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Abstract: Water pollution poses significant challenges to aquatic ecosystems, affecting the survival of various species. This study
formulates a nonlinear mathematical model to examine the interactions among organic pollutants, inorganic pollutants, aquatic plants,
bacteria, dissolved oxygen, and the fish populations. The study incorporated aquatic plants into the ecosystem, which had been
previously overlooked, and considered more interactions than earlier studies. The model identifies and analyzes four equilibrium
points to understand system behavior and stability. Results indicate that inorganic pollutants are strongly linked to the decline of
fish populations due to their toxic effects. Conversely, moderate levels of organic pollutants can stimulate the fish population growth
by supporting bacterial and plant activity; however, excessive organic pollutants lead to dissolved oxygen depletion, threatening
aquatic species. Numerical simulations confirm the local and global stability of the system’s interior equilibrium, providing insights
into pollutant thresholds that sustain aquatic life. These findings underscore the importance of managing both organic and inorganic
pollution to maintain balanced aquatic ecosystems. The results can guide environmental policies on pollutant regulation and biodiversity
conservation.

Keywords: Aquatic species, Dissolved oxygen, Mathematical model, Numerical simulation, Pollutants

1 Introduction

Water pollution, caused by both anthropogenic activities
and natural processes, continues to pose a significant
threat to the rich biodiversity of aquatic ecosystems (1).
Pollutants such as toxic chemicals, excess nutrients,
sediments, invasive species, and pathogens disrupt the
delicate balance of these ecosystems, leading to
population declines among aquatic organisms (2). This
threat affects a wide range of aquatic species, from fish
and amphibians to invertebrates and microorganisms.
Their survival and health depend on their ability to adapt
to shifting water quality conditions (3; 4). For humans,
water pollution has serious health implications,
particularly through the contamination of drinking water
sources and exposure to hazardous substances (5).
Consumption of water containing heavy metals like lead,
mercury, and arsenic can result in neurological disorders,
developmental delays in children, and chronic kidney
diseases (6). Waterborne pathogens—including bacteria,

viruses, and parasites—contribute to gastrointestinal
diseases, cholera, and typhoid fever, disproportionately
affecting communities in regions lacking adequate water
treatment infrastructure (7). Long-term exposure to
industrial contaminants and agricultural runoff, such as
pesticides and nitrates, is associated with increased risks
of cancer and endocrine disruption (5). These effects
underscore the urgent need for stringent water pollution
control strategies to safeguard public health (8). When
organic matter enters a water body, it integrates into the
aquatic food chain (40). Organic pollution can enrich
nutrient availability, fostering microbial growth and
potentially benefiting the ecosystem as a whole (41).
However, excessive organic loading can lead to
eutrophication, hypoxia, and biodiversity loss (42; 43). As
the cumulative discharge of organic waste increases,
dissolved oxygen levels decline, eventually becoming
insufficient to support aquatic life (10). Bacteria and other
microorganisms consume oxygen during decomposition,
further reducing its availability (9). When surface oxygen
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levels fall, anaerobic organisms migrate upward and
degrade waste, producing foul-smelling hydrogen sulfide
and increasing water turbidity (36). This process obstructs
sunlight penetration, limiting photosynthesis and reducing
oxygen and food availability for other species (11). Thus,
organic pollutants pose an indirect but serious threat to
biodiversity by depleting dissolved oxygen (4; 12; 13).

Inorganic substances represent another major class of
water pollutants. Naturally occurring elements such as
fluoride, arsenic, and boron are common in aquatic
systems (14; 15), while industrial waste introduces heavy
metals like mercury, cadmium, chromium, and cyanide
(16). These metals may remain suspended or dissolved in
water, ultimately accumulating in sediments or entering
aquatic food webs through consumption by organisms
(17). Over time, this bioaccumulation results in
metal-related illnesses, threatening aquatic life due to the
toxicity and persistence of these compounds (18).
Consequently, inorganic pollutants directly impair the
growth and survival of aquatic organisms.

Several historical events underscore the devastating
consequences of water pollution. In 1986, an algal bloom
triggered by Gymnodinium breve in the Gulf of Mexico
resulted in the death of 22 million fish (19). Black water
events—marked by darkened waters due to excessive
organic matter and oxygen depletion—occurred in
Australia’s Murray River in 2010 (20; 21) and the
Katherine River in 1987 (22; 23), causing widespread fish
kills. In 2022, severe pollution following flooding in
Tanzania’s Mara River led to darkened waters and
massive aquatic mortality (24). These cases reinforce the
need for proactive pollution control to preserve aquatic
biodiversity.

Mathematical modeling has emerged as a valuable
tool for investigating the impact of pollutants on aquatic
ecosystems. The study by (25) analyzed how organic and
inorganic pollutants affect fish populations but did not
account for the role of aquatic plants in oxygen
production. This represents a significant gap, as aquatic
plants (invasive species) play a crucial role in enhancing
oxygen levels and serving as a food source—an aspect
that is addressed in this study by explicitly incorporating
aquatic plants into the model. Study by (26) studied
oxygen depletion due to algal blooms using a Holling
Type-III functional response but focused primarily on
nutrient-algae dynamics. The model developed by (4)
explored the combined influence of eutrophication and
pollution on oxygen dynamics, demonstrating that
simultaneous stressors significantly deplete oxygen
levels. However, they did not analyze long-term toxic
effects on fish. Research by (27) examined toxicant
effects on biological populations, emphasizing emission
regulation, but lacked consideration of broader ecological
and health impacts. The study of (13) developed a
nutrient-based species model using nonlinear differential
equations but omitted the interaction of pollutants with
ecosystem factors. These studies highlight the need for

more integrated models that include ecological feedbacks
and additional stressors.

This study addresses these limitations by
incorporating aquatic plants as a crucial factor in
regulating oxygen dynamics. By integrating interactions
among pollutants, bacteria, dissolved oxygen, and the fish
population, this study presents a more comprehensive
perspective on the ecological consequences of water
pollution. In doing so, it enhances existing models and
offers practical insights for conservation planning and
pollution management. The urgency of this topic lies not
only in its environmental importance but also in its
implications for public health and livelihoods. By closing
knowledge gaps and refining predictive capabilities, this
research contributes to sustainable ecosystem protection
and effective water resource management.

2 Materials and Methods

2.1 Formulation of the Basic Model

This study implements specific modifications to the
model proposed by (25) to improve the accuracy of the
results. The model is based on the understanding that
pollutants entering a water body typically include both
organic and inorganic substances (28). To describe the
system mathematically, we define several variables: Po
represents the concentration of organic pollutants, and Pi
denotes the concentration of inorganic pollutants.
Additional variables include B for the population density
of bacteria, A for the population density of aquatic plants
(such as algae and water hyacinth), C for the
concentration of dissolved oxygen, and F for the
population density of fish in the water body.

It is assumed that pollutants are discharged into the
water body at rates Q1 and Q2 for inorganic and organic
pollution, respectively. These substances are either
flushed out or naturally degraded, with degradation rates
denoted by µ1 for inorganic pollutants and µ2 for organic
pollutants. Bacteria decompose organic pollutants,
leading to an increase in their population. In contrast, the
uptake of inorganic pollutants by fish adversely affects
their growth. Bacteria die at a natural rate µ6 and undergo
intraspecific competition at a rate λ20. Similarly, aquatic
plants have a natural mortality rate µ3 and experience
intraspecific competition at a rate λ30.

A constant influx of dissolved oxygen, denoted by Λ ,
enters the system either from the atmosphere or through
photosynthesis by aquatic plants. This oxygen supply
diminishes over time at a natural depletion rate µ4.
Additionally, dissolved oxygen aids in the decomposition
of dead bacteria into organic matter at a rate of β02.

According to (29), fish population growth is entirely
dependent on the availability of dissolved oxygen. Fish
are affected in two ways when exposed to pollution:
inorganic pollutants directly suppress growth, while
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organic pollutants reduce oxygen availability, indirectly
impairing growth. Fish experience natural mortality at a
rate µ5, intraspecific competition at a rate λ10, and
pollution-induced mortality from ingestion of inorganic
toxins at a rate θ .

We adopt the Monod-type interaction as employed by
(30) and (4), which describes species growth in response
to nutrient concentration. The cumulative depletion of
organic pollutants Po by bacterial consumption is given by

the expression
β20PoB

β21 +β22Po
. Organic pollutants are also

consumed by fish and aquatic plants at rates
k1PoF

k12 + k11Po

and
β01PoA

β12 +β11Po
, respectively.

Using the same Monod formulation, aquatic plants

benefit from consuming Po at a rate of
λ3β01PoA

β12 +β11Po
, while

bacteria gain at a rate of
λ2β20PoB

β21 +β22Po
. During the

decomposition of organic matter, dissolved oxygen is

depleted at a rate of
β02PoB

β21 +β22Po
. Additionally, fish

benefit nutritionally by consuming Po at a rate of
λ4k1PoF

k12 + k11Po
.

Based on these dynamics, we formulate the model as
a system of nonlinear differential equations, presented in
Eq. (1) below.



dPi

dt
= Q1 −αPiF −µ1Pi

dPo

dt
= Q2 −

β20PoB
β21 +β22Po

− k1PoF
k12 + k11Po

− β01PoA
β12 +β11Po

−µ2Po

dA
dt

= Λ2A+
λ3β01PoA

β12 +β11Po
−µ3A−λ30A2

dB
dt

= Λ3B+
λ2β20PoB

β21 +β22Po
−µ6B−λ20B2

dC
dt

= Λ − β02PoB
β21 +β22Po

− γ1CF − γ2A− γ3B−µ4C

dF
dt

= Λ1F +
λ4k1PoF

k12 + k11Po
+ γ1CF −θPiF −µ5F −λ10F2

(1)
with initial conditions, Pi(0) > 0,Po(0) > 0,B(0) >
0,A(0)> 0,F(0)> 0,C(0)> 0.

2.2 Qualitative Analysis

2.2.1 Boundness of the model

The model system (1) was developed taking into account
the fields of Biology, Environment, Epidemiology, and
Ecology assuming that all the state variables and model
parameters are well–posed for all t ≥ 0. Initially, we
demonstrate that the solutions of the model (1) are
bounded.

Lemma 1.The region of attraction for the model system
(1) is contained in the following set:

Ω =

{
(Pi,Po,A,B,C,F) ∈ R6

+ : 0 ≤ Pi ≤
Q1

µ1
,0 ≤ Po ≤

Q2

µ2
,

0 ≤ A ≤ LA,0 ≤ B ≤ LB,0 ≤C ≤ Λ

µ4
,0 ≤ F ≤ LF

}
,

where

LA =
1

λ30

[
Λ2 −µ3 +

λ3β01Q2

µ2β12 +β11Q2

]
,

LB =
1

λ20

[
Λ3 −µ7 +

λ2β20Q2

µ2β21 +β22Q2

]
,

LF =

[
λ4k1Q2

λ10 (µ2k12 + k11Q2)
+

Λ1µ1 + γ1LCµ1 −µ5µ1

λ10µ1

]
.

Proof.Following (31), we will prove this lemma. From the
first equation of model system (1), we establish that,

dPi

dt
≤ Q1 −µ1Pi, (2)

whose solution is given by

limsup
t→∞

Pi ≤
Q1

µ1
.

Therefore, we have

0 ≤ Pi ≤
Q1

µ1
. (3)

2.3 Positivity of the model solution

For the model system (1) to be ecologically and
mathematically meaningful, we need to prove that all
state variables are non-negative for all t ≥ 0.

Lemma 2.The solutions
(Pi(t),Po(t),A(t),B(t),C(t),F(t)) of model system (1)
with initial conditions
Pi(0) > 0,Po(0) > 0,A(0) > 0,B(0) > 0,C(0) > 0 and
F(0)> 0 are positive for all t ≥ 0.
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Proof.Considering the first equation of model system (1),
we have

dPi

dt
>−(αF +µ1)Pi, (4)

whose solution is given by

Pi(t)> Pi(0)e−(αF+µ1)t .

Likewise, the variables Po(t),A(t),B(t),C(t) and F(t) can
be computed following similar procedure and establish
that Po(t) > 0,B(t) > 0,A(t) > 0,F(t) > 0,C(t) > 0
whenever t ≥ 0. Therefore the solution set
(Pi(t),Po(t),A(t),B(t),C(t),F(t)) ∈ R6

+,∀t ≥ 0.

2.4 Analysis of Equilibrium Points

To understand the long-term behavior of the model
system, we first identify equilibrium solutions and then
examine their stability properties. The equilibrium points
represent steady-state solutions of the formulated model
system, where the growth rates of all dynamical variables
are set to zero.

2.4.1 Possible equilibrium points

The model system (1), has at least four viable equilibrium
points, outlined as follows:

i.E0 = (0,0,0,0,0,0), in this equilibrium point we
assumes water have no pollutions, no aquatic plants,
no bacteria, no oxygen and no fish.

ii.E1 =

(
Q1

µ1
,

Q2

µ2
,0,0,

Λ

µ4
,0
)

, expresses the absence of

aquatic plants, bacteria and fish in the system.
iii.E2 = (0,0,A2,B2,C2,F2), expresses the absence of

pollutant materials in the water body.
iv.E∗ = (P∗

i ,P
∗
o ,A

∗,B∗,C∗,F∗), expresses the
co-existence of all the species in the system.

While the existence of E0 and E1 is trivial, and occur with
no conditions; the equilibria E2 and E∗ are nontrivial and
may require some established conditions for their
existence.

2.4.2 Existance Pollutants Free Equilibrium Point (E2)

The pollutant-free equilibrium point E2 is obtained by
solving the following reduced system:

(Λ2 −µ3 −λ30A2)A2 = 0
(Λ3 −µ6 −λ20B2)B2 = 0
Λ − γ1C2F2 − γ2A2 − γ3B2 −µ4C2 = 0
(Λ1 + γ1C2 −µ5 −λ10F2)F2 = 0

(5)

The first two equations yield the expressions

A2 =
Λ2 −µ3

λ30
and B2 =

Λ3 −µ6

λ20
, provided A2,B2 ̸= 0.

From the fourth equation, when F2 ̸= 0, we obtain:

F2 =
(Λ1 −µ5)+ γ1C2

λ10
≜ f1(C2) (6)

Substituting A2, B2, and f1(C2) into the third equation
of system (5), we define the function f2(C2) as:

f2(C2) = Λ − γ1C2 f1(C2)− γ2

(
Λ2 −µ3

λ30

)
− γ3

(
Λ3 −µ6

λ20

)
−µ4C2 = 0

(7)

The following observations are made:

i. f2(0) = Λ − γ2

(
Λ2 −µ3

λ30

)
− γ3

(
Λ3 −µ6

λ20

)
> 0 if

0 < γ2

(
Λ2 −µ3

λ30

)
+ γ3

(
Λ3 −µ6

λ20

)
< Λ

ii. f2

(
Λ

µ4

)
< 0

iii. f ′2(C2) =−γ1 f1(C2)− γ1C2 f ′1(C2)−µ4 < 0

These considerations suggest that f2(C2) admits a

unique positive root in the interval 0 < C2 <
Λ

µ4
. Hence,

the equilibrium point

E2 = (0,0,A2,B2,C2,F2)

exists under the following conditions:


Λ2 −µ3 > 0
Λ3 −µ6 > 0
Λ1 −µ5 > 0

0 < γ2

(
Λ2 −µ3

λ30

)
+ γ3

(
Λ3 −µ6

λ20

)
< Λ

(8)
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2.4.3 Existence of Interior Equilibrium Point (E∗)

The interior critical point E∗ is obtained by solving the
following simultaneous equations:

0 = Q1 −αP∗
i F∗−µ1P∗

i

0 = Q2 −
β20P∗

o B∗

β21 +β22P∗
o
− k1P∗

o F∗

k12 + k11P∗
o

− β01P∗
o A∗

β12 +β11P∗
o
−µ2P∗

o

0 = Λ2A∗+
λ3β01P∗

o A∗

β12 +β11P∗
o
−µ3A∗−λ30A∗2

0 = Λ3B∗+
λ2β20P∗

o B∗

β21 +β22P∗
o
−µ6B∗−λ20B∗2

0 = Λ − β02P∗
o B∗

β21 +β22P∗
o
− γ1C∗F∗− γ2A∗− γ3B∗

− µ4C∗

0 = Λ1F∗+
λ4k1P∗

o F∗

k12 + k11P∗
o
+ γ1C∗F∗−θP∗

i F∗

− µ5F∗−λ10F∗2

(9)

when all the variables are positive. From the first equation,
we establish P∗

i as a function of F∗ such that,

P∗
i =

Q1

αF∗+µ1
= f3(F∗) (10)

A∗ =

(
Λ2 −µ3

λ30
− λ3β01P∗

o

λ30 (β12 +β11P∗
o )

)
= f4(P∗

o ), (11)

B∗ =

(
Λ3 −µ6

λ20
− λ3β02P∗

o

λ20 (β21 +β22P∗
o )

)
= f5(P∗

o ), (12)

C∗ =
1

γ1F∗−µ4

(
Λ − β02P∗

o f5(P∗
o )

β21 +β22P∗
o
− γ2 f4(P∗

o )−

γ3 f5(P∗
o )

)
= f6(P∗

o ,F
∗). (13)

After proper substitution the isoclines 14 and 15 are
established.

Q2 −
β20P∗

o f5(P∗
o )

β21 +β22P∗
o
− k1P∗

o F∗

k12 + k11P∗
o
− β01P∗

o f4(P∗
o )

β12 +β11P∗
o

−µ2P∗
o = f7(P∗

o ,F
∗). (14)

(Λ1 −µ5)+
λ4k1P∗

o

k12 + k11P∗
o
+ γ1 f6(P∗

o ,F
∗)

−θ f3(F∗)−λ10F∗ = f8(P∗
o ,F

∗). (15)

From the isocline (14) we infer the following:

1.When F∗ = 0, we have f7(P∗
o ,0)= g1(P∗

o ) (say), where

Q2 −
β20P∗

o f5(P∗
o )

β21 +β22P∗
o
− β01P∗

o f4(P∗
o )

β12 +β11P∗
o
−µ2P∗

o = g1(P∗
o )

(16)
(a)When P∗

o = 0, we have g1(0) = Q2 > 0.

(b)When P∗
o =

Q2

µ2
, we have

g1

(
Q2

µ2

)
= −

[
β20

(
Q2

µ2

)
f5

(
Q2

µ2

)
β21 +β22

(
Q2

µ2

)

+

β01

(
Q2

µ2

)
f4

(
Q2

µ2

)
β12 +β11

(
Q2

µ2

) ]
< 0.

(c)After performing the necessary computations and
simplifications, it can be demonstrated that
g′1(P

∗
o ) < 0 provided that inequality (17) is

satisfied:

β20P∗
o f4(P∗

o )β22

(β21 +β22P∗
o )

2 +
β01P∗

o f3(P∗
o )β11

(β12 +β11P∗
o )

2

<
β20 f4(P∗

o )+β20P∗
o f ′4(P

∗
o )

β21 +β22P∗
o

+
β01 f3(P∗

o )+β01P∗
o f ′3(P

∗
o )

β12 +β11P∗
o

+µ2.

(17)

The relationships established in (a)–(c) above confirm
that equation (16) has a unique positive solution with

0 < P∗
o <

Q2

µ2
.

2.When F∗ → ∞, we find that
(

dP∗
o

dF∗

)
1
< 0.

From the isocline (15) the following results are
established

1.When F∗ = 0, gives f3(P∗
o ,0) = g2(P∗

0 ) (say).

(Λ1−µ5)+
λ4k1P∗

o

k12n+ k11P∗
o
+γ1 f6(P∗

o )−
θQ1

µ1
= g2(P∗

o ).

(18)
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(a)When P∗
o = 0, gives g2(0) < 0, provided that

inequality (19) holds

(Λ1 −µ5)+ γ1 f6(0)<
θQ1

µ1
. (19)

(b)When P∗
o =

Q2

µ2
, gives g2

(
Q2

µ2

)
> 0 provided that

inequality (20) holds.

(Λ1−µ5)+

λ4k1

(
Q2

µ2

)
k12 + k11

(
Q2

µ2

)+γ1 f6

(
Q2

µ2

)
>

θQ1

µ1
.

(20)
(c)The derivative of g2(P∗

o ) with respect to P∗
o gives,

g
′
2(P

∗
o ) =

λ4k11k12

(k11P∗
o + k12)

2 + γ1 f
′
6(P

∗
o )> 0

.
Considerations (a-c), we noted that (15) has a positive

unique solution in 0 < P∗
o <

Q2

µ2
.

2.
(

dP∗
o

dF∗

)
2
> 0.

Therefore, the values of P∗
o and F∗ are unique (see Fig. 1)

in the regions 0 < Po < LPo and 0 < F < LF , respectively,

provided
(

dPo

dF

)
1
< 0 and

(
dPo

dF

)
2
> 0.

Once the values of P∗
o and F∗ are determined, the values

of P∗
i ,A

∗,B∗ and C∗ can be evaluated from equations (10),
(11), (12) and (13), respectively.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

P
o

0

2

4

6

8

10

12

14

16

F

(P*
o
,F*)

Fig. 1: The plot to illustrates the intersection of isoclines
(14) and (15), highlighting an existence of (P∗

o ,F
∗) within

the interior of the first quadrant.

2.5 Stability Analysis

2.5.1 Stability Analysis of Equilibrium Points

The stability of the equilibrium points E0, E1, and E2 of
the model system (1) is analyzed using the eigenvalue
method, whereas the stability of the interior equilibrium
point E∗ is evaluated using an appropriate Lyapunov
candidate function. The general Jacobian matrix J of the
model system (1) is given by:

J =


J11 0 0 0 0 J16
0 J22 J23 J24 0 J26
0 J32 J33 0 0 0
0 J42 0 J44 0 0
0 J52 J53 J54 J55 J56

J61 J62 0 0 J65 J66

 (21)

where the entries are defined as:
J11 =−αF −µ1, J16 =−αPi,

J22 =− β20B
β22Po +β21

+
β20PoBβ22

(β22Po +β21)2

− k1F
k11Po + k12

+
k1PoFk11

(k11Po + k12)2

− β01A
β11Po +β12

+
β01PoAβ11

(β11Po +β12)2 −µ2,

J23 =− β01Po

β12 +β11Po
, J24 =− β20Po

β21 +β22Po
,

J26 =− k1Po

k12 + k11Po
, J32 =

λ3β01Aβ12

(β11Po +β12)2 ,

J33 = Λ2 −µ3 +
λ3β01Po

β12 +β11Po
−2λ30A,

J42 =
β20Bλ2β21

(β22Po +β21)2 ,

J44 = Λ3 −µ6 −
β02PoB

β21 +β22Po
−2λ20B,

J52 =− β02Bβ21

(β22Po +β21)2 , J53 =−γ2,

J54 =−γ3, J55 = γ2 − γ1F − γ3 −µ5,

J56 =−γ1C, J61 = θF,

J62 =
λ4k1Fk12

(k11Po + k12)2 , J65 = γ1F,

J66 = Λ1 −µ5 +
λ4k1Po

k12 + k11Po
+ γ1C−θPi −2λ10F.
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2.5.2 Stability of Trivial Equilibrium Point

Eigenvalues of the Jacobian matrix J evaluated at Trivial
Equilibrium Point, E0 are −µ1, − µ2, (Λ2 − µ3), (Λ3 −
µ6), γ2 − γ3 −µ5 and (Λ1 −µ5). Conditions (8) show that
eigenvalues (Λ2 −µ3)> 0 and (Λ3 −µ6)> 0 respectively,
suggesting instability of equilibrium point E0.

2.5.3 Stability of Bacteria-Plants and Fish Free
Equilibrium Point E1

Eigenvalues of the Jacobian matrix J evaluated at the
Bacteria-Plants and Fish Free Equilibrium Point, E1 are

−µ1,−µ2,(Λ2 − µ3) +
λ3β01Q2

β12µ2 +β11Q2
,(Λ3 − µ6),(γ2 −

µ5)− γ3, and (Λ1 − µ5) +
λ4k1Q2

k12µ2 + k11Q2
+ γ1C − θQ1

µ1
.

Conditions (8) show that eigenvalues

(Λ2 − µ3) +
λ3β01Q2

β12µ2 +β11Q2
> 0 and Λ3 − µ6 > 0 which

confirm that equilibrium point E1 is unstable.

2.5.4 Stability of Pollutants Free Equilibrium Point

Eigenvalues of the Jacobian matrix J evaluated at the
Pollutants free equilibrium point The eigenvalues at the
equilibrium point E2 are given by:

− (α1F2 +µ1) , −
(

β20B2

β21
+

k1F2

k12
+

β01A2

β12
+µ2

)
,

(Λ2 −µ3)−2λ30A2, (Λ3 −µ6)−2λ20B2,

(γ2 −µ5)− (γ1F2 + γ3) , −γ1C2,

γ1F2, (Λ1 −µ5)+ γ1C2 −2λ10F2.

Since γ1F2 > 0, . . . the equilibrium E2 is unstable.

2.5.5 Stability of an Interior Equilibrium Point (E∗)

Theorems 1 and 26 establish the conditions for local and
global stability of equilibrium point E∗ respectively.

Theorem 1.The equilibrium E∗, is locally asymptotically
stable if the following conditions hold:



(αF∗+µ1)

(
θP∗

i +µ5 +2λ10F∗−Λ1

− λ4k1P∗
o

k12 + k11P∗
o
+ γ1C∗

)
> (µ1P∗

i −m5θF∗)2 ,

m2

(
µ3 +2λ30A∗−Λ2 −

λ3β1P∗
o

β12 +β11P∗
o

)
(γ1F∗+ γ3)

>
P∗

o (k11P∗
o + k12)

λ4γ1k12C∗ γ
2
2 ,

(
β02P∗

o B∗

β21 +β22P∗
o
+µ6 +2λ20B∗−Λ3

)
(µ5 − γ2)

>
P∗

o (k11P∗
o + k12)

λ4γ1k12C∗ γ
2
3 .

(22)

Proof.Following (32), we study the behavior of the
system in the neighborhood of equilibrium point when
given a small perturbation. We first linearlize the system
using the following transformations: Pi = P∗

i + pi;Po =
P∗

o + po;A = A∗+ a;B = B∗+ b;C = C∗+ c;F = F∗+ f ,
where pi, po, a, b, c, and f are small perturbations around
the equilibrium.
The linearlized system is given by

d pi

dt
= (−αF∗−µ1) pi −µ1P∗

i f ,

d po

dt
=

(
β20β22P∗

o B∗

(β22P∗
o +β21)

2 − β20B∗

β22P∗
o +β21

− k1F∗

k11P∗
o + k12

+
k1k11P∗

o F∗

(k11P∗
o + k12)

2

− β01A∗

β11P∗
o +β12

)
po −

(
β01P∗

o

β12 +β11P∗
o

)
a−
(

β20P∗
o

β21 +β22P∗
o

)
b

−
(

k1P∗
o

k12 + k11P∗
o

)
f ,

da
dt

=

(
λ3β1β12A∗

(β11P∗
o +β12)

2

)
po +

(
Λ2 +

λ3β1P∗
o

β12 +β11P∗
o
−µ3 −2λ30A∗

)
a,

db
dt

=

(
λ2β20β21B∗

(β22P∗
o +β21)

2

)
po +

(
Λ3 −

β02P∗
o B∗

β21 +β22P∗
o
−µ6 −2λ20B∗

)
b,

dc
dt

=−

(
β02β21B∗

(β22P∗
o +β21)

2

)
po − γ2a− γ3b+(γ2 − γ1F∗− γ3 −µ5)c− γ1C∗ f ,

d f
dt

= θF∗pi +

(
λ4k1k12F∗

(k11P∗
o + k12)

2

)
po + γ1F∗c

+

(
Λ1 +

λ4k1P∗
o

k12 + k11P∗
o
+ γ1C∗−θP∗

i −µ5 −2λ10F∗
)

f . (23)

Now, we consider the following positive definite function:
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W =
1
2

(
p2

i +m1 p2
o +

m2a2

A∗ +
m3b2

B∗ +m4c2 +
m5 f 2

F∗

)
where mi > 0, i = 1, . . . ,5,

and use a linearized model (23) to get

dW
dt

=−(αF∗+µ1) p2
i

−

(
m1β01A∗

β11P∗
o +β12

+
m1β20B∗

β22P∗
o +β21

+
m1k1F∗

k11P∗
o + k12

)
p2

o

+

(
m1β20β22P∗

o B∗

(β22P∗
o +β21)

2 +
m1k1k11P∗

o F∗

(k11P∗
o + k12)

2

)
p2

o

−m2

(
µ3 +2λ30A∗−Λ2 −

λ3β1P∗
o

β12 +β11P∗
o

)
a2

−m3

(
β02P∗

o B∗

β21 +β22P∗
o
+µ6 +2λ20B∗−Λ3

)
b2

−m4 (γ1F∗+ γ3 +µ5 − γ2)c2

−m5

(
θP∗

i +µ5 +2λ10F∗−Λ1 −
λ4k1P∗

o

k12 + k11P∗
o

− γ1C∗

)
f 2 − (µ1P∗

i −m5θF∗) pi f

−

(
m2λ3β1β12A∗

(β11P∗
o +β12)

2 − m1β01P∗
o

β12 +β11P∗
o

)
poa

−

(
m1β20P∗

o

β21 +β22P∗
o
− m3λ2β20β21B∗

(β22P∗
o +β21)

2

)
pob

−m4

(
β02β21B∗

(β22P∗
o +β21)

2

)
poc.

(24)
Choosing the values

m1 = 1,

m2 =−m1P∗
o (β11P∗

o +β12)

λ3β12A∗ ,

m3 =
m1P∗

o (β22P∗
o +β21)

λ2β21B∗ ,

m4 =
m1P∗

o (k11P∗
o + k12)

λ4γ1k12C∗ ,

m5 =
m1P∗

o (k11P∗
o + k12)

λ4k12F∗ .

as arbitrary constants, the time derivative of W becomes

dW
dt

=−

[
(αF∗+µ1) p2

i +

(
β20B∗

β22P∗
o +β21

+
k1F∗

k11P∗
o + k12

+
β01A∗

β11P∗
o +β12

− β20β22P∗
o B∗

(β22P∗
o +β21)

2 − k1k11P∗
o F∗

(k11P∗
o + k12)

2

)
p2

o

+m2

(
µ3 +2λ30A∗−Λ2 −

λ3β1P∗
o

β12 +β11P∗
o

)
a2

+m3

(
β02P∗

o B∗

β21 +β22P∗
o
+µ6 +2λ20B∗−Λ3

)
b2

+m4 (γ1F∗+ γ3 +µ5 − γ2)c2

+m5

(
θP∗

i +µ5 +2λ10F∗−Λ1 −
λ4k1P∗

o

k12 + k11P∗
o
+ γ1C∗

)
f 2

+(µ1P∗
i −m5θF∗) pi f −m4γ2ac−m4γ3bc

]
.

Sufficient conditions for
dW
dt

to be negative definite
obtained by Sylvester’s conditions criteria are:

(αF∗+µ1)

(
θP∗

i +µ5 +2λ10F∗−Λ1

− λ4k1P∗
o

k12 + k11P∗
o
+ γ1C∗

)
> (µ1P∗

i −m5θF∗)2 ,

m2

(
µ3 +2λ30A∗−Λ2 −

λ3β1P∗
o

β12 +β11P∗
o

)
(γ1F∗+ γ3)

>
P∗

o (k11P∗
o + k12)

λ4γ1k12C∗ γ
2
2 ,(

β02P∗
o B∗

β21 +β22P∗
o
+µ6 +2λ20B∗−Λ3

)
(µ5 − γ2)

>
P∗

o (k11P∗
o + k12)

λ4γ1k12C∗ γ
2
3 .

(25)
From these inequalities, we can choose a positive value
m2, provided that inequality (25) holds. Thus the
time-derivative of W is negative definite and this result
demonstrates the stability of the coexistence equilibrium.

Theorem 2.The interior equilibrium E∗, if exists, is
non-linearly stable inside the region of attraction if the
following conditions hold:

m5θ
2 < λ10(µ1 −αLF),(

m2λ3β1β12

(β12 +β11P∗
o )(β12 +β11LPo)

)2

<
m1λ30β20β21LB

(β21 +β22P∗
o )(β21 +β22LPo)

,

(
m3λ2β20β21

(β21 +β22P∗
o )(β21 +β22LPo)

)2
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<
m1λ20k1k12LF

(k12 + k11P∗
o )(k12 + k11LPo)

,

m4

(
β20β21LB

(β21 +β22P∗
o )(β21 +β22LPo)

)2

<
(γ1LF − γ4)m1β01β12LB

(β12 +β11P∗
o )(β12 +β11LPo)

,

m5

(
k1k12

(k12 + k11P∗
o )(k12 + k11LPo)

)2

< λ10µ2,

m4γ
2
2 < λ30(γ1LF − γ4),

m5γ
2
1 < m4λ10(γ1LF − γ4). (26)

Proof:
To show global stability of the equilibrium E∗, we begin
with the following positive definite function, as suggested
by (32; 33).

Y =
1
2
(Pi −P∗

i )
2 +

m1

2
(Po −P∗

o )
2

+m2

(
A−A∗−A∗ ln

A
A∗

)

+m3

(
B−B∗−B∗ ln

B
B∗

)

+
m4

2
(C−C∗)2 +m5

(
F −F∗−F∗ ln

F
F∗

)
.

where, m1,m2,m3,m4, and m5 are positive constants. We
observed that the function Y is positive definite by
showing that Y (Pi,Po,A,B,C,F) > 0 in the interior of Ω

and Y (Pi,Po,A,B,C,F) = 0 only at E∗.
Differentiating above equation with respect to time ”t”
along the solutions of model system (1) and rearranging
the terms, we have

dY
dt

= (Pi −P∗
i )

dPi

dt
+m1 (Po −P∗

o )
dPo

dt

+m2

(
A−A∗

A

)
dA
dt

+m3

(
B−B∗

B

)
dB
dt

+m4 (C−C∗)
dC
dt

+m5

(
F −F∗

F

)
dF
dt

.

(27)

Differentiating above equation with respect to time ”t”

along the solutions of model (1) and rearranging the terms,

we have

dY
dt

=−
[
a11(Pi −P∗

i )
2 +a22(F −F∗)2 +a33(A−A∗)2

+a44(B−B∗)2 +a55(C−C∗)2 +a66(F −F∗)2

+a16(Pi −P∗
i )(F −F∗)+a23(Po −P∗

o )(A−A∗)

+a24(Po −P∗
o )(B−B∗)+a25(Po −P∗

o )(C−C∗)

+a26(Po −P∗
o )(F −F∗)+a35(A−A∗)(C−C∗)

+a56(C−C∗)(F −F∗)
]
.

Where,

a11 =µ1 −αF,

a22 =

[
m1β20β21B

(β21 +β22P∗
o )(β21 +β22Po)

+
m1k1k12F

(k12 + k11P∗
o )(k12 + k11Po)

+
m1β01β12B

(β12 +β11P∗
o )(β12 +β11Po)

+m1µ2

]
,

a33 = λ30, a44 = λ20, a55 = m4(γ1F − γ4),

a66 = m5λ10, a16 = m5θ ,

a23 =
m2λ3β1β12

(β12 +β11Po)(β12 +β11P∗
o )

,

Where,

a24 =
m3λ2β20β21

(β21 +β22P∗
o )(β21 +β22Po)

,

a25 =
m4β20β21B

(β21 +β22P∗
o )(β21 +β22)

,

a26 =
m5k1k12

(k12 + k11P∗
o )(k12 + k11Po)

,

a56 = m5γ1 a35 = m4γ2.

Sufficient conditions for
dY
dt

to be negative definite
obtained by Sylvester’s conditions criteria are 26.
We can now choose positive values of m1,m2,m3,m4, and
m5 provided that inequalities (26) holds. Thus the
time-derivative of Y is negative definite and this result
demonstrates the non-linear stability of the coexistence
equilibrium.
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3 Results and Discussion

To strengthen the analytical results and gain deeper
insights into the system’s behavior, numerical simulations
of system (1) are conducted. It is evident that, with these

Table 1: The baseline values of the model (1) parameters

Parameters Baseline Value Source
Q1,Q2 18.056 mq/L/day (34)
Λ 16.913 mq/L/day (34)
Λ1 0.5 day−1 Assumed
Λ2 0.5 day−1 Assumed
Λ3 0.5 day−1 Assumed
α 0.05 mg/day/ f ish Assumed
θ 0.02 f ish/day Assumed
λ2 0.33 cell/gm (34)
λ3 0.2 plants/gm Assumed
λ4 0.13 f ish/mg Assumed
λ10 0.446 m2/ f ish/day (34)
λ20 8.278 L/cell/day (34)
λ30 0.5 L/mg/day Assumed
β01 0.029 day−1 (35)
β02 0.112 L/cell (34)
β20 4.38 mq/day/cell (25)
β11 11 − (35)
β12 1 mq/L/day (35)
β21 7.81 mg/L (25)
β22 1.48 − (25)
k1 1 mg/day/ f ish Assumed
k11 1 − Assumed
k12 1 mg/m2 Assumed
µ1 0.2 day−1 Assumed
µ2 1.804 day−1 (34)
µ3 0.031 day−1 Assumed
µ4 0.3 day−1 (34)
µ5 1.5 day−1 (34)
µ6 0.28 day−1 (34)
γ1 0.1 f ish L/m2/mg (34)
γ2 0.5 L/m2 Assumed
γ3 0.05 L/cell Assumed

numerical values, the conditions for local stability
(Theorem 1) and global stability (Theorem 26) are
satisfied. The values corresponding to the interior
equilibrium point of model (1) are

P∗
i = 43.400, P∗

o = 7.739, A∗ = 4.316,
B∗ = 0.098, C∗ = 34.220, and F∗ = 4.290.

This indicates that the interior equilibrium E∗ is locally
and globally asymptotically stable for the given
parameters. The eigenvalues of the Jacobian matrix
corresponding to this interior equilibrium are

−0.5661, −0.4095, −1.9870,
−1.5056, −2.6220+1.8455i, −2.6220−1.8455i.

Since all these eigenvalues are either negative or have
negative real parts, the interior equilibrium E∗ is locally
asymptotically stable.

Figures 2(a)–(c) demonstrate that E∗ exhibits global
stability within the region of attraction defined by the set
Ω . These figures illustrate that, for any initial conditions
of the considered dynamic variables in the Pi–Po–F ,
Po–C–F , and A–B–F spaces, the solution trajectories
converge towards E∗, suggesting the global stability
behavior of the interior equilibrium in these spaces.

In Fig. 3(a), the graph demonstrates the relationship
between the discharge rate of inorganic pollution (Q1)
and the fish population (F). As the value of Q1 increases,
the fish population F decreases. This indicates that higher
levels of inorganic pollution have a detrimental effect on
the fish population, leading to a decline in their numbers
over time.

In Fig. 3(b), the graph illustrates the relationship
between the discharge rate of organic pollution (Q2) and
the fish population (F). In this case, as the value of Q2
increases, the fish population F also increases, since
organic matter serves as a food source for the fish. This
suggests that a certain level of organic pollution can
potentially promote the growth or sustainability of the
fish population.

These findings from Figs. 3(a) and 3(b) highlight the
contrasting effects of inorganic and organic pollution on
fish population dynamics.

Figs. 4(a) and 4(b) highlight the stimulatory effects of
organic pollution on certain aquatic species, such as
plants and bacteria, due to the increased availability of
organic nutrients. In contrast, Fig. 4(c) emphasizes the
potential negative consequences of organic pollution,
particularly oxygen depletion, which can adversely affect
aquatic ecosystems and the organisms inhabiting them.

In Fig. 4(a), as the discharge rate of organic pollutants
(Q2) increases, there is a corresponding rise in the
population of aquatic plants, specifically algae and water
hyacinth. This trend indicates that organic pollutants
serve as nutrients, promoting the growth and proliferation
of these plants in the aquatic environment.

Similarly, Fig. 4(b) shows that an increase in Q2 leads
to bacterial proliferation. Bacteria utilize organic matter
as an energy source, and the availability of such matter
accelerates bacterial growth, resulting in an overall
increase in bacterial populations as organic pollution
intensifies.

Conversely, Fig. 4(c) depicts a critical ecological
consequence of excessive organic pollution. As Q2
increases, the concentration of dissolved oxygen in the
water decreases. This decline is primarily due to
microbial decomposition, during which bacteria consume
large amounts of oxygen to break down organic matter.
The resulting oxygen depletion can disrupt aquatic
ecosystems, potentially leading to hypoxia and
eutrophication, both of which pose serious threats to
oxygen-dependent aquatic organisms. Generally,
Simulation results show that pollutant concentrations
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Fig. 2: Nonlinear stability analysis of the co-existence
equilibrium (E∗) for a range of parameters in the Pi −Po −
F , Po −C−F , and A−B−F planes, as detailed in Table
1.
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Fig. 3: Effect of discharge rates of (a) inorganic pollutant
(Q1) and (b) organic pollutant (Q2) on fish population
dynamics.

increase rapidly, leading to a significant decline in
dissolved oxygen and the fish population. The presence of
aquatic plants initially supports oxygen production but
later causes oxygen depletion due to decomposition. This
confirms the dual role of aquatic vegetation in regulating
oxygen dynamics. These findings are consistent with
previous models such as those presented by Misra (2011)
and Tiwari et al. (2019), which also emphasized the role
of algal blooms and bacterial activity in oxygen depletion.
However, unlike these studies, our model explicitly
incorporates the dual nature of aquatic plants, especially
invasive species, showing both their contribution to
oxygen production via photosynthesis and their harmful
effects through oxygen depletion during decomposition.
This added dimension makes our model more
ecologically comprehensive. Moreover, while earlier
studies primarily concentrated on algal blooms and their
linkage to nutrient influx, our model accounts for multiple
biological interactions, including fish mortality directly
caused by inorganic pollutants and indirectly via oxygen
depletion.

3.1 Conclusion

This study investigates the impact of organic and
inorganic pollutant discharge rates on the survival of
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Fig. 4: Effects of organic pollutant discharge rate (Q2)
on (a) plant population, (b) bacteria population, and (c)
oxygen concentration in the ecosystem.

aquatic species, particularly fish, in aquatic environments.

A system of six nonlinear differential equations was
developed to model the interactions among organic
pollutants, inorganic pollutants, aquatic plants, bacteria,
dissolved oxygen, and fish populations. Unlike previous
studies, this research incorporates aquatic plants into the
system and broadens the scope of interactions, allowing
for a more comprehensive understanding of ecosystem
dynamics under pollution stress. The study identifies and
analyzes four equilibrium points to characterize the
system’s behavior. The results offer key insights into how
different types of pollution affect aquatic ecosystems.
Inorganic pollution (Q1) is associated with a decline in
fish populations (F), highlighting its long-term
detrimental effects. In contrast, increased organic
pollution (Q2) leads to a rise in fish population (F),
suggesting that, under certain conditions, organic
pollutants may support fish growth and sustainability.
However, excessive organic pollution can deplete
dissolved oxygen levels, threatening the survival of
aquatic organisms.

These findings underscore the need for effective
pollution management strategies to maintain balanced
aquatic ecosystems and ensure the health of fish and other
species. Understanding these dynamics is vital for
informed environmental conservation and policy-making.
This study emphasizes the importance of global efforts to
reduce harmful chemical discharges into aquatic
ecosystems. By limiting pollutant inputs, fish mortality
can be mitigated and dissolved oxygen levels
preserved—both of which are essential for aquatic life, as
discussed in (37; 38). These insights, supported by the
model’s findings, offer practical strategies for mitigating
the adverse effects of pollution on aquatic ecosystems.
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