

=
1

1− γ
log
[

e2γ αγ β γ

(e−1)2γ

∫
∞

0
xγ(α−1)e−βγxα

e−γe−βxα

exp
(
− γ

e−1
e1−e−βxα

)
dx
]
.

Using the following power series identities;

e−γe−βxα

=
∞

∑
i=0

(−1)iγ i

i!
e−iβxα

, exp
(
− γ

e−1
e1−e−βxα

)
=

∞

∑
j=0

(−1) j

j!

(
γ

e−1

) j

e j(1−e−βxα
) and

e− je−βxα

=
∞

∑
l=0

(−1)l jl

l!
e−lβxα

.

and making appropriate substitutions∫
∞

0
xγ(α−1)e−βγxα

e−γe−βxα

exp
(
− γ

e−1
e1−e−βxα

)
dx

=
∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)i+ j+lγ i+ j

i! j!l!(e−1) j e j
∫

∞

0
xγ(α−1)e−β (γ+i+l)xα

j

∑
k=0

(
j
k

)
(−1)ke−kβxα

dx.
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Now, collect all exponents in e−βxα

: ∫
∞

0
xγ(α−1)e−β (γ+i+l+k)xα

dx.

Apply the change of variable u = β (γ + i+ l + k)xα ⇒ x =
(

u
β (γ+i+l+k)

)1/α

, the integral becomes:∫
∞

0
xγ(α−1)e−β (γ+i+l+k)xα

dx =
1
α
[β (γ + i+ l + k)]−

γ(α−1)+1
α Γ

(
γ(α −1)+1

α

)
.

Thus, let s = γ(α−1)+1
α

= γ − γ−1
α

, then:

Hγ(g) =
1

1− γ
log

[
e2γ αγ β γ

(e−1)2γ

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

j

∑
k=0

(−1)i+ j+k+l

i! j!l!

(
j
k

)
γ i+ je2γ+ j−k

(e−1)2γ+ j
1
α
[β (γ + i+ l + k)]−s

Γ (s)

]
.

Extracting constants and simplifying:

Hγ(g) =
1

1− γ
log

[
α

γ−1
β

γ−1
α

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

j

∑
k=0

(−1)i+ j+k+l

i! j!l!

(
j
k

)
γ i+ je2γ+ j−k

(e−1)2γ+ j (γ + i+ l + k)−s
Γ (s)

]
.

Hence, the closed-form of the Rényi entropy is:

Hγ(g) =
1

1− γ
log

α
γ−1

β
γ−1

α

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

j

∑
k=0

(−1)i+ j+k+l

i! j!l!

(
j
k

)
γ i+ je2γ+ j−k

(e−1)2γ+ j

Γ

(
γ − γ−1

α

)
(γ + i+ l + k)γ− γ−1

α

 .

5 Inference

This section focuses on the estimation of parameters for the KM-DUS-W distribution using both non-Bayesian and
Bayesian methods. The purpose of employing multiple approaches is to evaluate their effectiveness in both small and
large sample contexts.

5.1 Maximum Likelihood Estimation

Consider the random sample of observations given as x1,x2, . . . ,xn, which are independent observations drawn from the
KM-DUS-W distribution with parameters α and β unknown. The log-likelihood function [59,60,45] for the distribution
in Equation (10) based on a random sample x1,x2, . . . ,xn is given by:

ℓ(α,β ) = n log
(

e
(e−1)2

)
+n logα +n logβ +(α −1)

n

∑
i=1

logxi

−β

n

∑
i=1

xα
i +

n

∑
i=1

(
1− e−βxα

i − 1
e−1

(
e1−e−βxα

i −1
))

.

(17)

The score functions are:

∂ℓ

∂α
=

n
α
+

n

∑
i=1

logxi

(
1−βxα

i +βxα
i e−βxα

i −
βxα

i
e−1

e1−e−βxα
i e−βxα

i

)
, (18)

∂ℓ

∂β
=

n
β
−

n

∑
i=1

xα
i +

n

∑
i=1

xα
i e−βxα

i − 1
e−1

n

∑
i=1

xα
i e1−e−βxα

i e−βxα
i . (19)

These equations (18) and (19) are solved numerically to obtain the maximum likelihood estimates of α and β .
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5.1.1 Confidence Interval for MLE

Once the MLEs α̂ and β̂ are obtained by numerically solving the score equations (18) and (19), the asymptotic distribution
of the MLEs is approximately: (

α̂

β̂

)
∼ N

((
α

β

)
, I −1(α,β )

)
,

where I (α,β ) is the Fisher Information Matrix (FIM), ([68]) given by

I (α,β ) =−E

[(
∂ 2ℓ
∂α2

∂ 2ℓ
∂α∂β

∂ 2ℓ
∂β∂α

∂ 2ℓ
∂β 2

)]
.

Since the expectations are often analytically intractable, we typically use the observed Fisher information by evaluating
the second derivatives of the log-likelihood at the MLEs:

Î (α̂, β̂ ) =−

(
∂ 2ℓ
∂α2

∂ 2ℓ
∂α∂β

∂ 2ℓ
∂β∂α

∂ 2ℓ
∂β 2

)∣∣∣∣(α=α̂,β=β̂ )

.

The estimated variance-covariance matrix is

V̂ = Î −1(α̂, β̂ ) =

(
Var(α̂) Cov(α̂, β̂ )

Cov(α̂, β̂ ) Var(β̂ )

)
.

We compute the second-order derivatives ∂ 2ℓ
∂α2 , ∂ 2ℓ

∂β 2 , and ∂ 2ℓ
∂α∂β

from equations (17), (18), and (19) as follows.

∂ 2ℓ

∂α2 =− n
α2 +

n

∑
i=1

(lnxi)
2 · xα

i β

(1−βxα
i )e−βxα

i +
e1−βxα

i −e−βxα
i

e−1
(1−βxα

i )−1

 , (20)

∂ 2ℓ

∂β 2 =− n
β 2 +

n

∑
i=1

x2α
i e−βxα

i − 1
e−1

n

∑
i=1

x2α
i e1−βxα

i −e−βxα
i (1−βxα

i ) , (21)

and

∂ 2ℓ

∂α∂β
=

n

∑
i=1

lnxi · xα
i

(1−βxα
i )e

−βxα
i +

e1−βxα
i −e−βxα

i

e−1
(1−βxα

i )−1

 . (22)

This is symmetric with ∂ 2ℓ
∂β∂α

, as expected from Schwarz’s theorem under regularity conditions, see [62]. Then, the
approximate 100(1− γ)% confidence intervals for α and β are:

α̂ ±Zγ/2
√

Var(α̂), β̂ ±Zγ/2

√
Var(β̂ ),

where Zγ/2 is the upper γ/2 quantile of the standard normal distribution.

5.2 Least Squares Estimation (LSE)

The Least Squares Estimation (LSE) method, which was introduced in [48,58] to estimate the parameters of Beta
distribution, provides a basis for parameter estimation for α,β parameters of KM-DUS-W distribution. The method
minimizes the total discrepancy between the observed and expected values ensuring the best fit of the distribution model
to the data.

The expected value and variance of the CDF for the KM-DUS-W distribution can be expressed as follows:

E [G(x j:n|α,β )] =
j

n+1
, V [G(x j:n|α,β )] =

j(n− j+1)
(n+1)2(n+2)

.
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These parameters are estimated by minimizing the following function L(α,β ):

L(α,β ) = arg min
(α,β )

n

∑
j=1

[
G(x j:n|α,β )− j

n+1

]2

The estimates of parameters, α̂LSE and β̂LSE , are determined solving the corresponding system of nonlinear equations
defined as follows:

n

∑
j=1

[
G(x j:n|α,β )− j

n+1

]2

∆1(x j:n|α,β ) = 0, (23)

and
n

∑
j=1

[
G(x j:n|α,β )− j

n+1

]2

∆2(x j:n|α,β ) = 0. (24)

The terms ∆1(x j:n|α,β ) and ∆2(x j:n|α,β ) in equations (18) and (19) can be expressed by supposing z = e1−e−βxα

and

A =
1

e−1
, so that;

∆1(x j:n|α,β ) =
eA

e−1
e−A(z−1)ze−βxα

βxα lnx, (25)

and

∆2(x j:n|α,β ) =
eA

e−1
e−A(z−1)ze−βxα

xα . (26)

The expressions in equations (25) and (26) above are derived by partial differentiation of the CDF of the KM-DUS-W
distribution as given in equation (9) with respect to α and β .

5.3 Weighted Least Squares Estimation (WLSE)

The parameters of the KM-DUS-W distribution, α and β , are estimated by the weighted least squares method [65,66,44].
The estimates α̂WLSE and β̂WLSE are obtained from the minimization of the function W (α,β ) in both α and β :

W (α,β ) = arg min
(α,β )

n

∑
j=1

w j

[
G(x j:n|α,β )− j

n+1

]2

(27)

The weights w j are given by

w j =
(n+1)2 (n+2)

j (n− j+1)

The parameter estimates are found by solving the following set of nonlinear equations:

n

∑
j=1

w j

[
G(x j:n|α,β )− j

n+1

]2

∆1 (x j:n|α,β ) = 0 (28)

n

∑
j=1

w j

[
G(x j:n|α,β )− j

n+1

]2

∆2 (x j:n|α,β ) = 0 (29)

Here, ∆1(x j:n|α,β ) and ∆2(x j:n|α,β ) are defined in Equations (25) and (26), respectively.
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5.4 Maximum Product of Spacing Estimation (MPS)

Maximum product spacing method, introduced in [5], is a method for estimating in addition to the estimation of
maximum likelihood. The method is instead an approximation of Kullback-Leibler information criterion rather than
taking the traditional maximum likelihood path. Under this arrangement, it will assume the data are arranged in
ascending order and go ahead with:

Is (data|α,β ) =

[
n+1

∏
j=1

Dk (x j:n|α,β )

] 1
n+1

(30)

Whence Dk (x j:n|α,β ) is thus defined as follows: G(x j|α,β )−G
(
x j−1|α,β

)
, with j = 1,2,3, . . . ,n .

Likewise, we could maximize the following function with:

N (α,β ) =
1

n+1

n+1

∑
j=1

ln(Dk (x j:n|α,β )) (31)

Differentiate N(α,β ) with respect to α and β to form a nonlinear system of equations: ∂N(α,β )
∂α

= 0, ∂N(α,β )
∂β

= 0;
solving this system results in parameter estimates.

5.5 Cramér-von Mises Estimation (CvM)

The estimates for the parameters α and β of the KM-DUS-W distribution from the Cramér-von Mises [67] are denoted
by α̂CvM and β̂CvM and were found by minimization with respect to α and β of the objective function C(α,β ), given as:

C (α,β ) = arg min
(α,β )

{
1

12n
+

n

∑
j=1

[
G(x j:n|α,β )− 2 j−1

2n

]2
}

(32)

To get the estimates, we solve the following system of non-linear equations:

n

∑
j=1

[
G(x j:n|α,β )− 2 j−1

2n

]
∆1 (x j:n|α,β ) = 0 (33)

n

∑
j=1

[
G(x j:n|α,β )− 2 j−1

2n

]
∆2 (x j:n|α,β ) = 0 (34)

Here, the ∆1(x j:n|α,β ) and ∆2(x j:n|α,β ) functions are defined according to equations (25) and (26).

5.6 Anderson-Darling Estimation (AD)

The first Anderson-Darling estimators for parameters α and β of the KM-DUS-W distribution, α̂AD and β̂AD,
correspondingly, are determined by minimizing the function AD(α,β ), concerning these estimands. The minimization is
done over:

AD(α,β ) = arg min
(α,β )

n

∑
j=1

(2 j−1)
[
ln(G(x j:n|α,β ))+ ln

(
1−G

(
xn+1− j:n|α,β

))]
(35)

From solving the following system of non-linear equations, estimates were made:

n

∑
j=1

(2 j−1)

[
∆1 (x j:n|α,β )

G(x j:n|α,β )
−

∆1
(
xn+1− j:n|α,β

)
1−G

(
xn+1− j:n|α,β

)]= 0 (36)

n

∑
j=1

(2 j−1)

[
∆2 (x j:n|α,β )

G(x j:n|α,β )
−

∆2
(
xn+1− j:n|α,β

)
1−G

(
xn+1− j:n|α,β

)]= 0 (37)

In the equations above, the quantities ∆1 (x j:n|α,β ) and ∆2 (x j:n|α,β ) are defined by the equations appearing in (23)
and (24), respectively.
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5.7 Right-Tailed Anderson-Darling Estimation (RTAD)

The parameter estimates of α̂RTAD and β̂RTAD for α and β corresponding to the KM-DUS-W distribution are determined
by minimizing the function RA(α,β ) with respect to both parameters using the Right-Tailed Anderson-Darling method.

RA(α,β ) = arg min
(α,β )

{
n
2
−2

n

∑
j=1

G(x j:n|α,β )− 1
n

n

∑
j=1

(2 j−1) ln
[
1−G

(
xn+1− j:n|α,β

)]}
(38)

The estimates are derived by solving the following set of non-linear equations.

−2
n

∑
j=1

∆1 (x j:n|α,β )

G(x j:n|α,β )
+

1
n

n

∑
j=1

(2 j−1)

[
∆1
(
xn+1− j:n|α,β

)
1−G

(
xn+1− j:n|α,β

)]= 0 (39)

−2
n

∑
j=1

∆2 (x j:n|α,β )

G(x j:n|α,β )
+

1
n

n

∑
j=1

(2 j−1)

[
∆2
(
xn+1− j:n|α,β

)
1−G

(
xn+1− j:n|α,β

)]= 0 (40)

The above two functions, namely ∆1(x j:n|α,β ) and ∆2(x j:n|α,β ), are separately defined in Equations (23) and (24).

5.8 Percentile Matching Estimation or Percentile Estimation (PE)

Given a sample x1,x2, · · · ,xn of size n ordered such that x1 ≤ x2 ≤ ·· · ≤ xn. Also, given m distinct cumulative probabilities
0 < p1 < p2 < · · · < pm < 1 such that the typical choices for large or moderate n is p j =

j
n+1 , j = 1,2, · · · ,m. For

the proposed KM-DUS-W model, the implicit definition of p-th percentile xp, means it is a function of α and β that is
p j = G(xp,α,β ). From the quantile function in equation (14), the p-th percentile is expressed as

xp =

(
− 1

β
ln
(

1− ln
[

1+(1− e) ln
{

1−
(

1− 1
e

)
p
}])) 1

α

; p ∈ (0,1). (41)

To obtain the optimal function for the PE, we match order statistics to the corresponding order statistics from the sample.
Hence, the PE is minimized by the function

Q(α,β ) =
m

∑
j=1

{
x( j)−

(
− 1

β
ln
(

1− ln
[

1+(1− e) ln
{

1−
(

1− 1
e

)
p j

}])) 1
α

}2

; m ≤ n. (42)

The PE method has undergone stages of development in the literature, see [5] for details. The parameter estimates in
equations (23), (24), (27), (28), (30), (35), (36), (38), (39), (40) and (42) were all acquired through the use of the optim()
function in the statistical programming language R, employing the Newton-Raphson method in order to search for the
maximum likelihood iteratively.

5.9 Bayesian estimation (BE) under different loss functions

This section discusses the Bayesian estimation of the parameters of the KM-DUS-W distribution. Bayesian estimation
links prior knowledge with observed data, employing loss functions such as squared error, LINEX, and generalized
entropy to estimate the parameters. We assume independent gamma priors for the parameters α and β , expressed as:

π1(α) ∝ αs1−1e−k1α , α > 0, s1 > 0, k1 > 0,
π2(β ) ∝ β s2−1e−k2β , β > 0, s2 > 0, k2 > 0

}
(43)

where s j and k j for j = 1,2 are hyperparameters. The joint prior distribution for φ = (α,β ) is given as:

π(φ) ∝ α
s1−1

β
s2−1e−k1α−k2β . (44)

Using observed data X = (x1,x2, . . . ,xn), the posterior distribution is expressed as:

π(φ | X) ∝ π(φ)L(φ), (45)
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where L(φ) is the likelihood function. For the KM-DUS-W distribution, the posterior density becomes:

π(φ | X) ∝
αn−s1−1β n+s2−1

(e−1)2n exp

[
2n−β

n

∑
i=1

xα
i −

n

∑
i=1

(
e−βxα

i − 1
e−1

(
e1−e−βxα

i −1
))] n

∏
i=1

xα−1
i (46)

Bayesian parameter estimates are derived under various loss functions. For the squared error loss (SEL), the Bayes
estimator is given by:

φ̂BE SEL = E[φ | X ] =
∫

φπ(φ | X)dφ . (47)

Alternative loss functions, such as LINEX and generalized entropy loss (GEL), address asymmetric estimation
scenarios. The Bayes estimator under LINEX loss is defined as:

φ̂BE LINEX =− 1
η

log
(∫

e−ηφ
π(φ | X)dφ

)
, (48)

where η ̸= 0 reflects the asymmetry in estimation. For GEL, the Bayes estimator becomes:

φ̂BE GEL =

(∫
φ
−l

π(φ | X)dφ

)−1/l

, (49)

where l ̸= 0 is the asymmetry parameter.
Since these estimators often lack closed-form solutions, numerical methods like Markov chain Monte Carlo (MCMC)

are employed. The MCMC procedure for approximating Bayesian estimates involves the following steps:
1.Initialize the parameters φ (0) and set the number of iterations M.
2.Generate samples φ ( j) from the posterior distribution π(φ | X) using algorithms like the Metropolis-Hastings or Gibbs

sampler.
3.Discard the initial τD samples as the burn-in period to ensure convergence.
4.Use the remaining M− τD samples to compute Bayesian estimates as follows:

φ̂BE SEL =
1

M− τD

M

∑
j=τD+1

φ
( j), (50)

φ̂BE LINEX =− 1
η

log

(
1

M− τD

M

∑
j=τD+1

e−ηφ ( j)

)
, (51)

φ̂BE GEL =

(
1

M− τD

M

∑
j=τD+1

(φ ( j))−l

)−1/l

. (52)

This algorithm enables the computation of Bayesian estimates under SEL, LINEX, and GEL loss functions, providing
robust parameter estimates tailored to specific applications. For further reading, refer to [3] and [4].

5.9.1 Credible Interval for BE

To calculate a 100(1− γ)% credible interval (CI) for φ = (α,β ) based on the three loss functions studied, equation (53)
is used.

φ̂BE SEL ±Zγ/2

√√√√var

{
1

M− τD

M

∑
i=τD

φ (i)

}
,

φ̂BE LINEX ±Zγ/2

√√√√var

{
− 1

η
log

[
1

M− τD

M

∑
i=τD

exp
(
−ηφ (i)

)]}
,

φ̂BE GEL ±Zγ/2

√√√√√var


[

1
M− τD

N

∑
i=τM

(
φ (i)
)−τ

]− 1
τ

,

(53)

where Zγ/2 represents the critical value from the standard normal distribution corresponding to the upper γ/2 percentile
(i.e., for the right-tailed probability).
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6 Simulation

The aim here is to compare the performance of non-Bayesian and Bayesian estimation methods for the KM-DUS-W
distribution parameters in a 1,000-replication study for each sample size (n = 25, 75, 150, 200) using different sets of
initial parameter values. The bias and root mean square error (RMSE) were averaged for each replication to assess the
accuracy and reliability of the proposed estimators. In the Bayesian situation, asymmetry is accounted for using η =−0.5
and η = 0.5 for the LINEX function and l =−0.5 and l = 0.5 for the GEL loss functions. Hence, the LINEX1, LINEX2,
GEL1, and GEL2 respectively. Different scenarios with different sets of initial parameter values were examined, including:

Case I:Table 2 (α = 1.75 and β = 2.75)
Case II:Table 3 (α = 1.5 and β = 2.5)

Case III:Table 4 (α = 1.75 and β = 1.25)
Case IV:Table 5 (α = 1.8 and β = 2.8).

Table 2: Bias and RMSE of the Estimators under Simulation Case I

Class Method Estimator n = 25 n = 75 n = 150 n = 200
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE α̂ 0.09400 0.09733 0.03859 0.02834 0.01221 0.01354 0.01129 0.01050
β̂ 0.24274 0.67622 0.07197 0.14483 0.03874 0.07721 0.02839 0.05173

MPS α̂ 0.11310 0.08253 0.05258 0.02697 0.04137 0.01434 0.03131 0.01088
β̂ 0.16581 0.38172 0.09627 0.12061 0.05945 0.07010 0.04912 0.04823

LS α̂ 0.02064 0.12039 0.00058 0.03904 0.00706 0.01999 0.00399 0.01487
β̂ 0.03854 0.80794 0.00529 0.19698 0.00286 0.10099 0.00375 0.07015

WLS α̂ 0.00160 0.10501 0.01222 0.03245 0.00030 0.01625 0.00325 0.01223
β̂ 0.05741 0.64070 0.02402 0.16415 0.01606 0.08394 0.01487 0.05866

CvM α̂ 0.09008 0.14875 0.03538 0.04234 0.01069 0.02056 0.00929 0.01522
β̂ 0.30112 1.29699 0.08186 0.22668 0.04014 0.10810 0.03152 0.07389

AD α̂ 0.02021 0.09116 0.01366 0.03078 0.00022 0.01554 0.00173 0.01193
β̂ 0.09653 0.55811 0.02723 0.15378 0.01552 0.08103 0.01240 0.05733

RTAD α̂ 0.05313 0.11930 0.02274 0.03529 0.00721 0.01791 0.00336 0.01344
β̂ 0.14006 0.63580 0.03610 0.15098 0.02463 0.08261 0.01322 0.05577

PE α̂ 0.07597 0.09044 0.03566 0.03131 0.03245 0.01681 0.02599 0.01314
β̂ 0.10966 0.42351 0.07098 0.12584 0.04413 0.07432 0.03935 0.05108

Bayesian

SEL α̂ 0.24289 0.14198 0.36574 0.16125 0.41723 0.18815 0.42989 0.19629
β̂ 0.37473 0.61566 0.73934 0.71903 0.90166 0.90782 0.94382 0.96568

LINEX1 α̂ 0.26091 0.15361 0.37405 0.16782 0.42189 0.19218 0.43350 0.19948
β̂ 0.46165 0.76363 0.78947 0.80969 0.93265 0.96934 0.96848 1.01589

LINEX2 α̂ 0.22533 0.13150 0.35751 0.15489 0.41259 0.18419 0.42630 0.19313
β̂ 0.29583 0.50936 0.69143 0.63895 0.87149 0.85022 0.91972 0.91800

GEL1 α̂ 0.23410 0.13737 0.36186 0.15832 0.41509 0.18635 0.42825 0.19485
β̂ 0.34998 0.58782 0.72564 0.69686 0.89340 0.89228 0.93731 0.95293

GEL2 α̂ 0.21655 0.12876 0.35408 0.15258 0.41080 0.18276 0.42495 0.19201
β̂ 0.30121 0.53847 0.69832 0.65406 0.87691 0.86171 0.92429 0.92776

Table 2 gives the simulation results for the bias and root mean square error (RMSE) of the various estimators of the
parameters α and β under the different estimation methods and sample sizes n = 25,75,150, and 200.

Let φ̂ be an estimator of a parameter φ . The bias of φ̂ is:

Bias(φ̂) = E[φ̂ ]−φ ,

while the root mean square error (RMSE) is:

RMSE(φ̂) =
√
E[(φ̂ −φ)2].
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It is observed from the table that for all non-Bayesian estimators (MLE, MPS, LS, WLS, CvM, AD, RTAD, PE), bias
and RMSE decrease with the increasing sample size, in conformity with the asymptotic properties of consistent estimators.
Especially, the least squares (LS) and weighted least squares (WLS) methods possess very low bias and RMSE for α̂ and
β̂ for all sample sizes, indicating high efficiency.

In contrast to this, Bayesian estimators (SEL, LINEX1, LINEX2, GEL1, GEL2) consistently possess greater bias
and RMSE, especially for the parameter β . Among them, LINEX2 and GEL2 estimators possess comparatively less bias
and RMSE compared to SEL and LINEX1, which means these loss functions can provide more stable estimates for the
specified simulation scheme.

Overall, non-Bayesian methods perform better in this simulation example, particularly when n≥ 75. Bayesian methods
exhibit more variability, perhaps due to the influence of prior specification and loss function used.

Table 3: Bias and RMSE of the Estimators under Simulation Case II

Class Method Estimator n = 25 n = 75 n = 150 n = 200
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE α̂ 0.08904 0.08488 0.02757 0.02163 0.01266 0.01051 0.01340 0.00770
β̂ 0.25331 0.72921 0.06993 0.12676 0.03704 0.05722 0.02661 0.03802

MPS α̂ 0.08934 0.06837 0.05057 0.02144 0.03329 0.01084 0.02344 0.00770
β̂ 0.10135 0.38430 0.07234 0.10283 0.04518 0.05119 0.03866 0.03511

LS α̂ 0.00230 0.10325 0.00678 0.02941 0.00444 0.01553 0.00181 0.01150
β̂ 0.11213 1.28118 0.00950 0.15753 0.00806 0.07564 0.00534 0.05427

WLS α̂ 0.01491 0.09121 0.00470 0.02481 0.00362 0.01275 0.00719 0.00936
β̂ 0.12214 0.94073 0.02897 0.13727 0.02171 0.06451 0.01560 0.04493

CvM α̂ 0.10058 0.13218 0.02386 0.03142 0.01075 0.01601 0.01325 0.01189
β̂ 0.35641 2.23673 0.07397 0.18003 0.03948 0.08101 0.02878 0.05715

AD α̂ 0.02689 0.07700 0.00612 0.02337 0.00266 0.01221 0.00568 0.00898
β̂ 0.12907 0.60357 0.03128 0.12823 0.02024 0.06173 0.01299 0.04313

RTAD α̂ 0.05527 0.10459 0.01567 0.02646 0.00654 0.01352 0.01128 0.01014
β̂ 0.16845 0.93568 0.04176 0.13181 0.02326 0.05922 0.01931 0.04271

PE α̂ 0.06448 0.08994 0.03975 0.02778 0.03164 0.01440 0.02071 0.01052
β̂ 0.05574 0.45952 0.05200 0.11359 0.03713 0.05433 0.03012 0.03823

Bayesian

SEL α̂ 0.25087 0.12953 0.33546 0.13353 0.36992 0.14745 0.37807 0.15156
β̂ 0.38597 0.55825 0.65983 0.57374 0.77392 0.67177 0.80284 0.70137

LINEX1 α̂ 0.26501 0.13868 0.34183 0.13813 0.37342 0.15013 0.38076 0.15365
β̂ 0.45658 0.67398 0.69861 0.63581 0.79706 0.71103 0.82106 0.73285

LINEX2 α̂ 0.23705 0.12111 0.32916 0.12906 0.36643 0.14480 0.37539 0.14948
β̂ 0.32102 0.47059 0.62247 0.51786 0.75130 0.63464 0.78494 0.67121

GEL1 α̂ 0.24301 0.12529 0.33203 0.13117 0.36805 0.14605 0.37664 0.15047
β̂ 0.36406 0.53369 0.64806 0.55678 0.76702 0.66064 0.79743 0.69238

GEL2 α̂ 0.22734 0.11730 0.32517 0.12652 0.36432 0.14328 0.37379 0.14829
β̂ 0.32080 0.48949 0.62460 0.52398 0.75325 0.63874 0.78663 0.67462

Table 3 gives the bias and root mean squared error (RMSE) of the estimators α̂ and β̂ for various estimation procedures
under Simulation Case II at varying sample sizes (n = 25,75,150,200). For non-Bayesian estimators, those obtained
through MLE, MPS, LS, WLS, CvM, AD, RTAD, and PE display decreasing bias and RMSE with an increase in the
sample size, indicating consistency. Among these, PE and MLE have relatively small RMSE for large samples. For the
Bayesian estimators (SEL, LINEX1, LINEX2, GEL1, GEL2), the estimators are more biased and larger RMSE than their
non-Bayesian analogs and the performance degrades with growing sample size, particularly for β̂ . LINEX2 and GEL2
loss functions work fairly better among the Bayesian estimators.

Table 4 results show that, for Simulation Case III, the bias and RMSE of the non-Bayesian estimators decrease as
the sample size increases. Among the non-Bayesian techniques, MLE and MPS have low bias and RMSE, particularly in
large sample sizes. Conversely, Bayesian estimators exhibit significantly higher bias and RMSE across all sample sizes,
with LINEX1 and SEL providing the highest corresponding figures for α̂ and β̂ . This indicates that, in the present case,
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Table 4: Bias and RMSE of the Estimators under Simulation Case III

Class Method Estimator n = 25 n = 75 n = 150 n = 200
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE α̂ 0.09611 0.09858 0.03417 0.02777 0.02488 0.01506 0.01329 0.00941
β̂ 0.05367 0.08744 0.01305 0.02171 0.00358 0.01075 0.00286 0.00783

MPS α̂ 0.11105 0.08322 0.05694 0.02724 0.02905 0.01441 0.02979 0.00975
β̂ 0.01375 0.05959 0.01257 0.01882 0.01065 0.00998 0.00844 0.00739

LS α̂ 0.00021 0.13184 0.00163 0.03799 0.00751 0.02076 0.00252 0.01282
β̂ 0.02976 0.13144 0.00500 0.02553 0.00277 0.01188 0.00317 0.00912

WLS α̂ 0.01370 0.11257 0.01091 0.03159 0.01417 0.01747 0.00454 0.01039
β̂ 0.03053 0.11016 0.00721 0.02319 0.00070 0.01116 0.00044 0.00825

CvM α̂ 0.11415 0.16925 0.03782 0.04138 0.02540 0.02185 0.01077 0.01317
β̂ 0.08077 0.18964 0.01900 0.02774 0.00392 0.01229 0.00179 0.00935

AD α̂ 0.02776 0.09094 0.01173 0.02994 0.01373 0.01684 0.00380 0.01023
β̂ 0.03343 0.07923 0.00760 0.02223 0.00059 0.01096 0.00035 0.00819

RTAD α̂ 0.04968 0.11079 0.02110 0.03484 0.01836 0.01840 0.01057 0.01211
β̂ 0.03227 0.08029 0.00674 0.02218 0.00070 0.01092 0.00064 0.00822

PE α̂ 0.08047 0.09188 0.04307 0.03279 0.01744 0.01692 0.02145 0.01170
β̂ 0.00890 0.06306 0.01032 0.01921 0.00957 0.01012 0.00726 0.00750

Bayesian

SEL α̂ 0.39838 0.26410 0.44763 0.23111 0.46193 0.22823 0.46406 0.22731
β̂ 0.13529 0.11488 0.14942 0.04892 0.15350 0.03575 0.15441 0.03277

LINEX1 α̂ 0.42163 0.28713 0.45718 0.24026 0.46692 0.23299 0.46786 0.23093
β̂ 0.14850 0.12274 0.15510 0.05109 0.15653 0.03679 0.15672 0.03354

LINEX2 α̂ 0.37581 0.24314 0.43819 0.22225 0.45698 0.22356 0.46028 0.22374
β̂ 0.12246 0.10788 0.14380 0.04685 0.15049 0.03473 0.15212 0.03200

GEL1 α̂ 0.38790 0.25521 0.44334 0.22717 0.45969 0.22615 0.46236 0.22571
β̂ 0.12640 0.11132 0.14544 0.04760 0.15136 0.03506 0.15279 0.03225

GEL2 α̂ 0.36699 0.23829 0.43474 0.21943 0.45521 0.22200 0.45894 0.22253
β̂ 0.10873 0.10488 0.13750 0.04505 0.14708 0.03371 0.14953 0.03122

non-Bayesian estimators provide more stable and trustworthy estimates compared to Bayesian ones, especially as the
sample size increases.

The simulation in Table 5 shows that, for increasing sample sizes n = 25,75,150,200, the bias and RMSE of the
estimators α̂ and β̂ have the tendency to reduce for all methods. Among non-Bayesian methods, MLE and AD estimators
have relatively low bias and RMSE, especially for large n. The LS and WLS methods provide better estimates for α̂

than β̂ , where the latter is more variable. The CvM method has relatively high RMSE, especially for small n, indicating
inefficiency.

Bayesian estimators are more biased and have greater RMSE than non-Bayesian estimators for all sample sizes.
Specifically, LINEX1 and LINEX2 estimators have the highest RMSE for β̂ when n is small and remain inferior even for
larger n. The GEL-type estimators also perform in like manner, with modest reductions in RMSE for increasing n, yet
remain behind non-Bayesian competitors. SEL method consistently has the highest estimation errors, particularly for β̂ .

Table 6 provides the credible intervals for the Maximum Likelihood Estimator (MLE) and the various Bayesian
Estimators (BE) for four sets of parameters α and β . For each case, the non-Bayesian approach provides intervals based
on the classical MLE, while the Bayesian approach includes estimators based on the squared error loss (SEL), LINEX
loss functions (LINEX1 and LINEX2), and general entropy loss functions (GEL1 and GEL2). It is observed that
Bayesian estimators, particularly under asymmetric loss functions (LINEX and GEL), yield interval bounds that are
different, indicating the influence of the choice of loss function on interval estimation. Bayesian intervals tend to give
narrower bounds for α compared to MLE, while for β , they give wider coverage, depending on the case and the loss
function used.
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Table 5: Bias and RMSE of the Estimators under Simulation Case IV

Class Method Estimator n = 25 n = 75 n = 150 n = 200
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Non-Bayesian

MLE α̂ 0.10414 0.10925 0.03859 0.02916 0.01498 0.01412 0.01178 0.01075
β̂ 0.29404 0.83436 0.09213 0.16721 0.04303 0.07296 0.01925 0.05347

MPS α̂ 0.10986 0.08976 0.05560 0.02821 0.04035 0.01470 0.03237 0.01119
β̂ 0.14032 0.44268 0.08470 0.13325 0.05884 0.06565 0.06088 0.05161

LS α̂ 0.00587 0.13750 0.00982 0.04180 0.00220 0.02027 0.00318 0.01501
β̂ 0.09910 0.98251 0.04766 0.25224 0.01345 0.10284 0.00719 0.07437

WLS α̂ 0.01366 0.12050 0.01815 0.03428 0.00462 0.01667 0.00369 0.01228
β̂ 0.12384 0.84445 0.05779 0.20325 0.02481 0.08395 0.00452 0.06006

CvM α̂ 0.10992 0.17457 0.04728 0.04616 0.01611 0.02103 0.01050 0.01540
β̂ 0.38744 1.67314 0.12949 0.29669 0.05218 0.11100 0.02129 0.07778

AD α̂ 0.03222 0.10421 0.01719 0.03139 0.00428 0.01620 0.00266 0.01199
β̂ 0.14972 0.72080 0.05394 0.18091 0.02423 0.08188 0.00291 0.05938

RTAD α̂ 0.06391 0.12827 0.02759 0.03555 0.00952 0.01746 0.00725 0.01290
β̂ 0.19066 0.77922 0.06587 0.18050 0.02993 0.07982 0.00767 0.05704

PE α̂ 0.07171 0.09929 0.03714 0.03157 0.03091 0.01664 0.02509 0.01241
β̂ 0.08003 0.48833 0.05648 0.14011 0.04347 0.06818 0.04903 0.05233

Bayesian

SEL α̂ 0.23994 0.14394 0.37081 0.16644 0.42601 0.19629 0.43983 0.20553
β̂ 0.37031 0.62576 0.75368 0.74846 0.92614 0.95706 0.97209 1.02372

LINEX1 α̂ 0.25873 0.15601 0.37953 0.17344 0.43091 0.20062 0.44362 0.20896
β̂ 0.46031 0.77932 0.80627 0.84553 0.95885 1.02375 0.99811 1.07834

LINEX2 α̂ 0.22164 0.13309 0.36218 0.15968 0.42114 0.19203 0.43606 0.20214
β̂ 0.28872 0.51614 0.70348 0.66300 0.89434 0.89475 0.94667 0.97194

GEL1 α̂ 0.23098 0.13929 0.36684 0.16341 0.42382 0.19440 0.43815 0.20403
β̂ 0.34506 0.59744 0.73957 0.72519 0.91761 0.94057 0.96536 1.01016

GEL2 α̂ 0.21310 0.13061 0.35888 0.15746 0.41944 0.19065 0.43478 0.20105
β̂ 0.29530 0.54736 0.71146 0.68031 0.90057 0.90814 0.95191 0.98338

Table 6: Credible Interval for MLE and BE

Case Estimator
Non-Bayesian Bayesian

ML SEL LINEX1 LINEX2 GEL1 GEL2
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

I α̂ 1.32797 2.30881 0.98084 1.56334 2.13219 0.56885 1.65330 2.06256 0.40926 1.71108 2.06240 0.35132
β̂ 1.77568 4.15102 2.37535 2.47911 3.90280 1.42370 2.79658 3.83129 1.03471 2.83984 3.76856 0.92872

II α̂ 1.44835 2.55101 1.10267 1.80002 2.44521 0.64519 1.91724 2.38840 0.47116 1.99043 2.39651 0.40609
β̂ 1.90865 4.50718 2.59853 2.70314 4.29905 1.59591 3.15478 4.34976 1.19498 3.16094 4.21943 1.05849

III α̂ 1.59382 2.80101 1.20719 1.82354 2.52653 0.70300 1.98395 2.46296 0.47902 2.01650 2.43137 0.41487
β̂ 0.84586 2.01186 1.16600 1.08317 1.70779 0.62462 1.19975 1.62624 0.42649 1.21834 1.58176 0.36342

IV α̂ 1.55551 2.68555 1.13004 1.86351 2.51974 0.65623 1.96902 2.45166 0.48263 2.03940 2.45609 0.41669
β̂ 1.94348 4.56812 2.62463 2.77710 4.41421 1.63712 3.22145 4.45179 1.23035 3.26094 4.34059 1.07965

7 Applications

The first data set represents the failure times of the 84 Aircraft Windshield contained in [69] and presented in Table (7)
below.

The second data is the COVID-19 death rate for Angola from 14/06/2020 to 20/2/2022. The data is reported in
https://data.worldbank.org/indicator/SH.DYN.MORT and presented in Table (8).

The third dataset is the breaking stress of carbon fibers studied by [71] and reported in Table (9).
The last data set contains 30 observations of the March precipitation pattern (in inches) in Minneapolis/St Paul studied

by [72] and presented in Table (10).
The summary statistics presented in Table 11 offer valuable insights into the characteristics of four distinct real-world

datasets, each exhibiting varying degrees of asymmetry, which is crucial for the proposed Burr III scaled inverse odds
ratio-Rayleigh distribution. For the Aircraft Windshield dataset, with a sample size (n) of 85, the interquartile range (IQR)
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Table 7: Aircraft Windshield

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478 0.557
1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 2.646 3.699 1.124 1.981
2.661 3.779 1.248 2.010 2.688 3.924 1.281 2.038 2.82 3.00 4.035 1.281 2.085
2.890 4.121 1.303 2.089 2.902 4.167 1.432 2.097 2.934 4.240 1.480 2.135 2.962
4.255 1.505 2.154 2.964 4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376
1.615 2.223 3.114 4.449 1.619 2.224 3.117 4.485 1.652 2.229 3.166 4.570 1.652
2.300 3.344 4.602 1.757 2.324 3.376 4.663

Table 8: COVID-19 Mortality Rate

0.0400000 0.0588235 0.0229885 0.1034483 0.0437956 0.0196078 0.0436681 0.0604839
0.0392157 0.0521173 0.0313725 0.0311751 0.0260417 0.0375000 0.0265018 0.0285344
0.0272206 0.0376712 0.0189145 0.0166240 0.0095559 0.0104575 0.0182868 0.0134745
0.0133531 0.0200445 0.0192000 0.0430108 0.0267686 0.0152505 0.0164234 0.0246305
0.0431894 0.0168675 0.0392857 0.0599251 0.0411765 0.0282686 0.0219780 0.0298507
0.0160858 0.0208955 0.0127737 0.0132979 0.0113519 0.0134228 0.0173847 0.0180505
0.0133191 0.0334262 0.0206795 0.0261669 0.0308151 0.0308765 0.0335498 0.0357143
0.0267983 0.0302663 0.0272109 0.0278578 0.0404908 0.0446334 0.0420561 0.0412044
0.0472779 0.0368393 0.0311383 0.0397910 0.0228466 0.0166540 0.0284974 0.0334686
0.0217028 0.0392857 0.0326531 0.0267857 0.0234375 0.0190476 0.0130719 0.0021231
0.0015169 0.0023099 0.0058021 0.0101074 0.0121951 0.0037123 0.0068027 0.0122699
0.0097087

Table 9: Carbon Fibre Stress

3.7 2.74 2.73 2.5 3.6 3.11 3.27 2.87 1.47 3.11 4.42 2.41 3.19 3.22 1.69
3.28 3.09 1.87 3.15 4.9 3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22
3.39 2.81 4.2 3.33 2.55 3.31 3.31 2.85 2.56 3.56 3.15 2.35 2.55 2.59 2.38
2.81 2.77 2.17 2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73 1.59 2.0 1.22 1.12 1.71 2.17 1.17 5.08 2.48 1.18
3.51 2.17 1.69 1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.7 2.03 1.8
1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 2.05 3.65

Table 10: Precipitation Pattern

0.77 1.74 0.81 1.20 1.95 1.2 0.47 1.43 3.37 2.2 3 3.09 1.51 2.1 0.52
1.62 1.31 0.32 0.59 0.81 2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.9 2.05

is 1.510, indicating the spread of the central 50% of the data. This dataset shows a mean of 2.385 and a standard deviation
(SD) of 1.113. Its skewness (Sk) value of 0.08654 suggests it is nearly symmetric, exhibiting only a slight positive skew.
The kurtosis of 2.36543 indicates a platykurtic distribution, meaning its tails are lighter and its peak is flatter than a
normal distribution. In contrast, the COVID-19 Mortality Rate dataset, comprising 89 observations, presents a distinct
asymmetrical pattern. It has a significantly lower mean of 0.02701 and a standard deviation of 0.01567, reflecting a tighter
spread for this particular metric. A notable outlier exists at 0.10345. Crucially, its skewness of 1.44654 demonstrates
strong positive skewness, indicating a longer tail to the right, while a high kurtosis of 7.92605 suggests a leptokurtic
distribution with a sharper peak and heavier tails compared to a normal distribution, making it a prime candidate for
models designed for asymmetric and heavy-tailed data. The Carbon Fibre Stress dataset, the largest with n = 100, records
a mean of 2.6214 and a standard deviation of 1.01389. This dataset includes an outlier at 5.560. Its skewness of 0.36815
indicates a moderate positive skew, suggesting some asymmetry. The kurtosis value of 3.10494 implies it is slightly
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Table 11: Summary Statistics

Statistics Aircraft Windshield COVID-19 Mortality Rate Carbon Fibre Stress Precipitation Pattern

n 85 89 100 30
Q1 1.86600 0.01642 1.84000 0.91500
Q3 3.37600 0.03684 3.22000 2.08750

IQR 1.51000 0.02042 1.38000 1.17250
Outlier - 0.10345 5.56000 4.75000
Mean 2.38500 0.02701 2.62140 1.67500
Var 1.23915 0.00025 1.02796 1.00123
SD 1.11317 0.01567 1.01389 1.00062

Range 4.62300 0.10193 5.17000 4.43000
Sk 0.08654 1.44654 0.36815 1.08668

Kurtosis 2.36543 7.92605 3.10494 4.20688

leptokurtic, possessing slightly heavier tails than a normal distribution. Finally, the Precipitation Pattern dataset, with
n = 30, has a mean of 1.675 and a standard deviation of 1.00062. This dataset also contains an outlier at 4.750. Similar
to the COVID-19 mortality data, it exhibits strong positive skewness, with an Sk of 1.08668, confirming its asymmetric
nature. The kurtosis of 4.20688 further supports a leptokurtic shape, indicating a more pronounced peak and fatter tails.
These varying degrees of skewness and kurtosis across the datasets underscore the need for flexible distributions capable
of accurately capturing such diverse real-world data characteristics.

It is most desirable to compare new distributions to some standard distributions. This, ideally, justifies the creation of
the new distribution when the new outperforms the existing. Based on the above assumptions, we compare the proposed
KM-DUS-W distribution with the parent distribution, namely the Weibull distribution proposed by [1], and Gumbel
distribution by [73], log-normal (Lnorm) distribution by [75], new generalized logistic-x transformed exponential
(NGLXT-E) distribution by [74], and Burr Type XII (BurrXII) distribution by [70].

Table 12: Estimation Accuracy, Goodness of Fit and MLEs

Data Distribution LL AIC CAIC BIC HQIC W A KS P-value MLEShape MLEScale

Aircraft Windshield

KMDUSW -131.280 266.555 266.701 271.440 268.520 0.056 0.571 0.051 0.9788 2.3310(0.2065) 0.0856(0.0230)
Weibull -131.290 266.577 266.723 271.462 268.542 0.058 0.586 0.053 0.9685 2.8681(0.1358) 2.3937(0.2102)
Gumbel -133.150 270.298 270.444 275.183 272.263 0.667 0.661 0.076 0.7114 2.0155(0.1198) 1.0428(0.0833)
Lnorm -155.660 315.318 315.465 320.204 217.283 0.577 3.866 0.155 0.0329 0.7926(0.0742) 0.6836(0.0524)

NGLXT-E -129.070 262.139 262.285 267.024 264.104 0.065 0.536 0.066 0.8485 0.5561(0.0505) 0.2364(0.0106)
BurrXII -171.680 347.361 347.507 352.246 349.326 0.917 5.696 0.276 4.842×10−06 3.1792(0.4489) 0.3503(0.0590)

COVID-19 Mortality Rate

KMDUSW 252.290 -500.577 -500.438 -495.600 -498.571 0.048 0.439 0.066 0.8322 1.7574(0.1411) 4.4388(2.8446)
Weibull 251.940 -499.877 -499.737 -494.899 -497.870 0.053 0.477 0.068 0.8049 0.0303(0.0019) 1.7916(0.1422)
Gumbel 252.620 -501.241 -501.101 -496.264 -499.235 0.047 0.344 0.070 0.7739 0.0201(0.0014) 0.0122(0.0010)
Lnorm 242.420 -480.832 -480.692 -475.855 -478.826 0.318 2.186 0.117 0.1727 -3.8097(0.0760) 0.7167(0.0537)

NGLXT-E 246.600 -489.194 -489.055 -484.217 -487.188 0.106 0.859 0.107 0.2560 0.8179(0.0670) 21.2002(1.3180)
BurrXII 251.960 -499.928 -499.788 -494.950 -497.922 0.053 0.476 0.068 0.8071 1.7935(0.1413) 529.3311(249.1726)

Carbon Fibre Stress

KMDUSW -141.360 286.725 286.848 291.935 288.833 0.060 0.394 0.058 0.8901 2.7360(0.2121) 0.0521(0.0144)
Weibull -141.530 287.059 287.182 292.269 289.167 0.062 0.416 0.061 0.8574 2.9438(0.1111) 2.7928(0.2141)
Gumbel -144.210 292.416 292.540 297.626 294.525 0.184 0.939 0.096 0.3219 2.1328(0.0962) 0.9091(0.0681)
Lnorm -148.420 300.840 300.963 306.050 302.948 0.277 1.483 0.118 0.1254 0.8774(0.0444) 0.4439(0.0314)

NGLXT-E -143.210 290.418 290.542 295.629 292.527 0.075 0.607 0.076 0.6126 0.4956(0.0390) 0.2303(0.0085)
BurrXII -189.480 382.967 383.091 388.177 385.076 0.873 4.902 0.272 7.286×10−07 5.9391(1.2795) 0.1874(0.0438)

Precipitation Pattern

KMDUSW -38.620 81.232 81.677 84.035 82.129 0.021 0.163 0.064 0.9997 1.7676(0.2465) 0.3253(0.0908)
Weibull -38.640 81.287 81.731 84.089 82.183 0.022 0.169 0.069 0.9988 1.8923(0.2020) 1.8090(0.2491)
Gumbel -38.690 81.384 81.828 84.186 82.281 0.017 0.131 0.067 0.9993 1.2353(0.1408) 0.7337(0.1079)
Lnorm -38.480 80.951 81.395 83.753 81.848 0.030 0.198 0.091 0.9641 0.3374(0.1137) 0.6227(0.0804)

NGLXT-E -40.050 84.091 84.541 86.899 84.993 0.051 0.368 0.111 0.8511 0.7770(0.1129) 0.3431(0.0353)
BurrXII -40.260 84.516 84.961 87.318 85.413 0.070 0.430 0.138 0.6182 3.2558(0.6456) 0.5770(0.1372)

Table (12) presents a comparative study of estimation accuracy, goodness-of-fit statistics, and maximum likelihood
estimates (MLEs) for six distributions under comparison—KMDUSW, Weibull, Gumbel, Lognormal (Lnorm), NGLXT-
E, and BurrXII—on four data sets: Aircraft Windshield, COVID-19 Mortality Rate, Carbon Fibre Stress, and Precipitation
Pattern. For every dataset, the log-likelihood (LL), Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (CAIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC) values are
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given, and then the Cramér–von Mises (W), Anderson–Darling (A), and Kolmogorov–Smirnov (KS) statistics along with
their respective p-values. The MLEs of shape and scale parameters with their respective standard errors in parentheses
are given in the last two columns. Statistically, in most data sets, the KMDUSW distribution fares better as reflected by
greater (or lesser) LL values and smaller AIC, BIC, CAIC, and HQIC values compared to all other models, which suggests
that the distribution achieves a superior balance of goodness of fit and model simplicity. For example, from the Aircraft
Windshield data, KMDUSW has the lowest AIC (266.555) and highest p-value (0.9788) for the KS test, which indicates
high accordance with the empirical data. The same is the case with the Carbon Fibre Stress and Precipitation Pattern
datasets, wherein KMDUSW also achieves good GOF indices and KS p-values of more than 0.89 and 0.99, respectively.
BurrXII does not fare well on any of the datasets uniformly, as reflected in its high AIC and BIC values and extremely
low p-values, often below 0.001, showing lack of fit. On the other hand, though Gumbel and Lognormal occasionally give
moderate fit (as in a few KS statistics), their model selection measures overall are worse than for KMDUSW. NGLXT-
E is fine in certain cases but is generally outperformed by KMDUSW in estimation accuracy along with quality of fit.
MLEs under various distributions vary in scale, with the BurrXII distribution yielding exceedingly large scale parameters
and standard errors in certain cases (e.g., COVID-19 Mortality Rate), which indicates instability or overdispersion. The
KMDUSW model, by contrast, has sensibly behaved and relatively small standard errors parameter estimates, further
indicating its stability and suitability for modeling the given datasets.

Aircraft Windshield COVID−19 Mortality Rate Carbon Fibre Precipitation

Fig. 4: Boxplots superimposed on Violin plots

Aircraft Windshield

0 1 2 3 4 5

COVID−19 Mortality Rate

0.00 0.02 0.04 0.06 0.08 0.10

Carbon Fibre

0 1 2 3 4 5 6

Precipitation

0 1 2 3 4 5

Fig. 5: Density plots superimposed on Histogram

Figure (4) is the boxplots superimposed on the violin plots indicating outliers in the data sets except the Aircraft
Windshield data. Figures (5), (6), (7), (9) and (10) represent the density plots superimposed on the histograms, empirical
CDFs superimposed on the KM-DUS-W CDFs, empirical survival functions superimposed on the KM-DUS-W survival
functions, PP and QQ plots. These plots depict the extent of fit of the proposed KM-DUS-W distributions to the data sets.
Figure (8), which is the Total Time on Test (TTT) Plot is a non-parametric plot that is crucial in modeling of survival and
reliability events. For the TTT plots, the observed failure times is ordered as:

t(1) < t(2) < .. . < t(n)
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Fig. 6: Empirical CDF with superimposed KM-DUS-W CDF
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Fig. 7: Empirical S(x) with superimposed KM-DUS-W Survival Function
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Fig. 9: PP plots

The scaled TTT plot is constructed by plotting the points: i
n
,

i
∑
j=1

t( j)+(n− i)t(i)

n
∑
j=1

t( j)

 , for i = 1,2, . . . ,n
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Fig. 10: QQ plots

where i
n represents the proportion of failures, and the vertical axis represents the proportion of the total test time. The

TTT plots for the data sets indicate increasing hazard rates.

8 Conclusion

In this study, a new family of lifetime distributions called the Kavya-Manoharan Dinesh-Umesh-Sanjay (KM-DUS)
family was constructed by compounding the KM and DUS distribution generators without introducing any additional
parameters, thus ensuring model parsimony. A special sub-model of the family, the KM-DUS-Weibull (KMDUSW)
distribution, was derived and its flexibility was demonstrated with analytical forms of its CDF, PDF, and hazard rate
function. The applicability of the new distribution was examined using four real datasets—Aircraft Windshield,
COVID-19 Mortality Rate, Carbon Fibre Stress, and Precipitation Pattern. Descriptive statistics revealed that the datasets
manifested heterogeneous features, including various levels of skewness, kurtosis, and outliers. Comparative
goodness-of-fit analyses based on log-likelihood values and a set of information criteria (AIC, BIC, CAIC, HQIC), as
well as classical GOF statistics (Cramér–von Mises, Anderson–Darling, and Kolmogorov–Smirnov tests), indicated that
the KMDUSW distribution performed better than standard models such as Weibull, Gumbel, Lognormal, BurrXII, and
NGLXT-E for most of the datasets. Notably, KMDUSW achieved the lowest AIC values and highest KS p-values in
datasets like Aircraft Windshield, Carbon Fibre Stress, and Precipitation Pattern, reflecting close conformity to empirical
data. In addition, the KMDUSW model demonstrated estimation stability through reasonable parameter sizes and tiny
standard errors in MLEs, unlike the BurrXII distribution that tended to give inflated estimates. Overall, the KM-DUS
family—and specifically the KMDUSW model—stands out as a robust and flexible addition to statistical modeling of
actual data, with increased fit and interpretability without additional model complexity.
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