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Abstract: Breast cancer remains one of the leading causes of mortality among women and is one of the most prevalent cancers
worldwide. Advancing accurate diagnosis, treatment, and prevention requires a deeper understanding of the genetic alterations involved
in tumorigenesis. Integrating genomic and transcriptomic data offers a powerful approach to uncover the molecular mechanisms
underlying the disease. Transcriptomic profiling, which involves sequencing RNA to analyze gene expression, enables the identification
of biomarkers for disease progression and supports the discovery of novel therapeutic targets. However, transcriptomic studies often
include a mix of cancerous and non-cancerous cells, requiring robust analytical methods to distinguish between them and ensure
meaningful interpretation. In this study, we propose a comprehensive pipeline for transcriptomic analysis using gene expression data
from The Cancer Genome Atlas (TCGA). The dataset is pre-processed and normalized using the TCGAbiolinks package within the
R software environment. Machine learning algorithms are employed to classify samples as tumor or normal tissue. Seven models are
evaluated, with Random Forest and Radial Basis Function Support Vector Machine (RBF SVM) achieving the highest performance.
RBF SVM reached an accuracy of 99.55%, precision of 99.55%, recall of 99.64%, and F1-score of 99.64%, while Random Forest
obtained an accuracy of 99.38%, precision of 99.38%, recall of 99.50%, and Fl-score of 99.50%. Stratified 5-fold cross-validation
confirmed the models’ robustness, showing low variance across folds. Feature selection is performed to enhance interpretability, and
five key genes were identified: ENSG00000152256.14 (PDK1), ENSG00000155875.15 (SAXO1), ENSG00000165194.15 (PCDH19),
ENSG00000176884.16 (GRIN1), and ENSG00000180910.8 (TTTY11). These genes are further investigated using Ensembl for
biological interpretation highlighting PDK1, involved in cancer metabolism; SAXO1, linked to cytoskeletal stability; PCDH19,
associated with cell adhesion; GRIN1, related to glutamate signaling; and TTTY11, a pseudogene with potential regulatory roles.
This study highlights the potential of machine learning in transcriptomic data analysis and offers a framework for identifying key
biomarkers, contributing to precision oncology in breast cancer research.

Keywords: Supervised classification, transcriptomic analysis, predictive models, gene expression, breast cancer.

1 Introduction diagnoses in the past four years—underscoring its critical

global health significance[6].

Cancer remains one of the most feared and impactful

diseases worldwide, primarily due to its high mortality
rate and substantial burden on public health. According to
the Brazilian National Cancer Institute (INCA),
approximately 704,000 new cancer cases are projected in
Brazil between 2023 and 2025. Globally, the Global
Cancer Observatory (GLOBOCAN) reported 19.3 million
new cases in 2020 alone, with breast cancer being the
most prevalent—accounting for over 2.3 million

The process of carcinogenesis, wherein normal cells
acquire malignant characteristics, results from a
multifactorial interplay of internal and external factors.
Genetic mutations, hormonal imbalances, and immune
dysregulation, combined with environmental exposures to
carcinogens, contribute to the onset of neoplasia—the
abnormal, uncontrolled proliferation of cells. In breast
tissue, this can give rise to tumors with diverse
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morphological and molecular profiles, complicating both
diagnosis and treatment [2].

Technological  advances in  genomics  and
transcriptomics have transformed our understanding of
cancer biology [?]. In particular, transcriptomic profiling,
which sequences RNA to analyze gene expression,
enables the identification of biomarkers linked to disease
progression and therapy response [?]. Integrative analyses
of cancerous and non-cancerous transcriptomic data
reveal insights into tumor heterogeneity and interactions
with the microenvironment [7].

To centralize and standardize molecular cancer data,
the U.S. National Institutes of Health launched The
Cancer Genome Atlas (TCGA), a comprehensive
resource comprising clinical and multi-omics data from
over 33 cancer types [8]. However, its volume and
complexity demand specialized tools for processing. To
address this, the R/Bioconductor package TCGAbiolinks
was developed, facilitating efficient querying,
downloading, preprocessing, and analysis of TCGA data
[5].

In parallel, machine learning has emerged as a
transformative approach in cancer research, enabling
automated discovery of complex patterns across
large-scale datasets. Techniques such as supervised
classification, clustering, and neural networks are now
widely applied for patient stratification, tumor subtype
identification, and image-based diagnosis [3].

Building on these developments, the present study
proposes an automated pipeline using TCGAbiolinks for
breast cancer transcriptomic data analysis. By applying
advanced machine learning models, including deep
learning, we aim to classify tumor and normal samples,
identify key biomarkers, and support personalized cancer
diagnosis and treatment strategies.

2 Methodology and Experiments

The methodology proposed in this study aims to perform
a comprehensive transcriptomic analysis using gene
expression data from The Cancer Genome Atlas (TCGA),
evaluated through various machine learning classifiers.
The pipeline begins with data acquisition using the
TCGAbiolinks package in the R programming
environment. The analysis includes breast cancer
samples, comprising primary tumors, metastatic tumors,
and non-cancerous solid tissue samples.

After data retrieval, the workflow applies
preprocessing steps to ensure compatibility with the
machine learning pipeline. These steps include data
transposition, dataset merging, and normalization to
reduce technical variability. In the model training phase,
seven supervised learning algorithms classify the samples
into tumor and non-tumor categories. A cross-validation
strategy evaluates the robustness of the models. Finally,
the SelectFromModel method performs feature selection

to identify genes most relevant to classification. The
overall process is illustrated in Figure 1.

2.1 Preprocessing

This study uses breast cancer gene expression data from
TCGA, including three groups: primary tumor, metastatic
tumor, and non-cancerous solid tissue. The datasets
contain expression profiles of 60,661 genes across 1,110
primary tumor samples, 87 metastatic cases, and 7 normal
samples.

The TCGAbiolinks package facilitates data querying,
downloading, and preprocessing through the following
functions:

—GDCquery() — searches for relevant transcriptomic
datasets.

—-GDCdownload() — downloads the selected data.

—GDCprepare() — preprocesses and normalizes the data
using FPKM-UQ (Fragments Per Kilobase Million
Upper Quartile) normalization [4].

After retrieval, the workflow transposes the data so that
rows represent individuals and columns represent genes.
We then merge the datasets into a single matrix. Due to
the limited number of metastatic cases—and their clinical
relevance—these samples are grouped with primary tumor
data for normalization purposes.

Normalization scales gene expression values to the
[0,1] range using min-max normalization:

X — Xmin

X =—
Ximax — Xmin

(H
where X’ is the normalized value, X is the original
gene expression, and Xpin, Xmax are the minimum and
maximum observed values [9].
Labels are assigned as follows: non-cancerous tissue
is labeled as 0, and tumor samples (primary or metastatic)
are labeled as 1.

2.2 Model Training

For classification, this study evaluates seven machine
learning models implemented using the scikit-learn
(sklearn) library in Python [1]:

—Decision Tree

—Gaussian Process Classifier

—Neural Network

—Logistic Regression

—Random Forest

—K-Nearest Neighbors (KNN)

—Radial Basis Function Support Vector Machine (RBF
SVM)
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Fig. 1: Methodology flowchart

Each model undergoes cross-validation to assess
generalization and avoid overfitting. The analysis
computes standard performance metrics—accuracy,
precision, recall, and F1-score—and averages them across
all validation folds. Finally, the SelectFromModel method
identifies the most relevant genes contributing to
classification, refining the models’ interpretability and
potential biological significance.

2.2.1 Decision Tree

The decision tree model operates by recursively
partitioning the feature space into smaller regions,
making decisions at each node based on feature values. In
sklearn, the Gini index is used as the criterion for splitting
the attribute space. The Gini index is defined as:

Gini=1-—

1

n

i 2)
=1
where p; represents the proportion of samples belonging
to class i. While decision trees are intuitive and
interpretable, deep trees are prone to overfitting. To
mitigate this, key hyperparameters such as the maximum
depth and the minimum number of samples per node were
carefully tuned[10].

The hyperparameters for the decision tree model are

configured as follows:

—Split criterion: Gini index.
—Split strategy: Best split at each node.

—Minimum samples to split an internal node: 2.
—Minimum samples in a leaf node: 1.

2.2.2 Gaussian Process (GP)

The Gaussian Process classifier considers the model
output (or predicted value) as a function that follows a

Gaussian distribution. For each input point, the model
output is treated as a random variable that follows a
normal distribution. The parameter considered in sklearn
for this model is the RBF kernel (1.0), which is used to
define the covariance between different input data points,
specifying the outputs and how these points are
correlated.

K(xi,xj) = k(x,',xj') (3)

where x; and x; are samples, and o is a scale
hyperparameter[11].

2.2.3 Neural Network

For the neural network classifier, we consider a Multilayer
Perceptron (MLP) architecture, defined by multiple hidden
layers and ReLU (Rectified Linear Unit) activation[12]:

f(x) = max(0,x) “)

The training is performed using backpropagation and
the Adam optimizer, minimizing the Cross-Entropy loss
function for binary classification:

=

1
N/

1

£ = [vilog(¥i) + (1 —yi)log(1—3)]  (5)

1

The hyperparameters defined for this model are as
follows:

—Penalty control: L2 (ot = 1);
—Maximum number of iterations: 1000.
2.2.4 Logistic Regression

The Logistic Regression classification algorithm is based
on two fundamental components: the logistic (sigmoid)
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function and the logit. This model estimates the
probability of a binary outcome—in this context, the
presence or absence of a tumor—by mapping predicted
values to a probability range between O and 1. The
algorithm applies the sigmoid function to a linear
combination of input features, producing a probability
estimate that facilitates binary classification. The sigmoid
function is defined as:

1
14+e% ©)

where z represents the linear predictor (i.e., the weighted
sum of input features),

z= 130+Z[3iXi

Py =1|X) =

. This output can then be interpreted as the likelihood of
the sample belonging to the positive class. The Logistic
Regression has a maximum number of iterations of 1000.

2.2.5 Random Forest

Random Forest is a machine learning algorithm based on
an ensemble of decision trees. It combines the predictions
of multiple trees to produce a more robust and accurate
final decision. The model constructs N decision trees,
each trained on a random subset of the dataset. At each
node, a random subset of features is selected to determine
the best split, allowing each tree to make an independent
prediction. The final prediction is obtained through a
weighted average of the individual tree outputs:

N

Random Forest also facilitates feature selection by
identifying the genes with the greatest influence on
classification [17]. The model improves generalization by
mitigating the effects of overfitting that individual
decision trees typically exhibit. The hyperparameters used
in this study are:

-max_depth =5
—-n_estimators =10
-max_features =1

2.2.6 Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm classifies
samples based on their similarity to other samples in the
dataset. It assigns the class that is most common among
the K nearest neighbors. This model is particularly useful
for identifying samples with similar gene expression
profiles and grouping them accordingly, aiding in the
detection of tumor subtype variations. The Euclidean
distance metric is used to measure similarity:

n

Y (xi—yi)?

i=1

d(x,y) = ®)

Euclidean Distance, with x and y representing feature
vectors. To measure the distance between the unknown
sample and all known samples, the model was configured
with k = 3. where x and y represent the feature vectors of
two samples. In this study, the model is configured with
k=3.

2.2.7 Radial Basis Function Support Vector Machine
(SVM RBF)

The Support Vector Machine (SVM) aims to find the
optimal hyperplane that separates data points of different
classes with the maximum margin. When the data is not
linearly separable, the model applies a kernel
function—such as the Radial Basis Function (RBF)—to
project the input data into a higher-dimensional space,
where a linear separator may exist. This allows SVM to
learn complex, nonlinear relationships in gene expression
that are indicative of cancer. The RBF kernel is defined
as:

|2
K (xi,xj) =exp (_x,x]> 9)

202

||x; — x;||* being recognized as a squared Euclidean
distance between the two feature vectors.o is a free
parameter. An equivalent definition involves a parameter
Y=352"

The final expression being equivalent to:

K(x;,xj) = exp(—7l|xi —xj %)

The parameter ¥ controls the influence of individual
training samples [16].
This study evaluates two variations of SVM:

—Linear SVM: Configured with C = 0.025 to control
the penalty for misclassification and reduce overfitting.

—RBF Kernel SVM: Configured with y =2 and C =
1, allowing greater flexibility for capturing nonlinear
gene expression patterns.

2.2.8 Model Evaluation and Validation

Model  performance is  assessed using  the
train_test_split function from the
scikit-learn (sklearn) library, combined with
cross-validation techniques. Cross-validation partitions
the dataset into training and testing subsets multiple times
to provide a reliable estimate of model generalization. In
this study, we use stratified k-fold cross-validation with
k =5 and allocate 25% of the data for testing [13].
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The final accuracy is computed as the average across
all & folds:

1 k
AcCverage = Y Acci, k=5 (10)
i=1

To balance precision and recall, we also calculate the
F1-score using the Equation:

Fle2x Prec%s%on x Recall (1
Precision + Recall

2.3 Feature Selection

To identify the most relevant features for classification,
we apply two methods from the scikit-learn library:
SelectFromModel and SelectKBest.

The SelectFromModel method selects features
based on importance scores derived from a pre-trained
estimator. By setting prefit=True, the selector uses
an already fitted model to rank and retain only the most
informative  features. The transform (Xirain)
function then reduces the dimensionality of the training
data by removing less relevant columns, streamlining the
input for subsequent modeling.

Complementarily, the SelectKBest method
identifies the top k features with the highest statistical
association with the target variable, based on a univariate
scoring function. In this study, we use the chi-square (x?)
test, which evaluates the degree of dependence between
each feature and the output class. This test is particularly
suitable for categorical or non-negative continuous data
and supports effective dimensionality reduction while
preserving the most predictive variables [18].

2.4 Gene Identification Tool

To annotate and interpret the selected genes, we use the
Ensembl genome browser—a comprehensive platform for
automated genome annotation and integration of genomic
data. Ensembl currently supports over 50,000 genomes,
including vertebrates and a wide range of other
organisms, and continues to expand in scope to meet
evolving research needs.

Ensembl facilitates detailed gene exploration, with
human gene identifiers beginning with "ENSG” followed
by a unique numerical sequence. For example, the
identifier ENSG00000152256.14 corresponds to a
specific human gene. Researchers can input this identifier
into the Ensembl search tool to access a dedicated gene
page containing information on its genomic location,
known variants, transcript isoforms, and expression
profiles. This resource enables thorough functional
characterization of genes of interest and supports
biological interpretation of machine learning results [15].

3 Results and discussion

Several classifiers were evaluated for the analysis of the
breast cancer dataset, including decision trees, Gaussian
processes, neural networks, logistic regression, random
forests, k-nearest neighbors (KNN), and radial basis
function (RBF) support vector machines (SVM). The
results showed that the random forest and RBF SVM
models achieved the highest performance, with accuracies
exceeding 98%. In contrast, the neural network and
Gaussian process models exhibited the lowest
performance, each reaching an accuracy of 92.20%. The
decision tree, logistic regression, and KNN classifiers
demonstrated intermediate performance, with accuracies
ranging between 96% and 98%. These results provided a
general assessment of model accuracy when the dataset
was split into training and testing sets.

To further evaluate model performance, the confusion
matrix was analyzed to offer a detailed breakdown of the
classification outcomes. The dataset contained 1,231
records and a high-dimensional feature space comprising
60,661 gene expression features. Among the records, 87
were labeled as class zero (normal tissue), and 1,117 were
labeled as class one (tumor tissue). A total of 923 records
were used for training, while 308 were set aside for
validation.

The dataset showed a significant class imbalance,
with the tumor class being heavily overrepresented in
comparison to the normal class. This imbalance had the
potential to skew predictions in favor of the majority
class, thereby reducing sensitivity to minority class cases.
Table 1 presents the confusion matrices for the main
models evaluated, illustrating their performance in
classifying tumor versus normal samples.

The confusion matrix is a crucial tool for evaluating
classifier performance, as it provides a detailed
breakdown of correct and incorrect predictions. The
Random Forest and RBF SVM models demonstrated the
best performance, with minimal classification errors (false
positives and false negatives). The Random Forest model
correctly identified 282 tumor cases and 23 normal cases,
making only three misclassifications (1 false positive and
2 false negatives). This reflects its high precision and
recall, making it an efficient predictor for both classes.

The Decision Tree model exhibited slightly lower
performance, misclassifying eight tumor cases as normal
(false negatives) and two normal cases as tumors (false
positives). Although its accuracy remained high, the
increased false negative rate is concerning in medical
applications, where precise tumor detection is critical.

The KNN and Logistic Regression models delivered
intermediate = performance,  with  some  tumor
misclassifications (5 false negatives in KNN and 7 in
Logistic Regression), indicating slightly lower sensitivity
in detecting positive cases. The Gaussian Process and
Neural network models showed distinct misclassification
patterns. The Gaussian Process model produced 24 false
positives and no false negatives, indicating that it
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Table 1: Model Confusion Matrix

Classifier Normal (Predicted) | Tumor (Predicted) | Total
Nearest Neighbors 23 1 24
5 279 284
RBF SVM 22 2 24
3 281 284
Gaussian Process 0 24 24
0 284 284
Decision Tree 22 2 24
8 276 284
Logistic Regression 19 5 24
7 277 284
Neural Net 0 24 24
0 284 284
Random Forest 23 1 24
2 282 284

classified nearly all samples as tumors. This led to very
low specificity, reflecting a poor ability to correctly
identify normal cases. Similarly, the K-Nearest Neighbors
(KNN) classifier entirely failed to detect normal samples,
misclassifying all instances as tumors, which also resulted
in zero specificity.

To ensure a robust evaluation of model performance, a
5-fold cross-validation technique was employed. This
method partitioned the dataset into five equal subsets
while preserving class proportions. In each iteration, four
subsets were used for training and one for testing,
allowing every sample to contribute to both training and
validation. After all five folds were completed,
performance metrics—including accuracy, precision,
recall, and Fl-score—were averaged to obtain overall
performance estimates.

In terms of average accuracy and model stability, the
best-performing models were the RBF SVM
(0.9955 + 0.0048) and the Random  Forest
(0.9938 £ 0.0080), both of which achieved high accuracy
with low variance across the folds. The Decision Tree,
Logistic Regression, and KNN classifiers also
demonstrated good performance, albeit with slightly
higher variance. In contrast, the Gaussian Process and
Neural Network models yielded lower average accuracy
(0.9082 +0.0019), indicating weaker generalization.

Regarding average recall—the ability to correctly
identify tumor cases—the RBF SVM (0.9964) and
Random Forest (0.9950) models again outperformed
others, achieving near-perfect recall. Although the
Gaussian Process and Neural Network models also
attained high recall values (0.9518), this was attributed to
their bias toward predicting all samples as tumors, which
came at the cost of specificity.

The average precision—the proportion of true tumor
predictions among all tumor classifications—was highest
for RBF SVM (0.9955) and Random Forest (0.9938),
indicating minimal false positives. Conversely, the
Gaussian Process and Neural Network models had lower

precision, reflecting their tendency to misclassify normal
cases as tumors.

When considering the average Fl-score, which
harmonizes recall and precision into a single metric,
Random Forest (0.9950) and RBF SVM emerged as the
top performers, striking an effective balance between
sensitivity and specificity. The Gaussian Process and
Neural Network models exhibited lower F1-scores due to
their imbalanced performance.

The Decision Tree, Logistic Regression, and KNN
models also performed reasonably well but fell slightly
behind the leading models. Moreover, their relatively
higher standard deviations suggested greater variability
depending on the specific train-test split, which may
indicate reduced stability in real-world applications.

Table 2 summarizes the key performance metrics
across all models.

Based on the results, the Random Forest and RBF
SVM models emerged as the most suitable classifiers for
the breast cancer dataset, demonstrating superior
generalization capabilities and robustness in handling
class imbalance.

To further investigate and refine these models, a
feature selection step was carried out to improve
classification efficiency and reduce dimensionality. In this
phase, we analyzed the Decision Tree, Random Forest,
and RBF SVM models, each employing a distinct
machine learning strategy to identify the most relevant
variables contributing to classification performance.

First, we applied a Decision Tree-based feature
selection method with a maximum depth of five. This
approach significantly reduced the number of features
from 60,661 to just five, highlighting the most
discriminative genes in the dataset. The selected genes
were ENSG00000152256.14,
ENSG00000155875.15, ENSG00000165194.15,
ENSG00000176884.16, and
ENSG00000180910. 8, as illustrated in Figure 2.
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Table 2: Model Performance

Classifier Average Accuracy (+ Deviation) | Average Recall | Precision Average | F1-Score Average
Nearest Neighbors 0.9937 £ 0.0066 0.9928 0.9938 0.9928
RBF SVM 0.9955 +0.0048 0.9964 0.9955 0.9964
Gaussian Process 0.9082 +0.0019 0.9518 0.9082 0.9518
Decision Tree 0.9883 + 0.0086 0.9847 0.9833 0.9847
Logistic Regression 0.9910 = 0.0027 0.9892 0.9910 0.9892
Neural Net 0.9082 +0.0019 0.9518 0.9082 0.9518
Random Forest 0.9938 + 0.0080 0.9950 0.9938 0.9950

Subsequently, we employed a Random Forest
classifier with 100 estimators for feature selection. This
method retained a larger subset of 927 features,
suggesting that the Random Forest approach captured a
broader range of potentially informative genes. The
increased number of selected features may be attributed
to the model’s ensemble nature and its sensitivity to the
underlying class imbalance, which can affect the
weighting and ranking of features with high expression
variance.

Additionally, we applied an SVM classifier with a
linear kernel for feature selection, which retained 16,432
variables. This high number suggests that the SVM may
be capturing complex relationships between the predictor
and response variables. A potential improvement for the
analysis would be to reevaluate the classification models
using the feature subsets identified by the different
selection methods to assess their impact on model
performance.

We applied the SelectKBest statistical method using
the chi-square test to identify the 20 most relevant
features, as shown in Figure 3, which illustrates the
correlation between variables. These results underscore
the substantial variability in feature retention across
different selection techniques, reinforcing the need for
additional statistical analyses to determine the true impact
of these features on classifier performance.

To validate whether the genes selected by the decision
tree model, which significantly reduced the number of
analyzed genes, are genuinely associated with breast
cancer, we utilized the Ensembl tool to cross-reference
the selected genes with existing literature. As a result,
Table 3 was developed, linking each identified gene to its
corresponding description and classification, enabling a
more comprehensive biological analysis.

The five genes selected through the decision tree model
offer promising insight into breast cancer biology. Among
them:

-PDK1 (ENSG00000152256.14) -  Pyruvate
Dehydrogenase Kinase 1 plays a critical role in
metabolic reprogramming of cancer cells, inhibiting
pyruvate entry into the TCA cycle and promoting the
Warburg effect, a hallmark of cancer metabolism [19].

-SAXO1 (ENSG00000155875.15) — While primarily
associated with microtubule stabilization in neuronal
cells, emerging evidence suggests that SAXOI

dysregulation may affect cytoskeletal dynamics,
impacting cancer cell motility and invasion [20].
-PCDH19 (ENSG00000165194.15) —  This
protocadherin is involved in cell-cell adhesion and
signaling. Loss or mutation of cadherin genes,
including PCDH19, has been linked to breast and
ovarian cancer invasiveness [21].

—GRIN1 (ENSG00000176884.16) — Encodes a subunit
of the NMDA glutamate receptor. GRINI1 is
implicated in calcium signaling and neural plasticity
but also contributes to tumor proliferation and
resistance in several cancers, including breast cancer
[22].

TTTY11 (ENSG00000180910.8) — Although listed
as a pseudogene on the Y chromosome, recent studies
show that pseudogenes like TTTY11l may act as
competitive endogenous RNAs (ceRNAs), modulating
gene networks and influencing tumor progression
[23].

These genes offer potential as biomarkers for
diagnostic or therapeutic targeting. These findings
highlight the importance of feature selection in
optimizing predictive models and emphasize the need for
further investigations to confirm the association of the
selected genes with breast cancer development and
progression. Future research may validate their
expression in larger cohorts and investigate their
mechanistic roles in breast tumorigenesis.

4 Conclusion

Cancer remains one of the most formidable global health
challenges, primarily due to its high mortality rates and
complex biological behavior. The integration of genomic
and transcriptomic data has provided researchers with
critical insights into the molecular mechanisms
potentially driving its development.

This study demonstrated the effectiveness of machine
learning models in classifying breast cancer
transcriptomic data. Among the classifiers evaluated, the
Random Forest and RBF SVM models achieved the
highest accuracy—exceeding 99%—and consistently
outperformed others in terms of stability and
generalization. Their low standard deviations and
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Fig. 2: Heatmap graph of the 5 most relevant features found with feature selection algorithm using the Decision Tree

classification model

Table 3: Description of Genes and their Types

Gene Descricao do Ensembl Gene Type
ENSG00000152256.14 Gene PDK1, Pyruvate Dehydrogenase Kinase 1 Protein coding
ENSG00000155875.15 Gene SAXO1, Axonemal Microtubule Stabilizer 1 | Protein coding
ENSG00000165194.15 Gene PCDH19, Protocadherin 19 Protein coding
ENSG00000176884.16 Gene GRINI1, Ionotropic Glutamate Receptor | Protein coding
NMDA Type Subunit 1
ENSG00000180910.8 Gene TTTY11, Expressed Testis Transcription, | Unprocessed pseudogene transcript
Linked to Y 11

balanced precision and recall scores further confirmed
their robustness and reliability.

The analysis of confusion matrices revealed that these
top-performing models effectively minimized both false
positives and false negatives, making them particularly
well-suited for clinical applications that demand high
diagnostic accuracy. In contrast, classifiers such as the
Gaussian Process and Neural Network exhibited
significant limitations, particularly in terms of specificity,
which may reduce their practical utility in medical
settings.

The application of five-fold cross-validation enhanced
the reliability of performance estimates, ensuring that the
results were not overly dependent on any single data
partition. However, the underlying class imbalance in the
dataset remained a potential challenge that could
influence predictive outcomes.

The incorporation of feature selection methods
enhanced interpretability by identifying biologically
meaningful genes. Among the five most relevant, PDK] is
known for regulating cancer cell metabolism, SAXO! may
influence cytoskeletal remodeling, PCDH19 plays a role

in cell adhesion and tumor invasiveness, GRINI is
involved in glutamatergic signaling linked to cell
proliferation, and T77TY11, a pseudogene, might regulate
gene networks through ceRNA mechanisms. These
insights reinforce the potential of these genes as
biomarkers or therapeutic targets.

In summary, this study provides a reliable,
interpretable, and high-performance framework for
transcriptomic analysis in breast cancer, supporting both
the discovery of biomarkers and the advancement of
precision oncology.
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Fig. 3: Heatmap graph of the 20 most relevant features found with the SelectKBeast statistical method

Acknowledgement

The first author acknowledges the financial support from
the Coordination for the Improvement of Higher
Education Personnel (CAPES). The authors also thank
the Federal University of Technology — Parand (UTFPR)
and the Graduate Program in Bioinformatics for
institutional support.

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] L. Breiman. Classification and regression trees. Routledge,
(2017).

[2] G.V. Batista, J.A. Moreira, A.L. Leite, C.I.LH. Moreira. Cincer
de mama: fatores de risco e métodos de prevencdo. Research,
Society and Development, 9(12), €15191211077 (2020).

[3]J. Lifiares-Blanco, A. Pazos, C. Fernandez-Lozano. Machine
learning analysis of TCGA cancer data. Peer] Computer
Science, 7, €584 (2021).

[4] T.C. Silva, A. Colaprico, C. Olsen, et al. TCGA Workflow:
Analyze cancer genomics and epigenomics data using
Bioconductor packages. F1000Research, 5 (2016).

[5] A. Colaprico, T.C. Silva, C. Olsen, et al. TCGAbiolinks: an
R/Bioconductor package for integrative analysis of TCGA
data. Nucleic Acids Research, 44(8), e71 (2016).

[6] M. de Oliveira Santos, F.C.S. de Lima, L.F.L. Martins, et
al. Estimativa de incidéncia de cancer no Brasil, 2023-2025.
Revista Brasileira de Cancerologia, 69(1) (2023).

[7]1 A.A. Ionkina, G. Balderrama-Gutierrez, K.J. Ibanez, et al.
Transcriptome analysis of heterogeneity in mouse model of
metastatic breast cancer. Breast Cancer Research, 23, 1-16
(2021).

[8] K. Tomczak, P. Czerwinska, M. Wiznerowicz. The
Cancer Genome Atlas (TCGA): an immeasurable source
of knowledge. Contemporary Oncology/Wspdiczesna
Onkologia, 2015(1), 68-77 (2015).

[9] What Is Data Mining. Data mining: Concepts and techniques.
Morgan Kaufmann, 10(559-569), 4 (2006).

© 2025 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1192

N SS ¥

N. Padre et al.: Transcriptomic Pattern Analysis in Breast Cancer...

[10] E. Carrizosa, C. Molero-Rio, D. Romero Morales.
Mathematical optimization in classification and regression
trees. Top, 29(1), 5-33 (2021).

[11] T. Beckers. An introduction to Gaussian process models.
arXiv preprint arXiv:2102.05497 (2021).

[12] M.M. Bejani, M. Ghatee. A systematic review on overfitting
control in shallow and deep neural networks. Artificial
Intelligence Review, 54(8), 6391-6438 (2021).

[13] G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor.
An introduction to statistical learning: With applications in
Python. Springer Nature, (2023).

[14] J. Brownlee. How to choose a feature selection method for
machine learning. Machine Learning Mastery, 10, 1-7 (2019).

[15] K.L. Howe, P. Achuthan, J. Allen, et al. Ensembl 2021.
Nucleic Acids Research, 49(D1), D884-D891 (2021).

[16] E.Y. Boateng, J. Otoo, D.A. Abaye. Basic tenets of
classification algorithms K-nearest-neighbor, support vector
machine, random forest and neural network: A review.
Journal of Data Analysis and Information Processing, 8(4),
341-357 (2020).

[17]1R. Couronné, P. Probst, A.L. Boulesteix. Random
forest versus logistic regression: a large-scale benchmark
experiment. BMC Bioinformatics, 19, 1-14 (2018).

[18] J. Brownlee. How to choose a feature selection method for
machine learning. Machine Learning Mastery, 10, 1-7 (2019).

[19] Zhang, S. L., et al. "PDKI1 and the Warburg Effect in
Cancer.” *Cancer & Metabolism* 6.1 (2018): 1-12.

[20] Kwon, Y., et al. "Cytoskeletal Dynamics and SAXO1 in
Cancer Cell Motility.” *Journal of Cell Science* 134.2
(2021): jcs256338.

[21] Stelzer, Y., et al. ”Protocadherins and Their Emerging Role
in Cancer.” *Cell Adhesion & Migration* 10.1-2 (2016):
41-45.

[22] Zhou, Y., et al. ”Glutamate Signaling in Cancer Cells.”
*Cancer Research* 79.4 (2019): 889-896.

[23] Chen, Y., et al. "Pseudogenes and Their Emerging Roles in
Tumor Biology.” *Seminars in Cancer Biology* 67 (2020):
179-191.

Natalia Padre Holds

a degree in Biotechnology
from the Federal University
of Bahia and recently
obtained a Master’s degree
in  Bioinformatics  from
the Federal University
of Technology - Parand
(UTFPR), in the Graduate
Program in Bioinformatics.
interests include genomic and

Their

research
transcriptomic analysis, data integration in cancer, and
the application of machine learning techniques in
bioinformatics.

Monique Borges
Seixas is an undergraduating
student og Bioprocess
Engineering at  UTFPR
(Universidade  Tecnoldgica
Federal do Parand). Her work
to focus on deep learning
and image segmentation
in medical imaging.

Paulo Victor dos Santos
is a researcher at Albert
Einstei Hospital - Brazil, with
expertise in areas like deep
learning, machine learning,
and computer vision.
He has contributed to studies
involving medical imaging
and optimization techniques.

Glaucia Maria Bressan
is an associate professor and
researcher of Universidade
Tecnoldgica Federal
do Parana (UTFPR) in
Brazil and in PPGBIOINFO
Graduate  Program.  Her
work spans areas like
optimization, machine
learning, and fuzzy systems.

Heron Oliveira dos
Santos Lima is a full
professor and  researcher

of Universidade Tecnoldgica
Federal do Parand (UTFPR)
in Brazil. He has worked
in areas such as Chemistry,
Biotechnology and Biology,
machine learning, and
optimization.

Marcella Scoczynski
is a researcher and associate
professor at UTFPR
and PPGBIOINFO Graduate
Program  with  expertise
in fields like machine
learning, combinatorial
optimization, and
evolutionary computation.

© 2025 NSP
Natural Sciences Publishing Cor.



	Introduction
	Methodology and Experiments
	Results and discussion
	Conclusion

