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Abstract: This study discusses a systematic literature review to determine the novelty of the GSTARIMA-X model with the Casetti
approach and the Kriging method. Based on previous studies, the exogenous variable parameters of the GSTARIMA-X model do
not consider the location factor, causing a lack of location factors in the exogenous variables. In this study to overcome this, the
GSTARIMA-X model was integrated with the Casetti approach, considering the latitude and longitude coordinates. This can provide
location effects on the exogenous variables of the GSTARIMA-X model. This model is called the GSTARIMA-X-Casetti model.
The GSTARIMA-X-Casetti model, predictions can only be made at the sampled locations so that the Kriging method is used for
predictions at unsampled locations, so the name of the model is GSTARIMA-X-Casetti-Kriging. The model will be applied to climate
data, considering that climate data is included in data that can be observed with location and time. The climate data to be used come

from NASA POWER which are big data, so the Data Analytics Lifecycle is used for processing.
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1 Introduction

The Space Time Autoregressive (STAR) model is a
spatio-temporal model developed by Pfeifer and Deutsch
using the Box-Jenkins procedure [1]. The STAR model is
a special case of the Vector Autoregressive (VAR) model
by considering spatial weights [2]. The assumption in the
STAR model is that the location characteristics are
homogeneous, so the parameters for each location are the
same. In reality, location characteristics are not always the
same, which makes this assumption less relevant.

To address this limitation, the Generalized
Space-Time Autoregressive (GSTAR) model was
developed, which assumes heterogeneous parameter
characteristics for each location and stationary data. The
GSTAR model has been applied to forecast petroleum
production in Jatibarang Field [3] with parameter
estimation conducted using the Ordinary Least Squares
(OLS) method. Future research added exogenous
variables to the GSTAR model called GSTAR-Exogenous
(GSTAR-X) to predict crude palm oil (CPO) exports in

Sumatra with international CPO prices as exogenous
variables [4].

The GSTAR model, which has been developed
previously, can only predict the future time at sampled
locations. However, in actual conditions, spatio-temporal
data is often uneven, causing unsampled locations. The
Kriging technique overcomes prediction problems at
unsampled locations. The technique is based on the
assumption that the value at a location depends on the
value at surrounding locations using spatial correlation
[5]. Kriging has been integrated with autoregressive
models, where [6] compared the Autoregressive (AR) and
GSTAR models and applied Kriging interpolation to
forecast in unsampled locations. Based on the results, the
GSTAR  model with  the  Kriging  method
(GSTAR-KTriging) is better than the AR model with the
Kriging method. Furthermore, [7] used the Ordinary
Kriging (OK) technique on the GSTAR model, also using
a linear semivariogram, to obtain simulations in
predicting model parameters. The results stated that the
GSTAR-Kriging parameters at unsampled locations were
almost similar to those at sampled locations.
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A first-order GSTAR model is developed by involving
the relationship between variable values at a certain time
and residual values at the previous time, known as the
Generalized Space Time Autoregressive Moving Average
(GSTARMA) model. The Maximum Likelihood
Estimation (MLE) method is used to estimate the
GSTARMA model [8]. The GSTARMA model applied to
non-stationary data uses a differencing process to achieve
stationarity, resulting in the Generalized Space Time
Autoregressive Integrated Moving Average
(GSTARIMA) model. The GSTARIMA model is applied
to urban traffic network modeling and short-term traffic
flow prediction using the OLS method [9]. Similar to the
GSTAR model, the GSTARIMA model can also
incorporate  exogenous  variables, forming the
GSTARIMA-Exogenous (GSTARIMA-X) model. Model
parameters are estimated using the Generalized Least
Squares (GLS) method [10].

Parameter estimation of exogenous variables in the
GSTARIMA-X model does not take into account the
coordinates between locations. This causes the lack of
influence of location on exogenous variables. To
overcome these problems, this study developed the
GSTARIMA-X-Kriging model with the Casetti approach
(GSTARIMA-X-Casetti-Kriging). The Casetti approach,
also known as spatial expansion, was introduced by
Casetti in 1997 with the aim of describing spatial
heterogeneity in the Spatial Autoregressive Exogenous
(SAR-X) model. Casetti’s approach takes into account the
coordinates between locations on the exogenous
variables, resulting in different parameter values for each
location [11]. The method is applied to the SAR-X model,
and the results show different parameter values for each
location, indicating an influence of location on exogenous
variables. [12] used the Casetti approach in the SAR-X
model for mapping school accreditation results in West
Java Province. [13] used the SAR-X model with the
Casetti approach for climate prediction. [14] applied the
SAR-X model with the Casetti approach using three
spatial weight matrices to forecast intangible cultural
heritage (WBTb) data in Indonesia. Based on these
studies, the SAR-X model with the Casetti approach can
produce different exogenous variable parameters by
taking into account the latitude and longitude coordinates
of each location.

The spatio-temporal model can be applied to model
climate patterns. Climate is the average pattern of
atmospheric conditions over the long term in a specific
region, including temperature, precipitation, humidity,
and wind [15]. Climate stability is crucial for various
human activities, such as agriculture, urban planning, and
public health. However, climate change caused by human
activities, such as fossil fuel combustion and
deforestation, has increased greenhouse gases, triggering
global warming.

To address the impacts of climate change, the United
Nations has introduced the SDGs through Goal 13:
Climate Action, which focuses on reducing emissions,

enhancing climate resilience, and integrating climate
change strategies into policies. Climate data can be
obtained from NASA POWER, an open-access database
supporting communities in renewable energy, sustainable
buildings, and agroclimatology. NASA POWER is
categorized as big data with the characteristics of 3Vs
(volume, variety, velocity). Its analysis can be conducted
using the Data Analytics Lifecycle, which includes
discovery, data preparation, model planning, model
building, results evaluation, and operationalization [16].

This study aims to integrate the GSTARIMA-X model
with the Casetti approach so that the exogenous variables
of the GSTARIMA-X model can account for the effect of
location. In addition, it is also integrated with the Kriging
technique to overcome the problem of unsampled data.
The following are the research questions for this
systematic literature review:

—RQ1: How to integrate the GSTARIMA-X model with
Casetti and Kriging approaches?

-RQ2: How to apply the
GSTARIMA-X-Casetti-Kriging model for climate
data forecasting?

The literature review findings were examined using the
PRISMA framework to map relevant studies. In addition,
a bibliometric analysis was carried out to identify
research trends and uncover gaps in the existing literature.
These steps aim to provide clear and structured answers
to the research questions.

2 Materials and Methods

This section discusses the theoretical framework of the
models used, starting with the GSTARIMA-X model, the
Casetti approach, and the Kriging method. In addition, it
provides an explanation of the PRISMA method and
bibliometric analysis.

2.1 Generalized Space Time Autoregressive
Integrated Moving Average-Exogenous

The Generalized Space Time Autoregressive Integrated
Moving Average-Exogenous (GSTARIMA-X) model is a
development of the GSTAR model that takes into account
the moving average component and exogenous variables.
The assumptions of the GSTARIMA-X model are
heterogeneous parameter characteristics, non-stationary
data, and errors that fulfill the assumption
e(t)id ~ N(0,0%) [2]. The GSTARIMA-X model is
expressed in equation (1).

iZd)le,Yt— izk k,W;et—
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where,

Z(t) : vector of observation variables with size (n x 1) at
time ¢,

Z(t — k) : vector of observation variables with size (n x 1)
at time t — k,

A« : kth spatial autoregressive order,

@, ; : space-time autoregressive parameter at time order k
and spatial order [, with size (n X n) in the form of
diagonal matrix ((D,Ell ), 1512)’ . cD,Ef)),

W, : spatial weight matrix with size (n X n) at spatial
order [ (I = 1,2,3,...), containing w; = 0 and
Yizjwij=1,

x(t) : vector of exogenous variables with size (n x 1) at
time ¢,

Y : parameter of exogenous variables, a diagonal matrix
(YD), ¥ ") with size (n x n),

0y, : space-time moving average parameter at time order
k and spatial order /, with size (n X n) in the form of

diagonal matrix (Gk(ll)7 Gk([z), ceey Gk(ln)),

e(t) : error vector with size (n x 1) at time 7,
e(t — k) : error vector with size (n x 1) at time ¢t — k.

2.1.1 Casetti Approach

Casetti’s approach was developed by Casetti [11] on the
Spatial Autoregressive (SAR) model known as the Spatial
Expansion model. This model assumes that parameters
vary as a function of latitude and longitude coordinates,
which means that parameter values change depending on
the geographical location of each observation. Therefore,
the purpose of the spatial expansion model is to describe
spatial heterogeneity with parameters not having the same
value for each location [17].

The spatial expansion model is formulated with a
linear regression model approach expressed in
equation (2),

Y=XB+e, 2)

where, B = AJPB,,
Y : vector of dependent variables of size (n x 1),
X : matrix of independent variables of size (n x nr),
B : parameter vector of size (nrx 1),
€ : error vector of size (nx 1),
A : matrix containing location information (latitude and
longitude) with elements agg 1(<l)21g’ size (nr X 2nr),
J : expansion of the identity matrix with size (2nr x 2r),
By : parameter vectors expressed by PBgjuinge and
Bo jongitude With size (2r x 1).

If B = AJB, is substituted into equation (2), it
becomes equation (3),

and a

Y = XAJB, + €. 3)

Another way to implement the spatial expansion
model is by using distance vectors rather than latitude and

longitude coordinates [17]. This implementation defines
the distance from the centre of observation using
equation (4),

di= \/(alat,- - alatc)z + (alongi - alongg)za 4)

where ajy, and djong, denote the latitude and longitude
coordinates of the observation at the centre, while ajy,
and ajong, are the latitude and longitude coordinates for
observations at other locations.

This approach allows assigning different weights to
each observation based on its distance from the centre.
Equation (4) will result in a distance vector that increases
with distance from the centre. This is appropriate for
describing phenomena that reflect “emptying” of the
centre or decreasing influence with distance from the
centre point. Data close to the centre will have more
influence in the model than data far from the centre.

2.2 Kriging Method

Kriging is a geostatistical technique used for spatial
interpolation of stochastic data. This technique is used to
make predictions of values at unobserved locations based
on values observed at other locations [18]. Simple
Kriging is one of the variants of Kriging that assumes that
the mean of the interpolated process is known and
constant across observation locations. Basically, simple
Kriging is based on the assumption that the process being
analysed has a Gaussian distribution.

In simple Kriging, one of the main points is to
minimise the mean square error between the predicted
value S(x) and the true value S(x) at location x. This is
done by finding the predictor S(x) that minimises the
expected squared error, expressed as:E [(S(x) — S(x))?].

The optimal predictor S(x) in simple Kriging is the
conditional expectation E[S(x)|y] of a stationary Gaussian
process, where y is the observed data. The predicted value
of S(x) at location x is a linear function of the observed
data y = (y1,y2,.--,¥n), more clearly expressed in
equation (5),

S0 =1+ Y wile) i — ), s)
i=1

where p is the global mean of the data, and w;(x) is a
weight that depends on the covariance parameters 62, 72,
and ¢. These weights w;(x) are calculated based on the
covariance between the observed points and the predicted
locations [18].

2.3 Data Analytics Lifecycle

The Data Analytics Lifecycle is a systematic framework
used to manage and execute data analytics projects from
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Table 1: Keywords and article search results in the database

Code Keywords Scopus Dimensions Web of Science Total

A (“Space  Time” OR “Spatio Temporal” 57,704 490,132 27,197 575,033
“Generalized Space Time Autoregressive”
“GSTAR” OR “GSTARI” OR “GSTARIMA”)

B (“Casetti” OR “Casetti Model” OR “Casetti Approach” 3,657 5,591 4,472 13,720
OR “Expansion Method”)

C (“Kriging” OR “Kriging Method”) 6,615 50,32 31,529 89,076

D (“Climate” OR “Weather” OR “Big Data” OR “Data 1,414,117 3,200,093 725,304 5,339,514
Mining” OR “Data Analytics Lifecycle”)

E A AND B AND C AND D 0 68 19 87

the discovery phase to the operationalisation phase. This
cycle includes a series of stages that help identify
problems, collect and process data, build models, and
communicate the results to stakeholders to support
data-driven decision making. The key stages in the data
analytics lifecycle specifically designed for big data
problems and data science projects are as follows [16]:

1.Discovery phase: the problem is identified by
studying and investigating the problem and
developing a process of understanding. Data sources
needed and available for research are explored, and
initial hypotheses are formulated.

2.Data preparation phase: includes data exploration
and pre-processing or conditioning the data before
modelling and analysis.

3.Model planning phase: identifies the model that will
be applied to the data and finds relationships in the data
based on research objectives.

4.Model building phase: involves developing the model
and adjusting it to the data.

5.Communicate results phase: analyses the results of
modelling with predetermined test criteria to
determine model accuracy.

6.Operationalise phase: implements solutions or
actions based on insights and analysis results.

2.4 Scientific Article Data

This Systematic Literature Review (SLR) examines the
development of the GSTARIMA-X model, which
combines the Casetti approach and the Kriging method,
and its use in analyzing climate-related data. The article
selection process involved several stages, including
choosing databases, sampling, collecting data, filtering
with the PRISMA framework, and analyzing the results.
The databases wused in this study were Scopus,
Dimensions, and Web of Science. Scopus was selected as
one of the main sources because it is one of the largest
and most popular academic databases in the world. It
gives access to thousands of peer-reviewed journals and
ensures thorough indexing of article titles, abstracts,

keywords, and references [19]. This helps researchers
efficiently search for and find relevant literature.

To identify publications related to the research topic,
several keywords were used, as shown in Table 1. The
search focused on works published between 2010 and
2024, including only journal articles and conference
papers.

2.5 PRISMA Diagram

Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) is a diagram designed to assist
researchers in systematically reviewing the literature by
identifying articles in a database [20]. The PRISMA
method is a guide used to improve the quality of
systematic reports and meta-analyses. PRISMA was first
introduced in 2009 and has been updated to PRISMA
2020. Systematic reports and meta-analyses play an
important role in synthesizing scientific evidence used for
future research. A total of 87 articles, as presented in
Table 1, were analyzed using the PRISMA method.

There are three main processes in selecting articles,
namely identifying previous studies, conducting literature
searches through databases such as Scopus or Web of
Science, using relevant keywords, and applying additional
methods such as citation tracking.

The three main stages in the PRISMA method are:

Identification: defining the research
conducting a thorough database search.
*Screening: evaluating titles, abstracts, and full texts to

determine relevance.
*Included: evaluating relevant literature and excluding
those not meeting the criteria, then compiling the
selected articles for systematic review.

topic and

2.6 Bibliometric Analysis

Bibliometric mapping is a method used to analyze and
visualize scientific literature based on bibliographic data.
This method helps in identifying publication patterns,
research trends, relationships between scientific fields,
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and the influence of a particular scientific work in its
field. In this study, the analysis was performed using text
data, focusing on the frequency and pattern of occurrence
of keywords or terms in articles [21].

This tool is widely used in the field of scientometrics
and allows researchers to explore and interpret complex
networks of scientific publications, authors, and
keywords. With VOSviewer, researchers can create maps
that represent relationships and patterns in a dataset. This
map is usually displayed as a network visualization,
where nodes represent items such as publications,
authors, or keywords, while links indicate relationships or
interrelationships between these items [22].

3 Result and Discussion

This section discusses the results of the analysis of the
PRISMA diagram to filter relevant articles, starting from
the identification stage to the included stage. In addition,
the bibliometric results were analyzed to see the
relationship between the keywords used. If the keywords
are interrelated, it indicates that there has been research
that develops these keywords. Articles relevant to this
research are also analyzed to see how the research topic
evolved. By analyzing the articles, we can also identify
the research gap, which is useful for determining novelty
for future studies.

The results of the PRISMA method applied in this
study are as follows:

1.Previous Study
The model analyzed in this systematic literature
review focuses on the development of the
GSTAR-Kriging model using the Casetti approach,
incorporating error components and exogenous
variables. At this stage, prior studies were identified,
including those that first developed the GSTAR model
and supported the model assumptions, Kriging
techniques, and the Casetti approach. A total of 9
articles were identified from previous studies.

2 Identification of New Studies via Databases
The identification of articles from databases was
conducted in three stages:

(i)Identification: Literature was sourced from
Scopus, Dimensions, and Web of Science using
several keywords as outlined in Table 1. Based on
Table 1, the search results from the three
databases yielded the following: 575,033 articles
for keyword A, 13,720 for keyword B, 89,076 for
keyword C, 5,339,051 for keyword D, and 87
articles for keyword E. Keyword E represents a
combination of keywords A, B, C, and D. These
87 articles were used for the screening stage and
downloaded in .ris format. Duplicate articles were
removed using Mendeley, resulting in 5 duplicate
articles being excluded. At the identification stage,
82 articles remained.

(ii))Screening: The screening process consisted of
three steps:

*Relevance of Titles and Abstracts: A manual
screening of 82 articles was conducted based on
titles and abstracts. Articles were selected if
relevant to spatio-temporal model development,
Kriging techniques, and the Casetti approach. This
process yielded 33 relevant articles, while 49 were
deemed irrelevant.

*Accessibility: Of the 33 articles, only 31 were
accessible, as 2 could not be retrieved.

*Relevance of Full Papers: The accessible articles
were further evaluated manually based on the full
paper’s relevance to spatio-temporal model
development, particularly GSTAR, Kriging
techniques, and the Casetti approach. This step
resulted in 11 relevant articles, while 20 were
irrelevant.

(iii)Included: In total, 11 articles were selected as the
final materials from the identification of new
studies in databases.

3.Identification of New Studies from Other Methods

New studies were identified through citation tracking,

resulting in 14 articles. These articles underwent

screening based on accessibility and full-article
relevance. All 14 articles were deemed relevant and
included in the review.

Totals of 9 articles were obtained from previous
studies, 11 articles were identified through database
searches, and 14 articles were gathered using citation
tracking methods. This resulted in a combined total of 34
articles that were carefully selected and deemed relevant
for review in this study. The selection process was
conducted systematically, following the PRISMA
guidelines to ensure transparency and reproducibility. The
detailed steps, including identification, screening,
eligibility, and inclusion, are clearly outlined and
visualized in the PRISMA diagram, as shown in Figure 1.

The articles filtered using the PRISMA method were
mapped to analyze the relationships between topics based
on keywords. VOSviewer was employed as a tool to
visualize the bibliometric mapping for this study. A total
of 34 articles were analyzed and mapped using textual
data, as illustrated in Figure 2.

From the overall mapping in Figure 2 highlights the
focus on the keywords “GSTAR,” "GSTAR Kriging
Model,” and “Casetti Approach” to explore the
interconnections among these three keywords. The
analysis begins with the keyword "GSTAR,” as depicted
in Figure 3.

Based on Figure 3, the keyword "GSTAR” is linked to
several keywords, including “exogenous variable,”
indicating that research has been conducted to develop the
GSTAR model by incorporating exogenous variables.
Additionally, "GSTAR” is connected to "GSTARIMA”
and "GSTAR Kriging Model,” as detailed in Figure 4,
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Fig. 1: PRISMA diagram for identified relevant articles
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reflecting research advancements in the development of
the GSTAR-Kriging model.
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Fig. 4: Topic Mapping based on the keyword “GSTAR
Kriging Model”

From Figure 3 and Figure 4, it is evident that the
keywords "GSTAR” and "GSTAR Kriging Model” are
not directly connected to the keyword “Casetti
Approach,” as shown in Figure 5. Instead, the keyword
”Casetti Approach” is linked to “exogenous variable,” but
it lacks a connection to "GSTAR” or "GSTAR Kriging
Model.” This reveals a gap between the keywords
”GSTAR,” ”"GSTAR Kriging Model,” and “Casetti
Approach,” which could potentially be bridged through
the integration of exogenous variables. By leveraging
exogenous variables, the GSTAR Kriging model can be
integrated with the Casetti approach. Furthermore, as seen
in Figure 4, the node size for the keyword "GSTAR” is
larger compared to "GSTARIMA,” indicating that the
development of GSTARIMA models is still limited
compared to GSTAR models. Based on these findings,
integrating the GSTARIMA model with the Casetti
approach and Kriging represents a novel contribution.

‘oach

Fig. 5: Topic Mapping based on the Keyword “Casetti
Approach”
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Here is a list of articles used as references in this
literature, which can be found on Table 2. The table
summarizes various methods and approaches relevant to
the research topic, each described with the following
annotations: ST= Space Time, C= Casetti, X=
Exsogenous Variables, K=Kriging, MA= Moving
Average , MLE= Maximum Likelihood Estimation,
DAL= Data Analytics Lifecycle.

Based on Table 2, there is a column summarizing
various model assumptions designed in line with the
development of the GSTARIMA-X-Casetti-Kriging
model. This model is estimated using the Maximum
Likelihood Estimation (MLE) method and employs the
Data Analytics Lifecycle (DAL) methodology. To date,
no previous studies have explicitly utilized such a
combination of assumptions in model development.
Therefore, this provides significant novelty in the field of
spatio-temporal modeling, particularly in integrating
methods and approaches that have not been previously
implemented.

Furthermore, the findings in Table 2 support the
results of the bibliometric analysis previously discussed,
emphasizing that this model has the potential to fill
unexplored research gaps. The GSTAR model itself has
been extensively developed by previous researchers with
various modifications, such as adding a Moving Average
component  [8,9,10,24,25,26,32,38],  incorporating
exogenous variables to improve accuracy [4,10,23,24,27,
30,32,38], and utilizing the Kriging method to produce
better spatial interpolation [6,7,24,29,30,31]. However,
until now, no studies have directly integrated the GSTAR
model with the Casetti method. Therefore, this study
offers an innovation by introducing a combined approach
between GSTAR and the Casetti method. The Casetti
method has been discussed in various previous
studies [12,13,14] applied to the SAR-X model. The
SAR-X model belongs to a spatial model that does not
take into account the influence of time. Therefore, no one
has integrated the Casetti approach with spatio-temporal
models.

This systematic literature review aims to fill the gap
by integrating the Casetti approach with a spatio-temporal
model, namely the GSTARIMA-X model. By integrating
the GSTARIMA-X model with the Casetti approach, the
exogenous variable parameters can take into account the
influence of location because it involves the latitude and
longitude values of a research area. In addition, the
Casetti approach can also provide visualization in the
abscissa and ordinate directions of the exogenous
variables on the response variable. In order for the
GSTARIMA-X model integrated with the Casetti
approach (GSTARIMA-X-Casetti) to be used for
prediction in unsampled locations, the Kriging technique
is used.

By combining these elements, the proposed
GSTARIMA-X-Casetti-Kriging model aims to extend the
advantages of previous model developments while
offering a new solution through the integration of the

Casetti method. This approach is not only relevant in the
context of academic research, but also has potential for
practical applications in areas such as climate data
analysis, spatial prediction, and spatio-temporal modeling
in general.

In general, the GSTARIMA-X-Casetti-Kriging
modeling process to predict climate data follows the Data
Analytics Lifecycle, as illustrated in Figure 6. The
GSTARIMA-X-Casetti-Kriging modeling process for
climate data follows the Data Analytics Lifecycle (DAL),
which consists of six phases: discovery, data preparation,
model planning, model building, operationalization, and
communicating results.

3.1 Discovery

The problem formulation begins with real-world issues
that can be addressed using the GSTARIMA-X model. A
Systematic Literature Review (SLR) is conducted
regarding the development of the GSTARIMA-X model
and climate phenomena to identify research gaps. In this
process, the PRISMA diagram and bibliometric analysis,
as discussed earlier, are employed.

3.2 Data Preparation

The data preparation phase involves the stages of data
selection, cleaning, and transformation. Climate data
were obtained from NASA POWER through its official
platform (https://power.larc.nasa.gov), which provides
various tools and services, such as the Data Access
Viewer (DAV) for data subsetting and visualization, API
service endpoints for automated access via scripts, and
GIS services for mapping and spatial analysis. These
tools enable users to select data based on geographic
coordinates, time ranges, and required variables.

The NASA POWER dataset falls into the category of
big data, characterized by the 3Vs: Volume, Variety, and
Velocity. According to the Goddard Earth Sciences Data
and Information Services Center (GES DISC)
(https://disc.gsfc.nasa.gov), this archive contains more
than 7,300 TB of data and over 248 million files. This
massive volume is accompanied by significant variety, as
NASA POWER provides more than 100 climate-related
variables, such as temperature, humidity, and
precipitation, across various spatial and temporal
resolutions. Additionally, the velocity aspect is evident
from continuous updates to incorporate recent
observations.

Processing such a large and complex dataset requires
a structured methodology to ensure effective analysis.
Therefore, the Data Analytics Lifecycle (DAL) is applied,
which consists of six main phases: discovery, data
preparation, model planning, model building,
operationalize, and communicate results. This approach
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Table 2: Relevant articles

Reference Model Data ST MA  MLE DAL  Performance Analysis
Setiawan & Purwadi ~ GSTAR-X Consumer Price v - v - MSE: 12.95%, RMSE:
[23] Index (CPI) 19.35%
Monika et al. [24] GSTARIMA-X- Climate v v v v -
ARCH-Kriging
Salsabila et al. [25] GSTARIMA Rainfall v v v v MAPE: in-sample: 9%, out-
sample: 11%
Tsanawafa et al. SAR-X-Casetti Intangible Cultural - - v - RMSE: 1.23-2.49; R%:
[14] Heritage (WBTDb) 0.23-0.69
Falah et al. [13] SAR-X-Casetti Climate - v - MAPE: 0.66-26.47
Munandar et al. [26] GSTARIMA-DNN Climate v v v v -
Monika et al. [27] GSTARI-X-ARCH Climate v — — v MAPE: 19%
Nadhliyah et al. [28] MGSTAR Air quality v - - - The smallest RMSEP 4.99 and
SMAPE 70.72
Aulia & Saputro  GSTARIMA-X - v v - - -
[10]
Prasetiyowati [29] GSTAR-Kriging Air pollution v - - - The smallest RMSE in NO2:
0.88 and SO2: 0.956
Pramoedyo et al. GSTAR-SUR- Coffee borer v — — - MAPE: 6.18%, RMSE:
[30] Kriging, GSTAR- infestation 0.0423
X-SUR-Kriging
Pramoedyo et al. GSTAR-SUR- Coffee borer v - - - MAPE: 5.11, RMSE: 0.04
[31] Kriging infestation
Akbar et al. [32] GSTAR-X, Air pollution v - - - RMSE: GSTARMA: 0.20,
GSTAR-X-SUR, GSTAR: 0.22
GSTARMA-X,
GSTARMA-X-SUR
Hu et al. [33] GSTAR-Kalman Air pollution v - - - The smallest RMSE 0.5722
filter and MAE 2.0311
Novianto et al. [34] VARI-X, GSTAR-X Travellers v - - v RMSE: VARIX: 2.778;
GSTAR-OLS: 2.761; GSTAR-
GLS: 2.776
Akbar et al. [35] GSTAR-X-SUR Currency v — — — MAPE: 1.909
withdrawal
Abdullah [7] GSTAR-Kriging Rainfall v - - - The smallest MAPE 7.72%
Handajani et al. [36] GSTAR Rainfall v - - - RMSE: 141.69-179.11
Yundari et al. [37] GSTAR Tea production v - - - The smallest RMSE 1.16
Astuti & Ruchjana ~ GSTAR-X Crude palm oil v - - - The smallest MSE 2.62 x 10°
[4]
Nisak [38] GSTARIMA-SUR Rainfall v - - - RMSE: 526-6.12;  R%:
0.51-0.65
Mukhaiyar [6] AR-Kriging, Tea production v - - - GSTAR-Kriging better than
GSTAR-Kriging AR-Kriging
Abdullah et al. [12] SAR-X, SAR-X- Primary school - - - - Pattern of actual data similar
Casetti accreditation to predicted model
Iriany et al. [39] GSTAR-SUR Rainfall v - - - R*:53.84%
Nurhayati et al. [40] GSTAR Gross Domestic v - - - MSFE symmetrically
Product (GDP) distributed around zero
Ruchjana et al. [41] GSTAR Petroleum v - - - -
production
Min & Hu [9] GSTARIMA Short-term  urban v v - - MRE: 11.33%, MSE: 6775.87,
traffic flow network EC: 86.47%
Borovkova et al. GSTAR Tea production v - - - Smallest MSE: 0.0004
[42]
Di Giacinto [8] GSTARMA Unemployment data v v - - -
Ruchjana [43] GSTAR Petroleum v - - - MAPE: 3.225%
production
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Reference Model Data ST C X K MA MLE DAL  Performance Analysis
Terzi [44] STAR . S - - = _ v _ i
Pfeifer & Deutsch ~ STAR, STMA,  Crime rate v - - v - - - -
[1] STARMA
Casetti [11] SAR-X-Casetti - - v v - - - - -
Krige [5] Kriging Gold value of mine v - v - - - - -
samples
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Fig. 6: Data analytics lifecycle phases
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was chosen because it provides a systematic workflow for
managing large-scale data, from preparation to analysis
and interpretation of results.

In this phase, it is important to ensure that the data can
be used for modeling, especially if the data is included in
big data. Therefore, this phase consists of several stages:
first, data selection, where the time range and relevant
variables are determined. Next is data cleaning, where
noise or missing values are handled using Python. After
cleaning, the data is transformed from daily observations
to monthly aggregates. This structured selection process
is essential for analyzing big data effectively.

3.3 Model Planning

The planning of the GSTARIMA-X-Casetti model is
analyzed using the Box-Jenkins method. The first stage is
model identification, which aims to examine data
stationarity using the Augmented Dickey Fuller (ADF)
test to check stationarity in the mean. The model order is
also determined in this stage using the Space-Time
Autocorrelation Function (STACF) and the Space-Time
Partial Autocorrelation Function (STPACF).

3.4 Model Building

The main difference between the GSTARIMA-X model
and the GSTARIMA-X-Casetti model lies in the
exogenous variable parameters, which originally use ¥
and are modified to ¥ = AJY¥, as shown in equations (3).
Thus, when the GSTARIMA-X model in equation (1) is

integrated with the Casetti approach, it becomes
equation (6).
P M g M
Y(t) = Z Z d’kJW(I)Y(I —k)— Z Z Ok,,W,e(t —k)+
k=11=0 k=11=0
X(Z)AJYO + e(t)a
(6)
where,
1 1
Aondl el 0 0
A=1 0o 0 )
0 0 0 al @k ap, @I
l 0 Yotlat
0 Iy %
=1, 7y = 021at
s Yotiong
01 Yo2long

e(t)d ~ N(0,5°1),
Z(t) : observation variable vector of size (n x 1) at time 7,
Z(t — k) : observation variable vector of size (n x 1) at
time (f — k),
Z(t —k— 1) : observation variable vector of size (n x 1)
attime (f —k—1),
Ay : spatial order at the k-th autoregressive term,
@, ; : autoregressive and space-time parameter at time
order k and spatial order /, with size (n x n) represented
as a diagonal matrix (<I>,£ll ), d)lflz), o <I>,§I">),
WO . weight matrix of size (n x n) at spatial order !
(I=1,2,...),where w; =0and Y,z ;w;; = 1,
6 : space-time moving average parameter at time order
k and spatial order /, with size (n X n) in the form of

diagonal matrix (6,511), 6,{(]2), ey 6,51")),

x(t) : exogenous variable vector of size (n x 1) at time ¢,
A : matrix containing location information with elements

al(iz and afélg representing the latitude and longitude of

each observation location, with size (nr x 2nr),

J : extended identity matrix of size (2nr X 2r),

Yo : parameter vector expressed as Yia and Yoong With
size (2r x 1),

e(t) : error vector (n x 1) at time ¢.

If there are 3 locations, with autoregressive order 1,
differencing order 1, moving average order 1, and 2
exogenous variables, the GSTARIMA(1,1,1)-X(2)-Casetti
model is expressed in equation (7).

Yy () = @10yt — 1) + @y ywyM (1 — 1) — G19eV (1 — 1) —

B we(t —1) +x<11>(t)al(;t> Yollat +X§1> (t)afj? Yoolar+
Xgl) (t)af(:r)ngOUong +x§l) (t)af(irzgymlong + e(1>(t),
¥y () = D10y (1 = 1)+ Dy wy? (1= 1) — 619 (1 — 1)—

01 we@ (t—1) +X(12) (t )al(ft) Yollat +X(22> (t )al(;) Yo2tat+
(2) (2)

x(12) (t)alongYOllong + X5 (t)al(jzgYOZIong + 9(2) (t)7
Y (1) = 1oy (¢ — 1) + Pyywy® (1= 1) — B19e®) (r — 1) -

011wel (1 1) +x§3) (l)al(:t) Yollat +x§3> (f)al(:t) Yo2tat+
(3) (3

X1 (t)al(sr)lg’ﬁ)llong +x2 )(Z)alglzgYOZIOng + 6(3) ([)
N

The next stage involves parameter estimation, where
the Ordinary Least Squares (OLS) and Maximum
Likelihood Estimation (MLE) methods are used in this
study under the assumption that e(z)1'4 ~ N(0, 62).

What distinguishes the regular GSTARIMA-X model
from the GSTARIMA-X-Casetti model lies in the
parameters of the exogenous variables. For the exogenous
variables in the GSTARIMA-X-Casetti model, latitude
and longitude coordinates are also considered. The
estimation of the GSTARIMA-X-Casetti model involves
two stages: first, estimating the parameters of the
GSTARI-X-Casetti model, followed by making
predictions using the GSTARI-X-Casetti model. The
prediction results yield error values, which can be used
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for modeling the moving average and determining its
parameters, resulting in the complete
GSTARIMA-X-Casetti model. The Kriging method is
then applied to predict values at unsampled locations,
thereby forming the comprehensive
GSTARIMA-X-Casetti-Kriging model.

The final stage is diagnostic checking to examine
whether the model satisfies the assumptions of
multivariate white noise and multivariate normality using
the Portmanteau Test and Chi-Square QQ plots. If these
assumptions are met, the model can then be used for
future time prediction.

3.4.1 Communicate Results

This phase involves analyzing prediction results,
visualizing them, and calculating the climate prediction
accuracy of the GSTARIMA-X-Casetti-Kriging model
using Mean Absolute Percentage Error (MAPE).

3.4.2 Operationalize

This phase focuses on applying the
GSTARIMA-X-Casetti-Kriging  model to  other
space-time datasets for verification and practical use.

4 Conclusions

The GSTARI model has been widely developed,
including extensions such as incorporating a moving
average component (GSTARIMA), adding exogenous
variables (GSTARIMA-X), and integrating with the
Kriging technique to handle unsampled data
(GSTARI-Kriging). Based on the results of the analysis in
this study using PRISMA and bibliometric methods, no
research has been found that integrates the GSTARI-X or
GSTARIMA-X model with the Casetti approach.
Therefore, this study proposes integrating the
GSTARIMA-X model with the Casetti approach, referred
to as the GSTARIMA-X-Casetti model. This integration
aims to ensure that the exogenous variable parameters in
the GSTARIMA-X model account for spatial influences.
With the Casetti approach, the original exogenous
variable parameter ¥y becomes ¥ = AJY¥,, where latitude
and longitude values are explicitly incorporated.

The GSTARIMA-X-Casetti model, however, can only
generate predictions at sampled locations with
observational data. To address this limitation, the Kriging
method is applied to enable predictions at unsampled
locations, resulting in the comprehensive
GSTARIMA-X-Casetti-Kriging model.

The prediction process of the GSTARIMA-X-Casetti
model follows the Box-Jenkins procedure, which consists
of three stages: model identification, parameter
estimation, and diagnostic checking. Model identification

determines the appropriate order of the model. Parameter
estimation is carried out in two stages: first, estimating
the parameters of the GSTARI-X-Casetti model using the
Ordinary Least Squares (OLS) method, then generating
predictions to obtain the residual errors. These residuals
are used to determine the moving average parameters
using the Maximum Likelihood Estimation (MLE)
method, resulting in the complete GSTARIMA-X-Casetti
model. Finally, the Kriging method is applied to predict
values at unsampled locations, forming the
GSTARIMA-X-Casetti-Kriging model.

The proposed model is highly suitable for
spatio-temporal data, such as climate data. Climate data,
by nature, spans both spatial and temporal dimensions,
making it a representative case for model application. In
this study, climate data is obtained from NASA POWER,
which is classified as big data due to its characteristics of
volume, variety, and velocity. Consequently, the Data
Analytics Lifecycle (DAL) framework, consisting of six
phases, is employed to systematically manage the data.
One crucial phase is data preparation, in which climate
data is processed and transformed to meet the
requirements of the GSTARIMA-X-Casetti-Kriging
model.

This model is expected to make a significant
contribution to advancing research in the analysis and
forecasting of spatio-temporal data. Moreover, it can
serve as a valuable reference for institutions involved in
climate-based decision-making processes, such as climate
change mitigation, natural resource management, and
regional planning. The primary objective of the
GSTARIMA-X-Casetti-Kriging model is to enhance the
accuracy of climate data forecasting, thereby providing a
tangible impact across multiple sectors.
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