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Abstract: In this paper, we introduce new notations for algebraic structures, specifically ϑ -T and ϑ -M, and explore their properties
through graphical analysis within the framework of Z-subalgebras of Z-algebras. The study provides a comprehensive discussion of
the algebraic properties associated with these structures and includes illustrative examples to enhance understanding. Building on
this foundation, we further extend the definitions of ϑ -T and ϑ -M to the domain of Z-ideals of Z-algebras, employing graphical
analysis to demonstrate their various group-theoretical properties. These extensions offer deeper insights into the interplay between
these algebraic structures and their graphical representations. Moreover, we introduce and formalize the concepts of ϑ -translations and
ϑ -multiplications within the framework of Z-ideals of Q-fuzzy Z-algebras. Using graphical analysis, we provide a detailed exploration
of their properties, offering a fresh perspective on how these new constructs behave within the broader context of Q-fuzzy Z-algebras.
By delving into their algebraic characteristics, we reveal significant relationships and properties that contribute to the advancement of
algebraic theory. The graphical approach employed throughout this paper not only facilitates a better understanding of the underlying
structures but also aids in visualizing complex relationships and operations. Through rigorous analysis and the integration of examples,
we highlight the utility of these notations and their potential applications in algebraic studies. This work sets the stage for further
exploration and development of similar structures in advanced algebraic systems, establishing a foundation for future research in this
field.
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1 Introduction

In 1965, Zadeh L A [1], initiated by the concept of fuzzy
sets. Several researchers explored on the generalization of
the notion of fuzzy subset. The study of fuzzy subsets and
its applications to various mathematical contents has
given rise to what is now commonly called fuzzy
mathematics [2,3,4]. Iseki K and Tanaka S [5,6,7],
introduced the concept of an introduction to the theory of
BCK-algebras in 1978. In 1980, Iseki K [8], first
introduced the notation on BCI-algebras. KyoungJa Lee,
Young Bae Jun and Myung Im Doh [9,10,11], introduced
the concept of fuzzy translations and fuzzy multiplication
of BCK/BCI-algebras in 2009 [12,13,14]. Abu Ayub
Ansari and Chandramouleeswaran M [15,16,17],
introduced the concept of fuzzy translation of fuzzy β -
ideals of β -algebras in 2014. In 2014, Priya and
Ramachandran T [18], introduced the new notation of
fuzzy translation and multiplication on PS-algebras.
Prasanna A, Premkumar M and Ismail Mohideen S [19]
& [20] & [21] & [22] & [23], introduced the concept of
fuzzy translation and multiplication on B-algebras in
2018 and also derived from Fuzzy Translation and Fuzzy
Multiplication in BG - Algebras in 2019. In 2021,
Premkumar [24] derived the new notation of Algebraic
Properties on Fuzzy Translation and Multiplication in
BP?Algebras [25,26,27]. Premkumar [19] & [20],
introduced the new concept of Algebraic Properties on ω

- Fuzzy Translation and Multiplication in BH-Algebras in
2020 and also derived from the concept of Characteristics
of k − Q-Fuzzy Translation and Fuzzy Multiplication in
T -Ideals in T -Algebra in 2022. Solairaju [28] described
the new structure and construction of Q̄-fuzzy groups in
2009. Sowmiya [29] & [30] & [31] & [32] initiated by the
concept on Fuzzy Z-ideals in Z-algebras and also Fuzzy
Algebraic Structure in Z-Algebras in 2019.

We define the new notation of Algebraic structures of
ϑ -T and ϑ -M in Z-Sub Algebra of Z-Algebras. And also
defined the ϑ -T and ϑ -M in Z-Ideal of Z-Algebra and
discussed some of their properties and also derived new
notation of Algebraic structures of ϑ -Translations and
ϑ -Multiplication in Z-Sub Algebra of Q- fuzzy
Z-algebras. And also defined the ϑ -translations and
ϑ -Multiplications in Z-Ideal of Q-fuzzy Z-algebras and
discussed some of their properties

2 Preliminaries

Definition:2.1 A Z-algebra ( ˜́ω,∗,θ) be a Z-algebra. A
FSA in ˜́ω with a membership function H̃A is said to be a
FZSA of a Z-algebra ˜́ω if, H̃(ŕ ∗ Š)≥ H̃(ŕ)∧ H̃(š), for all
ŕ, š in ˜́ω

Definition:2.2 A Z-algebra ( ˜́ω,∗,θ) be a Z-algebra. A
FSV in ˜́ω with a membership function H̃A is said to be a

FZI of a Z-algebra ˜́ω if,

–H̃(0)≥ H̃(ŕ)

–H̃(ŕ)≥ {H̃(ŕ ∗ š)∧ H̃(š)}

Definition:2.3 Let Q̄ and G a set and a group respectively.
A mapping µ : ˜́ω × Q̄ → [0,1] is called Q̄-FS in G. For any
Q̄-FSµ in G and t ∈ [0,1] we define the set

U(µ; t) = { f ∈ ˜́ω/µ( f ,q)≥ t,q ∈ Q̄}

which is called an upper cut of ?µ? and can be use to the
characterization of µ .

3 Innovative Graphical Frameworks for
Understanding ϑ -Translation and
ϑ -Multiplication in Fuzzy Z-Algebra and
Q-Fuzzy Z-Algebra

Let, ˜́ω be a Z-algebra. For any FSH̃ of ˜́ω we define
T = 1− supH̃(ŕ)/ŕ ∈ ˜́ω , unless otherwise we specified.

Definition:3.1 Let, FSH̃ be a FSb of ˜́ω and ϑ ∈ [0,T ]. A
mapping H̃T

ϑ
: ˜́ω → [0,1] is said to be a Fϑ −T of H̃ if it

satisfies H̃T
ϑ
= H̃(ŕ)+ϑ ,∀ŕ ∈ ˜́ω .

Definition:3.2 Let, FSH̃ be a FSb of ˜́ω and ϑ ∈ [0,T ]. A
mapping H̃M

ϑ
: ˜́ω → [0,1] is said to be a Fϑ −M of H̃ if it

satisfies H̃M
ϑ

= ϑ H̃(ŕ), ∀ŕ ∈ ˜́ω .

Example:3.3 Let ˜́ω = {0,1,2,3} be the set with the
following table.

Table 1: Fuzzy Z-Algebra Data Set

∗ 0 1 2 3
0 0 1 2 3
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

Then ( ´̃ω,∗,0) is a Z−algebra.
Define FSH̃ is of ´̃ω by

H̃(ŕ) =

{
0.4 if ŕ ̸= 1,
0.3 if ŕ = 1

Thus H̃ is a FZSA of X.
Hence T = 1− sup H̃(ŕ)/ŕ ∈ ´̃ω = 1−0.4 = 0.6,
Choose ϑ = 0.2 ∈ [0,1] and ϑ = 0.3 ∈ [0,1].
Then the mappingH̃T

0.2 :→ [0,1] is defined by

H̃T
0.2 =

{
0.2+0.4 = 0.6, if ŕ ̸= 1,
0.2+0.3 = 0.5, if ŕ = 1
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Fig. 1: Graph Representation with (x,y) Node Labels

Fig. 2: Graph representation of Cayley tamale using with
Fuzzy Z-Algebra

Which satisfies H̃(0.2)T (ŕ) = H̃(ŕ)+0.2,∀ŕ ∈ ˜́ω , is a 0.2−
T.
The mapping(γ)((0.3)M) : ˜́ω → [0,1] is defined by

H̃M
0.2 =

{
0.3×0.4 = 0.12, if ŕ ̸= 1,
0.3×0.3 = 0.09, if ŕ = 1

Which satisfies H̃((0.3)M)(ŕ) = H̃(ŕ)(0.3),∀ŕ ∈ ˜́ω , is a
0.3M
Theorem:3.4 If H̃ of ˜́ω is a FZSA and ϑ ∈ [0,1], then the
F ϑ −T.(H̃ϑ )

T (ŕ) of H̃ is also a FZSA of ˜́ω.

Proof Let, ŕ, ś ∈ ˜́ω and ϑ ∈ [0,T ]
Then, H̃(ŕ ∗ ś)≥ H̃(ŕ)?H̃(ś)
Now,

(H̃T
ϑ )(ŕ ∗ ś) = H̃(ŕ ∗ ś)+ϑ

≥ [H̃(ŕ)∧ H̃(ś)]+ϑ

= [(H̃(ŕ)+ϑ)∧ (H̃(ś)+ϑ)]

= [(H̃T
ϑ )(ŕ)∧ (H̃T

ϑ )(ś)]∀ŕ, ś ∈ ˜́ω

Theorem:3.5 Let,H̃ be a FSb of ˜́ω such that the Fϑ −
T (H̃T

ϑ
)(ŕ) of H̃ is a FZSA of ˜́ω , for some ϑ ∈ [0,T ], then

H̃ is a FZSA of ˜́ω.

Proof Assume that (H̃ϑ )
T (ŕ) is a FZSA of ˜́ω for some

ϑ ∈ [0,T ]
Let ŕ, ś ∈ ˜́ω, we have

H̃(ŕ ∗ ś)+ϑ = (H̃ϑ )
T (ŕ ∗ ś)

≥ [(H̃ϑ )
T (ŕ)∧ (H̃ϑ )

T (ś)]
= [(H̃(ŕ)+ϑ)∧ (H̃(ś)+ϑ)]

= [H̃(ŕ)∧ H̃(ś)]+ϑ

=⇒ H̃(ŕ ∗ ś) ≥ [H̃(ŕ)∧ H̃(ś)],∀ŕ, ś ∈ ˜́ω

Hence, H̃ is FZSA of ˜́ω.

Theorem:3.6 For any FZSA H̃ of ˜́ω and ϑ ∈ [0,1], if the
Fϑ M(H̃ϑ )

M(ŕ) of H̃ is a FZSA of ˜́ω.

Proof Let ŕ, ś ∈ ˜́ω and ϑ ∈ [0,T ] Then H̃(ŕ ∗ ś) ≥ H̃(ŕ)∧
H̃(ś) Now,

(H̃ϑ )
M(ŕ ∗ ś) = ϑ H̃(ŕ ∗ ś)

≥ ϑ [H̃(ŕ)∧ H̃(ś)]
≥ [ϑ H̃(ŕ)∧ϑ H̃(ś)]

= [(H̃ϑ )
M(ŕ)∧ (H̃ϑ )

M(ś)]

=⇒ (H̃ϑ )
M(ŕ ∗ ś) ≥ [(H̃ϑ )

M(ŕ)∧ (H̃ϑ )
M(ś)]

Therefore,(H̃ϑ )
M is a FZSA of ˜́ω.

Theorem:3.7 For any FSb,H̃ of ˜́ω and ϑ ∈ [0,1], if the
Fϑ −M(H̃ϑ )

M(ŕ) of H̃ is a FZSA of ˜́ω , then so in H̃.

Proof Assume that,(H̃ϑ )
M(ŕ) of H̃ is a FZSA of ˜́ω for

some ϑ ∈ [0,T ]
Let ŕ, ś ∈ ˜́ω, we have

ϑ H̃(ŕ ∗ ś) = (H̃ϑ )
M(ŕ ∗ ś)

≥ [(H̃ϑ )
M(ŕ)∧ (H̃ϑ )

M(ś)]
= [ϑ H̃(ŕ)∧ϑ H̃(ś)]
= ϑ [H̃(ŕ)∧ H̃(ś)]

=⇒ H̃(ŕ ∗ ś) ≥ ϑ [H̃(ŕ)∧ H̃(ś)]

Hence, H̃ is a FZSA of ˜́ω.

Theorem:3.8 If the Fϑ −T (H̃ϑ )
T (ŕ) of H̃ is a FZI, then

it satisfies the condition

H̃ϑ )
T (ś∗ (ŕ ∗ ś))≥ (H̃ϑ )

T (ŕ).
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Proof

H̃T
ϑ (ś∗ (ŕ ∗ ś)) = H̃(ś∗ (ŕ ∗ ś))+ϑ

≥ H̃(0∗ (ś∗ (ŕ ∗ ś)))+ϑ ∧ H̃(0)+ϑ

≥ H̃(0∗ (ś∗ (ś∗ ŕ)))+ϑ ∧ H̃(0)+ϑ

= H̃(0∗ ((ś∗ ś)∗ ŕ))+ϑ ∧ H̃(0)+ϑ

= H̃(0∗ (ś∗ ŕ))+ϑ ∧ H̃(0)+ϑ

= H̃(ś∗ ŕ)∗0+ϑ ∧ H̃(0)+ϑ

≥ H̃(ś∗ ŕ)∗+ϑ ∧ H̃(ŕ)+ϑ

≥ H̃T
ϑ (0)∧ (H̃T

ϑ (ŕ))

= H̃T
ϑ (ŕ).

⇒ H̃T
ϑ (ś∗ (ŕ ∗ ś)) ≥ (H̃T

ϑ (ŕ))∀ŕ, ś ∈ ˜́ω

Theorem:3.9 If,H̃ is a FZI of ˜́ω, then the Fϑ −T (H̃ϑ )
T (ŕ)

of H̃ is a FZI of ˜́ω, for all ϑ ∈ [0,T ].

Proof Let,H̃ be a FZI of ˜́ω and let ϑ ∈ [0,T ]
Then,

(i)(H̃ϑ )
T (0) = H̃(0)+ϑ

≥ H̃(ŕ)+ϑ

= (H̃ϑ )
T (ŕ)

(ii)(H̃ϑ )
T (ŕ) = H̃(ŕ)+ϑ

≥ H̃(ŕ ∗ ś)∧ H̃(ś)+ϑ

= (H̃(ŕ ∗ ś)+ϑ)∧ (H̃(ś)+ϑ)

= (H̃ϑ )
T (ŕ ∗ ś)∧ (H̃ϑ )

T (ś)

⇒ (H̃ϑ )
T (ŕ) ≥ (H̃ϑ )

T (ŕ ∗ ś)∧ (H̃ϑ )
T (ś)

Hence, (H̃ϑ )
T (ŕ) of H̃ is a FZI of ˜́ω,∀ϑ ∈ [0,T ]

Theorem:3.10 Let,H̃ is a FSb of ˜́ω such that the Fϑ −
T (H̃ϑ )

T (ŕ) of H̃ is a FZI of ˜́ω, for some ϑ ∈ [0,T ], then
H̃ is a FZI of ˜́ω.

Proof Assume that, (H̃ϑ )
T is a FZI of ˜́ω for some

ϑ ∈ [0,T ].
Let ŕ, ś ∈ ˜́ω
Then,

H̃(0)+ϑ = (H̃ϑ )
T (0)

≥ (H̃ϑ )
T (ŕ)

= H̃(ŕ)+ϑ

And so

⇒ H̃(0) ≥ H̃(ŕ)

H̃(ŕ)+ϑ = (H̃ϑ )
T (ŕ)

≥ (H̃ϑ )
T (ŕ ∗ ś)∧ (H̃ϑ )

T (ś)
= (H̃(ŕ ∗ ś)+ϑ)∧ (H̃(ś)+ϑ)

= H̃(ŕ ∗ ś)∧ H̃(ś)+ϑ

and soH̃(ŕ) ≥ (ŕ ∗ ś)∧ H̃(ś)

Hence, H̃ is a FZI of ˜́ω.

Theorem:3.11 Let,ϑ ∈ [0,T ] and let H̃ be a FZI of ˜́ω. If
˜́ω is a Z-algebra, then the fuzzy F ϑ −T (H̃ϑ )

T of H̃ is a
FZSA of ˜́ω.

Proof Let, ŕ, ś ∈ ˜́ω.
Now, we have

(H̃ϑ )
T (ŕ ∗ ś) = H̃(ŕ ∗ ś)+ϑ

≥ H̃((ŕ ∗ ś)∗ ś)∧ H̃(ś)+ϑ

= H̃(ś∗ (ŕ ∗ ś))∧ H̃(ś)+ϑ

by Theorem 3.7

≥ H̃(0)∧ H̃(ś)+ϑ

≥ H̃(ŕ)∧ H̃(ś)+ϑ

≥ (H̃(ŕ)+ϑ)∧ (H̃(ś)+ϑ)

= (H̃ϑ )
T (ŕ)∧ (H̃ϑ )

T (ś)

Hence, (H̃ϑ )
T is a FZSA of ˜́ω.

Theorem:3.12 If the Fϑ − T H̃ϑ )
T of H̃ is a FZSA of

˜́ω,ϑ ∈ [0,T ], then H̃ is a FZSA of ˜́ω.

Proof Let us assume that, (H̃ϑ )
T of H̃ is a FZI of ˜́ω.

Then

H̃(ŕ ∗ ś)+ϑ = (H̃ϑ )
T (ŕ ∗ ś)

≥ (H̃ϑ )
T ((ŕ ∗ ś)∗ ś)∧ (H̃ϑ )

T (ś)

= (H̃ϑ )
T (ś∗ (ŕ ∗ ś))∧ (H̃ϑ )

T (ś)

≥ (H̃ϑ )
T (0)∧ (H̃ϑ )

T (ś)

≥ (H̃ϑ )
T (ŕ)∧ (H̃ϑ )

T (ś)
= (H̃(ŕ)+ϑ)∧ (H̃(ś)+ϑ)

= H̃(ŕ)∧ H̃(ś)+ϑ

⇒ H̃(ŕ ∗ ś) ≥ H̃(ŕ)∧ H̃(ś)

Hence, H̃ is a FZSA of ˜́ω
Theorem:3.13 Let, H̃ is a FSb of ˜́ω such that the Fϑ −
M(H̃ϑ )

M(ŕ) of H̃ is a FZI of ˜́ω , for some ϑ ∈ (0,1], then
H̃ is a FZI of ˜́ω.

Proof Assume that, (H̃ϑ )
M is a FZI of ˜́ω for some ϑ ∈

[0,T ]. Let ŕ, ś ∈ ˜́ω

ϑ H̃(ŕ) = (H̃ϑ )
M(0)

≥ (H̃ϑ )
M(ŕ)

= ϑ H̃(ŕ)

And so

⇒ H̃(0) ≥ H̃(ŕ)

ϑ H̃(ŕ) = (H̃ϑ )
M(ŕ)

≥ (H̃ϑ )
M(ŕ ∗ ś)∧ (H̃ϑ )

M(ś)
= (ϑ H̃(ŕ ∗ ś))∧ (ϑ H̃(ś))
= ϑ H̃(ŕ ∗ ś)∧ H̃(ś)

and so
H̃(ŕ)≥ (ŕ ∗ ś)∧ H̃(ś)

Hence, H̃ is a FZI of ˜́ω.
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Theorem:3.14 If,H̃ is a FZI of ˜́ω , then the
Fϑ −M(H̃ϑ )

M(ŕ) of H̃ is a FZI of ˜́ω, for all ϑ ∈ (0,1].

Proof Let, H̃ be a FZI of ˜́ω and let ϑ ∈ (0,1]
Then

(H̃ϑ )
M(0) = ϑ H̃(ŕ)

≥ ϑ H̃(ŕ)

= H̃M
ϑ (ŕ)

⇒ H̃M
ϑ (0) ≥ (H̃ϑ )

M(ŕ)

(H̃ϑ )
M(ŕ) = ϑ H̃(ŕ)

≥ ϑ H̃(ŕ ∗ ś)∧ H̃(ś)
= ϑ H̃(ŕ ∗ ś)∧ H̃(ś)
= (ϑ H̃(ŕ ∗ ś))∧ (ϑ H̃(ś))

≥ (H̃ϑ )
M(ŕ ∗ ś)∧ (H̃ϑ )

M(ś)

((⇒ H̃)ϑ )
M(ŕ) ≥ (H̃ϑ )

M(ŕ ∗ ś)∧ (H̃ϑ )
M(ś)

Hence, (H̃ϑ )
M of H̃ is a FZI of ˜́ω,∀ŕ, ś ∈ (0,1].

Theorem:3.15 Let, ϑ ∈ (0,1] and let,H̃ be a FZI of a Z-
algebra ˜́ω. Then the F ϑ −M(H̃ϑ )

M(ŕ) of H̃ is a FZSA of
˜́ω.

Proof Let, ŕ, ś ∈ ˜́ω.
Now, we have

(H̃ϑ )
M(ŕ ∗ ś) = ϑ H̃(ŕ ∗ ś)

≥ ϑ H̃((ŕ ∗ ś)∗ ś)∧ H̃(ś)
= ϑ H̃(ś∗ (ŕ ∗ ś))∧ϑ H̃(ś)
= ϑ H̃(0)∧ H̃(ś)
≥ ϑ H̃(ŕ)∧ H̃(ś)
≥ (ϑ H̃(ŕ))∧ (ϑ H̃(ś))

= (H̃ϑ )
M(ŕ)∧ (H̃ϑ )

M(ś)

Hence, (H̃ϑ )
M is a FZSA of ˜́ω,∀ŕ, ś ∈ (0,1].

Theorem:3.16 If the Fϑ − T (H̃ϑ )
M of H̃ is a FZSA of

˜́ω,ϑ ∈ [0,1], then H̃ is a FZSA of ˜́ω.

Theorem:Proof Let us assume that,(H̃ϑ )
M of H̃ is a FZI

of ˜́ω.
Then

ϑ H̃(ŕ ∗ ś) = (H̃ϑ )
M(ŕ ∗ ś)

≥ (H̃ϑ )
M((ŕ ∗ ś)∗ ś)∧ (H̃ϑ )

M(ś)

= (H̃ϑ )
M(ś∗ (ŕ ∗ ś))∧ (H̃ϑ )

M(ś)

= (H̃ϑ )
M(0)∧ (H̃ϑ )

M(ś)

≥ (H̃ϑ )
M(ŕ)∧ (H̃ϑ )

M(ś)
= (ϑ H̃(ŕ))∧ (ϑ H̃(ś))

⇒ H̃(ŕ ∗ ś)≥ H̃(ŕ)∧ H̃(ś)

Hence, H̃ is a FZSA of ˜́ω.

Theorem:3.17 Intersection and union of any two ϑ −T of
a FZI of H̃ of ˜́ω is also a FZI of ˜́ω.

Proof Let (H̃ϑ )
T and (H̃δ )

T be two Fϑ −T of a FZI of H̃
of ˜́ω, where ϑ ,δ ∈ [0,1].
Assume that ϑ ≤ δ . Then by theorem 3.14, (H̃ϑ )

T and
(H̃δ )

T are FZIs of ˜́ω.
Now,

(((H̃)ϑ )
T ∩ (H̃δ )

T )(ŕ) = (H̃ϑ )
T (ŕ)∧ (H̃δ )

T (ŕ)
= (H̃(ŕ)+ϑ)∧ (H̃(ŕ)+δ )

= H̃(ŕ)+ϑ

= H̃T
ϑ (ŕ)

And

(((H̃)ϑ )
T ∪ (H̃δ )

T )(ŕ) = (H̃ϑ )
T (ŕ)∨ (H̃δ )

T (ŕ)
= (H̃(ŕ)+ϑ)∨ (H̃(ŕ)+δ )

= H̃(ŕ)+δ

= H̃T
δ
(ŕ)

Hence, (H̃ϑ )
T ∩ (H̃δ )

T and (H̃ϑ )
T ∪ (H̃δ )

T are FZIs of ˜́ω.

4 Characteristics of Structures of
ϑ−Translation and ϑ−Multiplication in
Z-Subalgebra and ideal of Q-Fuzzy
Z-Algebra

Definition:4.1 Let H̃ and Q−be two fuzzy subsets of ˜́ω
and ϑ ∈ [0,T ]. A mapping H̃T

ϑ
: ˜́ω ∗Q → [0,1] is said to be

a Q-fuzzy ϑ - translation of H̃ if it satisfies H̃T
ϑ
= H̃(ŕ,q)+

ϑ ,∀ŕ ∈ ˜́ω and q ∈ Q.

Definition:4.2 Let H̃ and Q−be two fuzzy subsets of ˜́ω
and ϑ ∈ [0,T ]. A mapping H̃M

ϑ
: ˜́ω ∗Q → [0,1] is said to

be a Q-fuzzy ϑ - translation of H̃ if it satisfies
H̃M

ϑ
= H̃(ŕ,q).ϑ ,∀ŕ ∈ ˜́ω and q ∈ Q.

Example:4.3 Let ˜́ω = 0,1,2,3 be the set with the
following table.

Table 2: Fuzzy Q-Algebra Data Set

∗ 0 1 2 3
0 0 1 2 3
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

Then ( ˜́ω,∗,0) is a Z-algebra.
Define Q-fuzzy set H̃ is of ˜́ω by

H̃(ŕ) =

{
0.4, if ŕ ̸= 1,
0.3, if ŕ = 1

Thus H̃ is a Q-fuzzy Z-sub algebra of X.
Hence T = 1− supH̃(ŕ,q)/ŕ ∈ ˜́ω&q ∈ Q = 1−0.4 = 0.6,
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Fig. 3: Graph Representation with (x,y) Node Labels

Fig. 4: Graph representation of Cayley tamale using with
Fuzzy Z-Algebra

Choose ϑ = 0.2 ∈ [0,1] and ϑ = 0.3 ∈ [0,1].
Then the mapping H̃((0.2)T ) : ˜́ω → [0,1] is defined by

H̃((0.2)
T ) =

{
0.2+0.4 = 0.6, if ŕ ̸= 1,
0.2+0.3 = 0.5, if ŕ = 1

Which satisfies H̃((0.2)T )(ŕ) = H̃(ŕ) + 0.2,∀ŕ ∈ ˜́ω , is a
fuzzy 0.2-translation.
The mapping (γ)((0.3)M) : ˜́ω → [0,1] is defined by

H̃((0.3)
M) =

{
(0.3∗0.4 = 0.12, if ŕ ̸= 1,
0.3∗0.3 = 0.09, if ŕ = 1

Which satisfies H̃((0.3)M)(ŕ) = H̃(ŕ)(0.3),∀ŕ ∈ ˜́ω and q ∈
Q, is a fuzzy 0.3−Multiplication.
Theorem:4.4 If H̃ of ˜́ω is a Q-fuzzy Z-sub-algebra and
ϑ ∈ [0,1], then the Q- fuzzy ϑ -translation.(H̃ϑ )

T (ŕ,q) of
H̃ is also a Q- fuzzy Z- sub algebra of ˜́ω.

Proof Let ŕ, ś ∈ ˜́ω,ϑ ∈ [0,T ] and q ∈ Q
Then, H̃(ŕ ∗ ś,q)≥ H̃(ŕ,q)∧ H̃(ś,q)
Now,

(H̃ϑ )
T (ŕ ∗ ś,q) = H̃(ŕ ∗ ś,q)+ϑ

≥ [H̃(ŕ,q)∧ H̃(ś,q)]+ϑ

= [(H̃(ŕ,q)+ϑ)∧ (H̃(ś,q)+ϑ)]
= [(H̃ϑ )

T (ŕ,q)∧ (H̃ϑ )
T (ś,q)].∀ŕ, ś

∈ ˜́ω and q ∈ Q

Theorem:4.5 Let H̃ and Q be a two fuzzy subset of ˜́ω
such that the Q- fuzzy ϑ -translation (H̃ϑ )

T (ŕ,q) of H̃ is a
Q-fuzzy sub algebra of ˜́ω, for some ϑ ∈ [0,T ], then H̃ is a
Q-fuzzy Z-sub algebra of ˜́ω.

Proof Assume that (H̃ϑ )
T (ŕ,q) is a Q-fuzzy sub algebra

of ˜́ω for some ϑ ∈ [0,T ]
Let ŕ, ś ∈ ˜́ω and q ∈ Q we have

H̃(ŕ ∗ ś,q)+ϑ = (H̃ϑ )
T (ŕ ∗ ś,q)

≥ [(H̃ϑ )
T (ŕ,q)∧ (H̃ϑ )

T (ś,q)]
= [(H̃(ŕ,q)+ϑ)∧ (H̃(ś,q)+ϑ)]

= [H̃(ŕ,q)∧ H̃(ś,q)]+ϑ

=⇒ H̃(ŕ ∗ ś,q) ≥ [H̃(ŕ,q)∧ H̃(ś,q)],∀ŕ, ś ∈ ˜́ω and q ∈ Q

Hence, H̃ is Q-fuzzy sub algebra of ˜́ω.

Theorem:4.6 For any Q- fuzzy Z- sub algebra H̃ of ˜́ω and
ϑ ∈ [0,1], if the Q-fuzzy ϑ -multiplication (H̃ϑ )

M(ŕ,q) of
H̃ is a Q-fuzzy Z-sub algebra of ˜́ω.

Proof Let ŕ, ś ∈ ˜́ω,ϑ ∈ [0,T ] and q ∈ Q
Then H̃(ŕ ∗ ś,q)≥ H̃(ŕ,q)∧ H̃(ś,q)
Now,

(H̃ϑ )
M(ŕ ∗ ś,q) = ϑ H̃(ŕ ∗ ś,q)

≥ ϑ [H̃(ŕ,q)∧ H̃(ś,q)]
≥ [ϑ H̃(ŕ,q)∧ϑ H̃(ś,q)]

= [(H̃ϑ )
M(ŕ,q)∧ (H̃ϑ )

M(ś,q)]

=⇒ (H̃ϑ )
M(ŕ ∗ ś,q) ≥ [(H̃ϑ )

M(ŕ,q)∧ (H̃ϑ )
M(ś,q)]

Therefore, (H̃ϑ )
M is a Q-fuzzy Z-sub algebra of ˜́ω.

Theorem:4.7 For any fuzzy subset H̃ of ˜́ω,q ∈ Q and ϑ ∈
[0,1], if the Q-fuzzy ϑ -multiplication (H̃ϑ )

M(ŕ,q) of H̃ is
a Q-fuzzy Z-sub algebra of ˜́ω, then so is H̃.

Proof Assume that (H̃ϑ )
M(ŕ,q) of H̃ is a Q-fuzzy Z-sub

algebra of ˜́ω for some ϑ ∈ [0,T ]
Let ŕ, ś ∈ ˜́ω and q ∈ Q we have

ϑ H̃(ŕ ∗ ś,q) = (H̃ϑ )
M(ŕ ∗ ś,q)

≥ [(H̃ϑ )
M(ŕ,q)∧ (H̃ϑ )

M(ś,q)]
= [ϑ H̃(ŕ,q)∧ϑ H̃(ś,q)]
= ϑ [H̃(ŕ,q)∧ H̃(ś,q)]

=⇒ H̃(ŕ ∗ ś,q) ≥ ϑ [H̃(ŕ,q)∧ H̃(ś,q)]

Hence, H̃ is a Q-fuzzy Z-sub algebra of ˜́ω.

Theorem:4.8 If the Q-fuzzy ϑ -translation (H̃ϑ )
T (ŕ) of H̃

is a Q-fuzzy Z-Ideal, then it satisfies the condition
(H̃ϑ )

T (ś∗ (ŕ ∗ ś),q)≥ (H̃ϑ )
T (ŕ,q).
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Proof

(H̃ϑ )
T (ś∗ (ŕ ∗ ś),q) = H̃(ś∗ (ŕ ∗ ś),q)+ϑ

≥ H̃(0∗ (ś∗ (ŕ ∗ ś)),q)
+ ϑ ∧ H̃(0,q)+ϑ

≥ H̃(0∗ (ś∗ (ś∗ ŕ)),q)
+ ϑ ∧ H̃(0,q)+ϑ

= H̃(0∗ ((ś∗ ś)∗ ŕ),q)
+ ϑ ∧ H̃(0,q)+ϑ

= H̃(0∗ (ś∗ ŕ),q)
+ ϑ ∧ H̃(0,q)+ϑ

= H̃((ś∗ ŕ)∗0,q)
+ ϑ ∧ H̃(0,q)+ϑ

≥ H̃((ś∗ ŕ)∗0,q)+ϑ ∧ H̃(ŕ,q)
+ ϑ

≥ (H̃ϑ )
T (0,q)∧ (H̃ϑ )

T (ŕ,q)
= ({H̃ϑ )

T (ŕ,q).}
((⇒ H̃)ϑ )

T (ś∗ (ŕ ∗ ś),q) ≥ (H̃ϑ )
T (ŕ,q)∀ŕ, ś ∈ ˜́ωand q ∈ Q

Theorem:4.9 If H̃ is a Q-fuzzy Z-ideal of ˜́ω, then the Q-
fuzzy ϑ -translation (H̃ϑ )

T (ŕ,q) of H̃ is a Q-fuzzy Z-ideal
of ˜́ω , for all ϑ ∈ [0,T ].

Proof Let H̃ be a Q-fuzzy Z-ideal of ˜́ω and let ϑ ∈ [0,T ]
and q ∈ Q
Then,

(i) (H̃ϑ )
T (0,q) = H̃(0,q)+ϑ

≥ H̃(ŕ,q)+ϑ

= (H̃ϑ )
T (ŕ,q)

(ii) (H̃ϑ )
T (ŕ,q) = H̃(ŕ,q)+ϑ

≥ H̃(ŕ ∗ ś,q)∧ H̃(ś,q)+ϑ

= (H̃(ŕ ∗ ś,q)+ϑ)∧ (H̃(ś,q)+ϑ)

= (H̃ϑ )
T (ŕ ∗ ś,q)∧ (H̃ϑ )

T (ś,q)

⇒ (H̃ϑ )
T (ŕ,q) ≥ (H̃ϑ )

T (ŕ ∗ ś,q)∧ (H̃ϑ )
T (ś,q)

Hence (H̃ϑ )
T (ŕ,q) of H̃ is a Q-fuzzy Z-ideal of ˜́ω,∀ϑ ∈

[0,T ] and q ∈ Q.

Theorem:4.10 Let H̃ is a fuzzy subset of ˜́ω and q ∈ Q
such that the Q-fuzzy ϑ -translation (H̃ϑ )

T (ŕ,q) of H̃ is
a Q-fuzzy Z-ideal of ˜́ω , for some ϑ ∈ [0,T ], then H̃ is a
Q-fuzzy Z-ideal of ˜́ω.

Proof Assume that (H̃ϑ )
T is a Q-fuzzy Z-ideal of ˜́ω for

some ϑ ∈ [0,T ].
Let ŕ, ś ∈ ˜́ω and q ∈ Q
Then,

H̃(0,q)+ϑ = (H̃ϑ )
T (0,q)

≥ (H̃ϑ )
T (ŕ,q)

= H̃(ŕ,q)+ϑ

And so

⇒ H̃(0,q) ≥ H̃(ŕ,q)

H̃(ŕ,q)+ϑ = (H̃ϑ )
T (ŕ,q)

≥ (H̃ϑ )
T (ŕ ∗ ś,q)∧ (H̃ϑ )

T (ś,q)
= (H̃(ŕ ∗ ś,q)+ϑ)∧ (H̃(ś,q)+ϑ)

= H̃(ŕ ∗ ś,q)∧ H̃(ś,q)+ϑ

and soH̃(ŕ,q) ≥ (ŕ ∗ ś,q)∧ H̃(ś,q)

Hence H̃ is a Q-fuzzy Z-ideal of ˜́ω.

Theorem:4.11 Let ϑ ∈ [0,T ],q ∈ Q and let H̃ be a
Q-fuzzy Z-ideal of ˜́ω . If ˜́ω is a Z-algebra, then the fuzzy
ϑ -translation (H̃ϑ )

T of H̃ is a Q-fuzzy Z-sub-algebra of
˜́ω.

Proof Let ŕ, ś ∈ ˜́ω and q ∈ Q
Now, we have

(H̃ϑ )
T (ŕ ∗ ś,q) ∼= H̃(ŕ ∗ ś,q)+ϑ

≥ H̃((ŕ ∗ ś,)∗ ś,q)∧ H̃(ś,q)+ϑ

= H̃(ś∗ (ŕ ∗ ś),q)∧ H̃(ś,q)+ϑ

by Theorem 3.7
≥ H̃(0,q)∧ H̃(ś,q)+ϑ

≥ H̃(ŕ,q)∧ H̃(ś,q)+ϑ

≥ (H̃(ŕ,q)+ϑ)∧ (H̃(ś,q)+ϑ)
= (H̃ϑ )

T (ŕ,q)∧ (H̃ϑ )
T (ś,q)

Hence (H̃ϑ )
T is a Q-fuzzy Z-sub-algebra of ˜́ω.

Theorem:4.12 If the Q-fuzzy ϑ -translation (H̃ϑ )
T of H̃

is a Q-fuzzy Z-sub-algebra of ˜́ω,ϑ ∈ [0,T ], then H̃ is a
Q-fuzzy Z-sub-algebra of ˜́ω.

Proof Let us assume that (H̃ϑ )
T of H̃ is a Q-fuzzy Z-ideal

of ˜́ω and q ∈ Q
Then

H̃(ŕ ∗ ś,q)+ϑ = (H̃ϑ )
T (ŕ ∗ ś,q)

≥ (H̃ϑ )
T ((ŕ ∗ ś)∗ ś,q)∧ (H̃ϑ )

T (ś,q)

= (H̃ϑ )
T (ś∗ (ŕ ∗ ś),q)∧ (H̃ϑ )

T (ś,q)
by Theorem 3.7

≥ (H̃ϑ )
T (0,q)∧ (H̃ϑ )

T (ś,q)

≥ (H̃ϑ )
T (ŕ,q)∧ (H̃ϑ )

T (ś,q)
= (H̃(ŕ,q)+ϑ)∧ (H̃(ś,q)+ϑ)

= H̃(ŕ,q)∧ H̃(ś,q)+ϑ

⇒ H̃(ŕ ∗ ś,q) ≥ H̃(ŕ,q)∧ H̃(ś,q)

Hence H̃ is a Q-fuzzy Z-sub algebra of ˜́ω.

Theorem:4.13 Let H̃ is a fuzzy subset of ˜́ω and q ∈ Q
such that the Q-fuzzy ϑ -Multiplication (H̃ϑ )

M(ŕ,q) of H̃
is a Q-fuzzy Z-ideal of ˜́ω, for some ϑ ∈ [0,1], then H̃ is a
Q-fuzzy Z-ideal of ˜́ω.

Proof Assume that (H̃ϑ )
M is a Q-fuzzy Z-ideal of ˜́ω for

some ϑ ∈ [0,T ].
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Let ŕ, ś ∈ ˜́ω and q ∈ Q

ϑ H̃(ŕ,q) = (H̃ϑ )
M(0,q)

≥ (H̃ϑ )
M(ŕ,q)

= ϑ H̃(ŕ,q)
And so ⇒ H̃(0,q) ≥ H̃(ŕ,q)

ϑ H̃(ŕ,q) = (H̃ϑ )
M(ŕ,q)

≥ (H̃ϑ )
M(ŕ ∗ ś,q)∧ (H̃ϑ )

M(ś,q)
= (ϑ H̃(ŕ ∗ ś,q))∧ (ϑ H̃(ś,q))
= ϑ H̃(ŕ ∗ ś,q)∧ H̃(ś,q)

And so ⇒ H̃(ŕ,q) ≥ H̃(ŕ ∗ ś,q)∧ H̃(ś,q)

Hence H̃ is a Q-fuzzy Z-ideal of ˜́ω.

Theorem:4.14 If H̃ is a Q-fuzzy Z-ideal of ˜́ω, then the
Q-fuzzy ϑ -multiplication (H̃ϑ )

M(ŕ,q) of H̃ is a Q-fuzzy
Z-ideal of ˜́ω, for all ϑ ∈ (0,1].

Proof Let H̃ be a Q-fuzzy Z-ideal of ˜́ω and let ϑ ∈ (0,1]
and q ∈ Q
Then

(H̃ϑ )
M(0,q) = ϑ H̃(ŕ,q)

≥ ϑ H̃(ŕ,q)

= H̃M
ϑ (ŕ,q)

⇒ (H̃ϑ )
M(0,q) ≥ (H̃ϑ )

M(ŕ,q)

(H̃ϑ )
M(ŕ,q) = ϑ H̃(ŕ,q)

≥ ϑ H̃(ŕ ∗ ś,q)∧ H̃(ś,q)
= ϑ H̃(ŕ ∗ ś,q)∧ H̃(ś,q)
= (ϑ H̃(ŕ ∗ ś,q))∧ (ϑ H̃(ś,q))

≥ (H̃ϑ )
M(ŕ ∗ ś,q)∧ (H̃ϑ )

M(ś,q)

((⇒ H̃)ϑ )
M(ŕ,q) ≥ (H̃ϑ )

M(ŕ ∗ ś,q)∧ (H̃ϑ )
M(ś,q)

Hence (H̃ϑ )
M of H̃ is a Q-fuzzy Z-ideal of ˜́ω,∀ŕ, ś ∈

[0,1].
Theorem:4.15 Let ϑ ∈ (0,1] and let H̃ be a Q-fuzzy Z-
ideal of a Z-algebra ˜́ω. Then the Q-fuzzy ϑ -multiplication
(H̃ϑ )

M(ŕ) of H̃ is a Q-fuzzy Z-sub algebra of ˜́ω.

Proof Let ŕ, ś ∈ ˜́ω and q ∈ Q
Now, we have

(H̃ϑ )
M(ŕ ∗ ś,q) = ϑ H̃(ŕ ∗ ś,q)

≥ ϑ H̃((ŕ ∗ ś)∗ ś),q∧ (H̃(ś,q))
= ϑ H̃((ś∗ (ŕ ∗ ś)),q)∧ϑ H̃(ś,q)
= ϑ H̃(0,q)∧ H̃(ś,q)
≥ ϑ H̃(ŕ,q)∧ H̃(ś,q)
≥ (ϑ H̃(ŕ,q))∧ (ϑ H̃(ś,q))
= (H̃ϑ )

M(ŕ,q)∧ (H̃ϑ )
M(ś,q)

Hence (H̃ϑ )
M is a Q-fuzzy Z-sub-algebra of ˜́ω,∀ŕ, ś ∈

(0,1] and q ∈ Q
Theorem:4.16 If the Q-fuzzy ϑ -translation (H̃ϑ )

M of H̃
is a Q-fuzzy Z-sub-algebra of ˜́ω,ϑ ∈ (0,1], then H̃ is a
Q-fuzzy Z-sub-algebra of ˜́ω.

Proof Let us assume that (H̃ϑ )
M of H̃ is a Q-fuzzy Z-ideal

of ˜́ω and q ∈ Q
Then

ϑ H̃(ŕ ∗ ś,q) = (H̃ϑ )
M(ŕ ∗ ś,q)

≥ (H̃ϑ )
M((ŕ ∗ ś)∗ ś,q)∧ (H̃ϑ )

M(ś,q)

= (H̃ϑ )
M(ś∗ (ŕ ∗ ś),q)∧ (H̃ϑ )

M(ś,q)

= (H̃ϑ )
M(0,q)∧ (H̃ϑ )

M(ś,q)

≥ (H̃ϑ )
M(ŕ,q)∧ (H̃ϑ )

M(ś,q)
= (ϑ H̃(ŕ,q))∧ (ϑ H̃(ś,q))

⇒ H̃(ŕ ∗ ś,q) ≥ H̃(ŕ,q)∧ H̃(ś,q)

Hence, H̃ is a Q fuzzy Z-sub algebra of ˜́ω.

Theorem:4.17 Intersection and union of any two
ϑ -translation of a Q-fuzzy Z-ideal of H̃ of ˜́ω is also a
Q-fuzzy Z-ideal of ˜́ω.

Proof Let (H̃ϑ )
T and (H̃δ )

T be two ϑ - translations of
a Q-fuzzy Z-ideal of H̃ of ˜́ω, where ϑ ,δ ∈ [0,1] and
q ∈ Q
Then by theorem 3.14, (H̃ϑ )

T and (H̃δ )
T are Q-fuzzy

Z-ideals of ˜́ω.
Now,

(((H̃)ϑ )
T ∩ (H̃δ )

T )(ŕ,q) = (H̃ϑ )
T (ŕ,q)∧ (H̃δ )

T (ŕ,q)
= (H̃(ŕ,q)+ϑ)∧ (H̃(ŕ,q)+δ )

= H̃(ŕ,q)+ϑ

= H̃T
ϑ (ŕ,q)

And H̃T
ϑ ∪ H̃T

δ
(ŕ,q) = (H̃ϑ )

T (ŕ,q)∨ (H̃δ )
T (ŕ,q)

= (H̃(ŕ,q)+ϑ)∨ (H̃(ŕ,q)+δ )

= H̃(ŕ,q)+δ

= H̃T
δ
(ŕ,q)

Hence, H̃(ϑ)T ∩H̃(δ )
T and H̃T

ϑ
∪H̃T

δ
are Q-fuzzy Z-ideals

of ˜́ω.

5 Conclusion

In the present investigation, we discussed ϑ -T and ϑ -M on
Z-Algebras through FZSA, as well as other features. Also,
obtained from the ϑ -T and ϑ -M on FZI of Z-Algebra. And
also derived from the ϑ -Translation and ϑ -Multiplication
on Z-Ideals and Z-Subalgebra of Q-Fuzzy Z-Algebra.
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