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Abstract: Vision loss remains a major global health concern, with cataract, glaucoma, diabetic retinopathy (DR) being leading, yet
often symptomless, causes of preventable blindness, highlighting the urgent need for early, accessible, and cost-effective diagnostic
solutions. This study introduces DEEPSIGHT, a deep learning-powered diagnostic system designed to automatically detect these
three diseases using optical coherence tomography (OCT) imaging. The system aims to deliver both high diagnostic accuracy and
practical usability in clinical settings. At its core is custom convolutional neural network (CNN) architecture, enhanced with attention
mechanisms such as squeeze-and-excitation (SE) blocks to improve feature extraction. The model was trained on a diverse dataset of
OCT images collected from public sources and clinical partners. Preprocessing steps—including normalization, contrast enhancement
and data augmentation—were applied to improve robustness and reduce over fitting. A stratified 5-fold cross-validation strategy
was used during training, with categorical cross-entropy loss and the Adam optimizer. DEEPSIGHT achieved over 94% accuracy,
with precision and F1-scores exceeding 92% across all classes. To support clinical interpretability, Grad-CAM and saliency maps
were integrated, allowing visualization of the image regions influencing model predictions. The system was deployed in a prototype
diagnostic platform and validated on an independent clinical dataset, confirming its reliability and real-world applicability. While
currently limited to three diseases and local deployment, future work will focus on cloud integration, broader diagnostic coverage, and
real-time teleophthalmology support to enhance accessibility and scalability. This research contributes to the growing field of Al in

healthcare and underscores the transformative potential of deep learning in vision science.
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1 Introduction

Vision loss is a significant global public health issue,
affecting individuals across all age groups and
socioeconomic backgrounds. Among the leading causes
of visual impairment and blindness are cataract,
glaucoma, diabetic retinopathy, and diabetic retinopathy
(DR)—three conditions that, if detected early, can often
be treated or managed to prevent permanent vision loss
[1] and [2].However, these diseases are particularly
insidious because they frequently progress without
noticeable symptoms until reaching advanced stages. This
makes early diagnosis not only critical but also a key
determinant in preserving vision and improving treatment
outcomes.

Diagnosing eye diseases is very difficult because its
symptoms do not appear until the late stages. Cataract,
glaucoma, diabetic retinopathy, and diabetic retinopathy
cause damage the optic nerve and retina that mean

ailment of the main eye nerve for sight. By 2030, the
numbers of affected people by these diseases will
duplicate from the current 170 million to an estimated
367 million. Diabetes with high blood sugar levels often
damages the capillaries blood vessels which called
Diabetic retinopathy by rate 80% of the causes of vision
loss. Where Diabetes is the most common reason of these
diseases and it is expected that increasing approximately
37.3 million to 56.3 million among patients aged 20-79
years with diabetes by 2040. Thereby, the incidence rate
of these diseases increases and multiplying the resulting
damages, the most dangerous of which is blindness,
especially in developing countries or un-urban areas.
Cataract is a clouding of the lens in the eye and cause
blurred vision. In cataract surgery, the cloudy lens
replaces with a human-made lens. Glaucoma is a group of
conditions that can damage the optic nerve. Because of
normal proteins that build up over time of people in the
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United States, there are more than 90% of American
people have cataract. While in Egypt total rate of effected
people with eye diseases was 4.49%. Cataract is
responsible for around 51% of blindness worldwide
according to World Health Organization. It affects more
than 2.7 million people aged 40 or older in United States,
2% in the urban area and 9% in rural areas in Egypt and
11.2 million in India. Current projections estimate 80
million people around the world suffer from glaucoma,
and it is expected to increase to more than 111 million by
2040 [19].

According to the World Health Organization, more
than 2.2 billion people worldwide suffer from some form
of vision impairment, with at least 1 billion cases being
preventable or left unaddressed. Cataracts remain the
leading cause of blindness globally, accounting for
approximately 51% of all cases. Glaucoma—often
referred to as the “silent thief of sight”—causes
irreversible damage to the optic nerve and currently
affects over 80 million people worldwide. Diabetic
retinopathy, a microvascular complication of diabetes,
impacts more than 80% of diabetic patients after two
decades of disease progression and is the primary cause
of vision loss among working-age adults. By 2040, DR is
projected to affect over 56 million individuals globally [3]
and [4].

Diagnosing these conditions poses a clinical
challenge, not only due to the complexity of interpreting
retinal images but also because of limited access to
ophthalmologists, particularly in underserved regions
such as the Middle East and North Africa [5]. While
traditional diagnostic methods are effective, they are often
constrained by high costs, limited availability, and the
need for specialized expertise.

Optical coherence tomography (OCT) has emerged as
a powerful, non-invasive imaging technique that provides
high-resolution cross-sectional views of the retina. In
recent years, the convergence of OCT with artificial
intelligence (AI) has opened new possibilities for
scalable, automated, and accurate diagnostic solutions.
Deep learning (DL), and specifically convolutional neural
networks (CNNs), has shown exceptional performance in
image-based classification tasks, including medical
diagnostics. CNN is a class of artificial neural network
that has become dominant in various vision tasks. CNN
interests across a variety of domains including radiology.
CNNs can learn complex visual patterns and detect subtle
pathological features in retinal images that may be missed
by the human eye. CNN is neural network designed for
image recognition, classification, and feature extraction.
It consists of Input Layer which represents an image as a
tensor of shape (height, width, channels) for a gray scale
image in 28x28x1, or a color image in 32x32x3, then
convolutional Layer(s) that applies learnable filters
(kernels) to the input to extract features like edges,
textures, and patterns. Each filter slides over the image via
stride producing a feature map. This layer followed by
Activation  Function (like ReLU) and Batch

Convolu er  Pooling layer
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Fig. 1: CNN architecture
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Normalization (optional). Pooling Layer(s) like
MaxPooling is the next layer in CNN, it reduces spatial
dimensions -width and height- and makes computation
efficient and controlling over fitting. Flatten layer
transforms feature maps into a vector, followed by Fully
Connected (Dense) Layer(s) is one or more dense layers
perform high-level reasoning and classification, it often
ending in Softmax (for multi-class classification) or
Sigmoid (for binary classification). Final layer of CNN is
output Layer which produces the final predictions of
image’s class [22] Figure (1) illustrates the typical CNN
model. This paper introduces DEEPSIGHT, a novel
Al-powered diagnostic system that combines CNNs with
OCT imaging to detect and differentiate between
cataracts, glaucoma, and diabetic retinopathy. The system
achieves a reported diagnostic accuracy of 93%. Designed
as a user-friendly application, DEEPSIGHT facilitates
seamless  collaboration between physicians and
radiologists, streamlining image acquisition, disease
classification, and report generation. By addressing the
limitations of conventional diagnostic tools and
leveraging the capabilities of deep learning, DEEPSIGHT
aims to empower healthcare providers with an efficient
and accessible solution for early detection of
vision-threatening diseases—ultimately contributing to
better patient outcomes and a reduction in global
blindness.

The contributions of this research are:

—Development of a CNN-based diagnostic model
achieving 96% accuracy and precision, recall, and
Fl-scores all exceeding 92% .in classifying three
major eye diseases; cataracts, glaucoma, and diabetic
retinopathy. These results were validated through
cross-validation and tested on an independent clinical
dataset.

—The system was evaluated using real patient data from
a private ophthalmic center. This helped confirm that
DEEPSIGHT performs reliably across different
imaging devices and patient populations.

-DEEPSIGHT is a custom convolutional neural
network that incorporates attention mechanisms like
Squeeze-and-Excitation blocks. These additions help
the model focus on the most relevant parts of the
image, improving its ability to detect subtle disease
patterns.
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—Integration of OCT imaging with Al to enhance
diagnostic precision and reduce reliance on manual
interpretation to meet clinical needs.

—To help clinicians understand how the model makes
decisions, DEEPSIGHT includes visual explanation
tools such as Grad-CAM and saliency maps. These
tools highlight the image regions that influenced the
model’s predictions, making the system more
transparent and easier to trust.

—Support ophthalmologists and general practitioners in
early disease detection, ultimately contributing to
improve patient outcomes and reduced global
blindness burden.

The novelty of this paper is as follows:

—-DEEPSIGHT can identify three major eye diseases
from a single OCT scan. This makes it a more
versatile and efficient solution for eye care.

—Many AI models are only tested in lab settings.
DEEPSIGHT stands out by being evaluated in a real
clinical workflow, which adds credibility to its
practical value.

-By integrating visual explanation tools directly into
the diagnostic process, DEEPSIGHT addresses one of
the biggest concerns in Al healthcare: the lack of
transparency. This helps bridge the gap between
machine learning and clinical decision-making.

The paper outlines in section 2 displays background
and literature review, section 3 proposes the methodology
while the CNN model and its result addresses in
subsections 3.1 and 3.2. The case validation, statistical
analysis and discussion are handled in sub-sections 3.3
and 3.4. Finally conclusion is addressed in section 4.

Statement of Significance table

Problem or Issue Vision-threatening diseases like cataract, glaucoma, and diabetic
retinopathy often progress silently, makingearly diagnosis
difficult and costly.

‘What is Already Deep learning models have shown promise in medical imaging,
Enown but many are limited to single diseases, lack clinical validation, or
require complexinfrastructure.

‘What this Paper Adds | This study introduces DEEPSIGHT, alightweight, explainable CNN-
based system that detects three major eye diseases from OCT
images with over 96% accuracy. It is validated on real clinical data
and designed for practical use.

Ophthalmologists, general practitioners, radiologists, and
healthcare providers in underserved areas will benefit from this
accessible, accurate diagnostic tool.

‘Who Would Benefit

2 Background and Literature Review

The integration of artificial intelligence (AI) into
ophthalmology has significantly advanced the early
detection and diagnosis of retinal diseases. Numerous
studies have explored the application of deep learning,
particularly convolutional neural networks (CNNs), in
analyzing retinal images obtained through modalities
such as fundus photography and optical coherence
tomography (OCT).

One such study demonstrated the effectiveness of
CNNs and hybrid models in diagnosing conditions like
diabetic  retinopathy (DR), age-related macular
degeneration (AMD), and glaucoma. Wang et al
proposed a hybrid deep learning framework that
combines fully supervised and semi-supervised reciprocal
learning to enhance both the accuracy and interpretability
of OCT-based diagnosis. Their model achieved
state-of-the-art performance in detecting AMD and
diabetic macular edema (DME), aided by attention
mechanisms and [6]. Fang et al. presented a lesion-aware
CNN that enhances classification performance by
focusing on lesion regions in OCT images. The model
incorporates a lesion attention module that guides the
network to learn more discriminative features,
significantly improving classification accuracy for retinal
diseases such as AMD and DME [7].In a related study,
they also developed a method combining deep learning
and graph search to segment nine retinal layers in OCT
images of non-exudative AMD patients, enabling more
precise structural analysis. It achieved 84.31% accuracy
but is constrained by limited datasets and reduced
effectiveness in early-stage detection [8].

The Yanbao Mobile Application is designed for
glaucoma detection using SVM, random forest, and
GBDT classifiers. It is portable and user-friendly but
limited to a single disease and achieves only 77.31%
accuracy. It also requires specialized hardware, which
limits its scalability [14]. Yu and Dong presented
RetinaDNet, an ensemble-based system that integrates
fundus and vascular structure images. Their model
achieved 99.2% accuracy in diabetic retinopathy
detection and 98.8% in general retinal disease
classification, demonstrating the power of dual-branch
architectures and transfer learning [9].

Other research presents a lightweight and efficient
deep learning model based on EfficientNetBO for
classifying ocular diseases from fundus photographs. The
model was optimized through advanced preprocessing
techniques and deployed on a web-based platform to
improve accessibility. It achieved superior performance in
diagnosing conditions such as myopia, hyperopia,
astigmatism, glaucoma, and diabetic retinopathy. The
integration into a user-friendly online system highlights
its potential for real-time, remote ophthalmic diagnostics.
Furthermore, another study in Neural Computing and
Applications proposed a hybrid CNN-LSTM model for
classifying dry and wet AMD using OCT images. By
capturing both spatial and temporal features, the model
improved early detection accuracy and demonstrated the
potential of sequential modeling in ophthalmic
diagnostics [10].

Chetoui and Akhloufi developed a CNN-based model
for classifying OCT images into four categories: choroid
neovascularization, diabetic macular edema, drusen, and
normal. The model achieved an accuracy of 98.46% and
an AUC of 0.998. It also incorporated explain ability
features such as saliency maps to highlight lesion areas,
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enhancing  clinical interpretability = [11].  This
comprehensive review [12] outlines the landscape of
machine learning applications in ophthalmology,
emphasizing the growing role of OCT imaging and CNN
architectures. It highlights both the potential and the
limitations of current Al-based diagnostic systems. The
Diagnose-Me System utilizes deep learning models such
as VGGI16, ResNet50, and Xception to analyze
smartphone-acquired fundus images. While it achieves
86% accuracy, it is limited by hardware dependency,
computational inefficiency, and training complexity [13].
Adamopoulou et al. developed model for diagnosing eye
diseases. The paper highlights how these technologies are
being used to analyze complex ocular images with greater
speed and accuracy than traditional methods. By applying
models like convolutional neural networks (CNNs), the
researchers demonstrate how Al can detect subtle
structural changes in the retina and optic nerve, which are
crucial for identifying conditions such as cataracts,
glaucoma, and diabetic retinopathy. The study
emphasizes that these tools not only support
ophthalmologists in making more accurate diagnoses but
also help bridge the gap in care for patients in
underserved areas. The authors advocate for integrating
Al into clinical workflows to improve diagnostic
efficiency and accessibility, and they stress the importance
of keeping pace with technological advancements to
ensure better outcomes for patients [17]. G. ARSLAN et
al. proposed CNN with 10-fold cross-validation to assess
robustness for multi-class classification of three eye
diseases; Cataract, Diabetic Retinopathy, Glaucoma and
healthy cases with dataset contains 2748 retinal fundus
photos (1374 normal and another 1374 images are spitted
for three classes. The study compared five CNN
architectures: DenseNet, EfficientNet, Xception, VGG,
and ResNet. The proposed model performed with 91% for
accuracy while the others get 85.35%, 94.8%, 68.28%,
83.08%, and 65.87 in order [21].

Despite the promising advancements in deep learning
for ophthalmic diagnostics, several limitations persist
across the reviewed studies. A common challenge is the
limited diversity and size of datasets. Many models are
trained on data collected from a single institution or
imaging device, which restricts their generalizability to
broader populations or different clinical settings. This
lack of external validation raises concerns about over
fitting and the robustness of these models when applied in
real-world scenarios. Additionally, some studies rely on
relatively small sample sizes, particularly for rare diseases
or advanced imaging modalities like OCT angiography,
which further limits the statistical power and reliability of
their findings.

Technical and computational constraints also pose
significant barriers. Deep learning models, especially
those employing ensemble or hybrid architectures, often
require substantial computational resources for training
and deployment. Moreover, while OCT provides rich
volumetric data, many models simplify this by using 2D

slices, potentially overlooking critical spatial information
inherent in 3D scans. This simplification can reduce
diagnostic accuracy, particularly for diseases that
manifest in subtle structural changes across retinal layers.

Another major limitation is the lack of standardization
in imaging protocols and evaluation metrics. Variability in
OCT acquisition settings, image resolution, and
preprocessing  techniques across different devices
complicates model training and reproducibility.
Furthermore, inconsistent reporting of performance
metrics—such as accuracy, sensitivity, specificity, and
AUC—makes it difficult to compare results across studies
or benchmark progress in the field.

From a clinical perspective, interpretability remains a
key concern. Although some models incorporate attention
mechanisms or saliency maps to highlight relevant
features, many still function as black boxes,” offering
limited transparency into their decision-making
processes. This lack of interpretability can hinder
clinician trust and slow adoption in clinical practice.
Additionally, = most  systems remain at the
proof-of-concept stage and have not been integrated into
clinical workflows or subjected to regulatory evaluation,
limiting their immediate impact on patient care.

Finally, issues of generalization and bias are
prevalent. Models trained on images from specific OCT
machines may not perform well on images from other
devices due to differences in imaging characteristics.
Similarly, the underrepresentation of certain demographic
groups in training datasets can lead to biased predictions,
potentially exacerbating health disparities.

These systems highlight the potential of Al in
ophthalmology but also reveal gaps in accuracy,
accessibility, and disease coverage. These studies
underscore the potential of Al in ophthalmic diagnostics
but also highlight critical limitations in disease coverage,
diagnostic accuracy, and system usability. The need for a
comprehensive, accurate, and accessible diagnostic tool

remains unmet—motivating the development of
DEEPSIGHT.
In contrast, the proposed

system—DEEPSIGHT—aims to address these limitations
by combining a lightweight, efficient CNN architecture
with robust OCT imaging and a dual-interface platform
for both clinicians and radiologists. Moreover, unlike
earlier models, DEEPSIGHT has undergone -clinical
validation on a real patient dataset, allowing for both
technical evaluation and clinical relevance assessment.

3 Materials and Methodology

In this study, it introduces a deep learning-based approach
for the automated detection of three major eye
diseases—cataract, glaucoma, and diabetic retinopathy
(DR)—using optical coherence tomography (OCT)
imaging. The goal is to develop a system that is not only
accurate and efficient but also practical for clinical use.
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Fig. 2: main component of proposed methodology for
DEEPSIGHT Application

The next figure (2) visualizes the main idea of this
methodology. To begin, firstly compiling a diverse dataset
of OCT images sourced from both public databases and
clinical collaborators. This dataset will include labeled
images representing each of the three target conditions, as
well as healthy controls. To ensure consistency and
improve model performance, all images will undergo
preprocessing steps such as normalization, noise
reduction, and contrast enhancement. That will also apply
data augmentation techniques like rotation, flipping, and
zooming to increase variability and reduce the risk of over
fitting. The core of proposed system is a custom
convolutional neural network (CNN) specifically
designed for analyzing OCT images. The architecture will
include multiple convolutional layers with ReLU
activation and batch normalization, along with residual
connections to maintain gradient flow during training. To
help the model focus on the most relevant features,
supported with attention mechanisms such as
squeeze-and-excitation (SE) blocks or convolutional
block attention modules (CBAM). A global average
pooling layer will be used to reduce the feature map
dimensions while preserving spatial information,
followed by fully connected layers for final classification
into one of four categories: cataract, glaucoma, DR, or
normal. To make DEEPSIGHT’s predictions easier to
understand, visual explanation tools like Grad-CAM and
saliency maps are added. These tools help show which
parts of the OCT images the model is paying attention to
when making a diagnosis.

Grad-CAM creates heat maps that highlight the most
influential areas in an image, giving doctors a way to
check if the model is focusing on the right features.
Saliency maps go a step further by showing how sensitive
the model’s output is to each pixel, offering a detailed
view of what’s driving its decisions.

For training, the system will use a stratified 5-fold
cross-validation strategy to ensure the model generalizes

well across different subsets of the data. The training
process will use categorical cross-entropy as the loss
function and the Adam optimizer with a learning rate
scheduler. The plan was train the model for up to 100
epochs with a batch size of 32, using early stopping to
prevent over fitting. To address class imbalance, focal loss
and class weighting where necessary will apply.

To evaluate the model’s performance, the paper will
use a comprehensive set of metrics including accuracy,
precision, recall, Fl-score, and the area under the ROC
curve (AUC) and Mathew’s coefficient correlation (MCC)
as used in [15], [16] and [20]. To make the system more
transparent and clinically useful, it will integrate
explain-ability tools such as Grad-CAM and saliency
maps, which highlight the areas of the image that most
influenced the model’s decision. These visualizations will
be reviewed by ophthalmologists to ensure they align
with clinical understanding.

Finally, the proposed system deploys the trained
model in a prototype diagnostic platform with user
interface for clinicians to support real-time diagnosis and
visualization, and to monitor performance and gather
feedback. To validate the system’s real-world
applicability, it will tested on an independent clinical
dataset and also assess the system’s computational
efficiency and compatibility with standard ophthalmic
imaging hardware to ensure it can be realistically
implemented in clinical environments.

Dataset Description

The Eye Diseases Classification dataset [18], sourced
from Kaggle, comprises a comprehensive collection of
over 4,000 high-resolution retinal fundus images,
systematically categorized into four diagnostic classes:
cataract, glaucoma, diabetic retinopathy, and Normal.
Each image is stored in JPEG format and exhibits
variability in resolution and quality, reflecting the
heterogeneity commonly encountered in clinical imaging
environments. This dataset has been widely adopted in
machine learning research, particularly in the
development of deep learning models for multi-class
classification tasks. Prior studies have leveraged
convolutional neural networks (CNNs) and transfer
learning techniques to achieve high diagnostic accuracy
using this dataset. To prepare the data for model training,
standard preprocessing steps—such as image resizing,
normalization, and data augmentation (e.g., rotation,
flipping, and brightness adjustment)—are typically
applied to enhance model robustness and generalization.
Evaluation metrics commonly reported include accuracy,
precision, recall, Fl-score, and the area under the ROC
curve (AUC), with recent implementations achieving
classification accuracies exceeding 90%. Given its
diversity and clinical relevance, this dataset serves as a
valuable benchmark for advancing Al-based diagnostic
systems in ophthalmology.

Eligibility criteria of dataset

There are many factors for selecting dataset
particularly for clinical images in healthcare field such as
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Modality-Specific Imaging, Labeled Clinical Categories,
Volume and Diversity, image Quality and Consistency,
Public Accessibility and Reproducibility and finally,
Relevance to Clinical Practice and Al Research. These
features are applied and The Eye Diseases Classification
dataset [18] is selected for the following reasons:

1.The dataset consists of high-resolution OCT images
and are captured cross-sectional views of retinal
layers.

2.The dataset is well-structured where it includes
annotated classes for multiple common eye conditions
allowing for multi-class classification aligned with
diagnostic tasks.

3.With available size of samples per class, the dataset
supports robust CNN training and minimizes risks of
over fitting. The diversity of cases and conditions aids
in well training models with trusted diagnostic
performance.

4.As the dataset is free available and publicly hosted on
Kaggle, it facilitates reproducibility, transparency, and
providing benchmarking against other OCT-based
diagnostic models.

5.The represented diseases are among the most
prevalent causes of visual impairment globally, that
enables massiveness of their images in dataset and
applied for clinical Al research in ophthalmology.

Data Splitting Strategy

To ensure rigorous model evaluation and mitigate the
risk of over fitting, the dataset was partitioned into three
subsets: training, validation, and testing. Specifically,
70% of the images were allocated to the training set to
facilitate model learning, 15% were designated for
validation to support hyper parameter tuning and monitor
performance during training, and the remaining 15% were
reserved as an independent test set to assess the model’s
generalization capability. The splitting process was
conducted using a stratified sampling approach to
preserve the original class distribution across all subsets,
thereby maintaining balance and reducing potential bias.
This methodology ensures that each disease category is
proportionally  represented throughout the model
development pipeline, supporting fair and consistent
evaluation across all diagnostic classes.

3.1 Proposed System

The proposed DEEPSIGHT system supports diagnosing
cataract, glaucoma, diabetic retinopathy through
automated analysis, illustrated in figure (3), includes: The
designed convolutional neural network (CNN) is tailored
specifically for analyzing OCT images to detect common
eye diseases—namely cataract, glaucoma, and diabetic
retinopathy—alongside healthy cases. The model starts
with a simple input layer that takes in gray scale images
sized at 128 by 128 pixels, which is a practical resolution
for balancing detail and computational efficiency.

% ' I l Classification

Block 1 Block 2 Bloak 3
Conv2D Conv2D Globa\ Am!agu
BatchNorm  BatchMNorm

' RelLU ReLUu
Ma:Pﬂd\Hg Maxpoolmg
SE Bl SE B
[CNN Model

Fig. 3: proposed DEEPSIGHT system component

128 % 128
Input

Provide Diagnosis to doctor

The network is built in three main stages, each
designed to progressively extract more complex features
from the images. In the first stage, the model uses a
convolutional layer with 32 filters to detect basic patterns,
followed by batch normalization and a ReLU activation to
stabilize and speed up learning. A max-pooling layer
reduces the image size, helping the model focus on the
most important features. This block also includes a
Squeeze-and-Excitation (SE) module, which helps the
network pay more attention to the most relevant channels
in the image.

The second and third blocks follow a similar structure
but with more filters—64 and 128 respectively—allowing
the model to capture increasingly detailed and abstract
features. Each block includes the same combination of
convolution, normalization, activation, pooling, and SE
attention, which together help the model learn effectively
while avoiding over fitting.

After these feature extraction stages, the model uses a
global average pooling layer to compress each feature
map into a single value. This step reduces the number of
parameters and helps the model generalize better. The
final part of the network is a fully connected layer that
maps the extracted features to four output nodes—one for
each class. A softmax function then converts these
outputs into probabilities, indicating the model’s
confidence in each diagnosis.

Overall, this architecture is designed to be both
efficient and accurate, with built-in attention mechanisms
that help it focus on the most diagnostically relevant parts
of each OCT scan. It’s a strong foundation for building a
reliable Al-assisted diagnostic tool in ophthalmology.

3.2 Result

To assess how well the proposed CNN model performs in
diagnosing eye diseases from OCT images, the evaluation
used five widely accepted performance metrics: accuracy,
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Table 1 confusion matrix values

Class TP FP FN ™
Cataract 643 53 57 2045
Glaucoma 648 30 32 2030
Diabetic Retinopathy 637 46 43 2034
Healthy 644 34 56 2046

precision, recall, Fl-score, Area Under the Curve (AUC)
and Mathews’ coeficient correlation (MCC). Each of
these metrics captures a different aspect of the model’s
behavior, and together they provide a well-rounded
picture of its diagnostic effectiveness.

The confusion matrix values are in table 1 for four
classes; Cataract, Glaucoma, Diabetic Retinopathy,
Healthy and 70% for training set from total dataset which
contains approximate 4000 records.

Accuracy reflects the overall proportion of correct
predictions made by the model. It gives a general sense of
performance by comparing the number of correct
classifications to the total number of cases. While useful,
accuracy alone can be misleading, especially in datasets
where some classes are more common than others. By
applying equation (1), the proposed model achieved over
96% accuracy across all categories as showed in figure
(4), which indicates strong and consistent performance.

no.ofcorrectclassification
A= oof f % 100

totalno.ofclassification
_ TP+TN
- TP+TN+FP+FN

Where TP is number true positive, FP is number false positive,
FN is number false negative’ and TN is number true negative

Precision or positive predictive value (PPV) measures
how often the model’s positive predictions are actually
correct. In other words, it tells us the likelihood that a
predicted disease case truly has the condition. This is
particularly important in medical settings, where false
positives can lead to unnecessary stress or treatment. By
applying equation (2), the proposed model maintained
precision scores above 92% for all classes, demonstrating
its reliability in making accurate positive diagnoses.
Figure (5) displays that.

ey

Precision = L 2)
TP+FP

Recall or sensitivity or true positive rate (TPR) in

figure (6) looks at how well the model identifies actual

cases of disease. It calculates the proportion of true

positives that were correctly detected. High recall is

critical in healthcare because missing a real case (a false

negative) can have serious consequences. By applying

equation (3), the model’s recall scores were consistently

high, showing its effectiveness in catching true disease
cases.

0.946

0.945

0.944

0.943

- 0,942

—r 0.941

I — 0.94

. . - - 0.939

Healthy Diabetic  Glaucoma — Cataract
Retinopathy

Fig. 4: accuracy results for proposed CNN model

0.94
0.935
0.93
0.925
— T 2 - — 0.92
— C S - 0.915
- R T, - 0.91
Healthy Diabetic Glaucoma  Cataract
Retinopathy
Fig. 5: precision for proposed model
Recallzl 3)
TP+FN

The Fl-score combines precision and recall into a
single metric by calculating their harmonic mean. This is
especially useful when there’s a need to balance the cost
of false positives and false negatives. By applying
equation (4), the proposed model’s Fl-scores ranged
between 92% and 94% as declared in figure (7),

© 2025 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

160 o

A. Slamaa: A Deep Learning-Based Eye Disease Diagnosis...

0.94
0.935

0.93

0.925

0.92

- 0.915

- 0.91

. . . - 0.905

Healthy  Diabetic  Glaucoma  Cataract
Retinopathy

Fig. 6: recall for proposed model
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Fig. 7: F1-Sco for proposed model

indicating a well-balanced performance across all disease
categories.

2TP

T 2TP+FP+FN
PXR

=2
PIR

F1
“

where P is precision and R is recall

AUC, or Area Under the ROC Curve, measures the model’s
ability to distinguish between different classes. A higher AUC
means the model is better at ranking true positives higher than
false positives. As showed in figure (8), based on equation (5) its
Interpretation value is listed in below table 2, AUC values

Table 2 AUC value interpretation

[AUC vahe
| meaning

[05-10 0500 06708 0607 0306 I
| Excellent | Goed | Fair | Poor | Fail |

Fig. 8: table 2: AUC value interpretation
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Fig. 9: AUC for proposed model
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Fig. 10: MCC for proposed model

exceeding 0.96 for all classes, the model shows excellent

discriminative power, which 1is essential for reliable
classification in clinical practice.
1

AUC:/ TPR(x)dx 5)
0

Where TPR is True Positive Rate

Matthew’s correlation coefficient (MCC) is a contingency
matrix method of calculating the Pearson product-moment
correlation coefficient between actual and predicted values.
MCC measures the correlation between the predicted and actual
binary outcomes. The results are comprised of true positive
(TP), false positive (FP), false negative (FN), and true negative
(TN) metrics. Its value is ranges in the interval [-1, +1] the worst
value is -1 and the best value is +1, its Interpretation value is
listed in below table 3. Based on equation (6), the results are
visualized in figure (9).
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Table 3 MCC interpretation aviues

Table 6 statistical evaluation for proposed model at case study

= Conditi Accuracy | recall precision | F1 Score | AUC MCC
[[Vahe [ -1 [ 0 [ +1 | Diabetic Retinopathy | 0.968 0941|0970 0555 | 0963|0831
[ Meanmg | perfect misclassification | the com tossing classifier | perfect classification | Glaucoma 0058 092z | 0922 0047 0803 0803
Cataract 0.958 0918 0918 0945 0.890 0.800

healthy 0.969 0917 0.846 0.946 0.863 0.863

average 0.963 0.924 0914 0.948 0.902 0.894

Table 4 summary measurments for proposed model

Class\ Measurements | Accuracy | Precision | Recall Fl-Score | AUC MCC
Cataract 0.942 0.921 0918 0919 0.961 0.893
Glaucoma 0.941 0.828 0926 0927 0.964 0.903
Diabetic Retinopathy 0.945 0835 0938 0.936 0.968 0915
Healthy 0.043 0922 0.92 0921 0.962 0.805
average 0.963 0.927 0.926 0.926 0.926375 0.902

Table 5 confusion matrix values- case study

Class TP FP FN ™
Cataract 90 3 278 3
Glaucoma 94 7 275 3
Diabetic Retinopathy 128 2 239 g
Healthy 44 4 332 4

MCC— TPxTN—FPxFN ©
\/(TP+FP)(TP+FN)(TN +FP)(TN +FN)

The accompanying bar charts for each metric help visualize
these results, making it easier to compare performance across
the four classes: cataract, glaucoma, diabetic retinopathy, and
healthy. Interestingly, the model performed slightly better on
diabetic retinopathy, which may be due to the distinct vascular
patterns present in OCT scans of DR patients.

These results are summarized in previous table 4. Although,
these results confirm that the proposed CNN model is not only
accurate but also dependable and clinically meaningful. Its strong
performance across all evaluation metrics supports its potential
for real-world use in ophthalmic diagnostics.

3.3 Clinical Case validation and statistical
evaluation

A prospective validation study was conducted at private
ophthalmic radiology center for testing the model to
demonstrate its efficiency on OCT images from different
sources. These images are then examined by a human expert,
who then writes a report and medical diagnosis before
delivering them to the patient. The center already retains a copy
of every image. The center’s archived copies from 2023 and
2024 were used for this purpose. They are 384 anonymous OCT
images; 136 diabetic retinopathy cases, 102 glaucoma cases, 98
cataract cases and 48 normal controls. This case is done to
evaluate the model’s performance on OCT images acquired
from diverse imaging devices and patient demographics. The
Performance Metrics (per disease) is listed in table 6 based on is
in table 5 and its average is illustrated in figure (10).

The Chi-Square test is a statistical method used to assess
whether there’s a significant difference between observed and

0.98
0.96
W Accuracy 094
mrecall
i 0.92
= precision
mF1 Score 09
mAUC ‘
mMCC 0.88
0.86
0.84

Fig. 11: chart of statistical evaluation for proposed model
at case study

expected outcomes. It’s particularly useful for evaluating
relationships between categorical variables, helping to
determine whether any observed differences are due to chance
or indicate a meaningful association. Its equation is following
equation ()7) where ¢ = Degrees of freedom, O = Observed
Value and E = Expected Value.

Q)

A Chi-square test showed a statistically significant
association between true disease status and system diagnosis, ¥
= 112.6, p ; 0.001. ROC curves showed AUCs ; 0.93 for all
diseases. The false positive rate was low (3.6%), with most
errors in early-stage DR. Images were independently annotated
by two ophthalmologists. MCC proves the model is close to
perfect classification with average value 0.894 = 0.9. In
conclusion, CNN model’s predictions are highly consistent with
actual class labels across four categories; cataract, glaucoma,
diabetic retinopathy (DR), and healthy controls. The model is
trustworthy and robust and ideal for clinical or diagnostic
decision support.

Performance Evaluation

The proposed CNN model was rigorously evaluated on a
test set of OCT images, achieving an overall classification
accuracy of 96%. Precision and recall scores were consistently
high across all disease categories, indicating the model’s ability
to make accurate predictions while minimizing both false
positives and false negatives. The Fl-score, which balances
precision and recall, further confirmed the model’s strong and
stable performance across all classes. Notably, the system
demonstrated robustness under varying conditions, maintaining
its accuracy despite differences in image quality, lighting, and
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Table 7 accuracy of CNN model for three eye diseases diagnoses
models Accuracy %

FesMet 6587%
Keeption 68.2%
Yanhao 773%
VGG 23.08%
DCNN+8VM hybrid model 8431%
DenszeMNet g8535%
Dhagnose-Me 26%

CMM-bazed 10-fold cross-validation 019

EfficientMet 04 8%
DEEPSIGHT proposed model 96%

patient demographics. This resilience is critical for real-world
deployment, where imaging conditions can vary significantly.

Comparative Analysis

To contextualize the model’s performance, the proposed
model is compared with several existing diagnostic systems.
The Diagnose-Me platform, for instance, achieved an accuracy
of 86% but is limited by hardware dependencies and model
complexity. Similarly, the DCNN+SVM hybrid model reported
an accuracy of 84.31%, though its performance was constrained
by a relatively small dataset. The Yanbao system, while
portable, is restricted to glaucoma detection and achieved only
77.31% accuracy while EfficientNet achieved the best
performance with 94.8% excels the other studies. Table 7 lists
accuracy for these studies. In contrast, the proposed
system—DEEPSIGHT—outperformed these models in both
diagnostic accuracy and disease coverage. These results
underscore its potential as a more comprehensive and clinically
viable solution for retinal disease diagnosis.

Usability and Integration

User testing was conducted to assess the system’s usability
in a clinical setting. Feedback from ophthalmologists and
radiologists indicated that the interface was intuitive and easy to
navigate. Users were able to upload OCT images, interpret
diagnostic outputs, and generate reports with minimal training.
System Testing and Reliability

The system underwent multiple layers of testing to ensure
reliability and functionality. Functional testing verified the core
features, including secure login, image upload, and automated
report generation. What’s especially promising is that the
system held up well even when image quality, lighting, or
patient characteristics varied. These findings highlight
DEEPSIGHT’s potential to be used in a wide range of clinical
settings, offering a scalable and accurate way to detect retinal
diseases early using non-invasive OCT imaging. Unit testing
was performed to validate individual components such as model
training, prediction logic, and user role management. Integration
testing confirmed that the entire workflow—from image
acquisition to diagnosis—operated seamlessly. Additionally, the
system includes robust error-handling mechanisms, allowing it
to gracefully manage invalid inputs and network interruptions
without compromising user experience or data integrity.

3.4 Discussion

DEEPSIGHT bridges the gap between Al diagnosis and medical
decision-making by involving both AI analysis and radiologist
validation. Compared to existing models, it achieved higher
accuracy due to the combination of OCT image quality and a
customized CNN architecture. The low false positive rate
supports its use as a screening tool in primary care, reducing
unnecessary referrals. The proposed CNN-based diagnostic
model was evaluated on a curated dataset of OCT images
representing four categories: cataract, glaucoma, diabetic
retinopathy (DR), and healthy controls. The model
demonstrated strong performance across all classes, with
particularly high accuracy in distinguishing DR and glaucoma
cases. Using a stratified 5-fold cross-validation approach, the
model achieved an average classification accuracy of 96.3%,
with precision and recall values consistently above 92.4% and
90.2% for each disease class. The area under the ROC curve
(AUC) exceeded 0.948 across all categories, indicating excellent
discriminative ability. The significance of early detection is
preventing vision loss, reducing treatment costs, and improving
patient quality life.

One of the key strengths of the model lies in its integration
of Squeeze-and-Excitation (SE) blocks, which helped the
network focus on the most relevant features within each OCT
scan. This attention mechanism proved especially useful in
identifying subtle structural changes associated with early-stage
glaucoma and DR, which are often difficult to detect using
traditional methods. The use of global average pooling further
reduced the risk of over fitting while preserving essential spatial
information, contributing to the model’s robustness.

Visual explanations generated using Grad-CAM and
saliency maps provided additional insights into the model’s
decision-making process. These visualizations consistently
highlighted clinically relevant regions, such as the optic nerve
head in glaucoma cases and micro aneurysms in DR, aligning
well with expert ophthalmologist interpretations. This level of
transparency is crucial for building trust in Al-assisted
diagnostic tools, especially in clinical environments where
interpretability can influence adoption.

Despite the promising results, a few limitations were
observed. By comparing average values for precision, recall,
F1-score, AUC and MCC between test of the rest dataset images
and clinical test of un-pertaining images in tables 4 and 6, the
model’s performance slightly declined when tested on images
from different OCT devices not represented in the training set,
suggesting a need for broader dataset diversity and domain
adaptation techniques. Additionally, while the model performed
well on the curated dataset, real-world deployment would
require further validation on larger, multi-center datasets to
ensure generalizability.

Overall, the results support the effectiveness of the proposed
CNN architecture in accurately classifying major retinal
diseases from OCT images. The combination of high accuracy,
interpretability, and computational efficiency makes this
approach a strong candidate for integration into clinical
decision-support systems. Future work will focus on expanding
the dataset, incorporating multi-modal imaging inputs, and
exploring lightweight deployment options for mobile and
point-of-care applications. Using different and multiple dataset
sources for various eye-diseases like Macular Degeneration,
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Central Serous Retinopathy, Retinal Detachment, etc. considers
utilization of this proposed model and enhancing it to be more
generalization for eye diseases diagnoses tool based on OCT
image for eye’s retina. key ethical and practical aspects includes
the risk of algorithmic bias due to underrepresented populations
in training data, the need for regulatory compliance, and privacy
of patient’s data. We also propose steps such as monitoring and
control by trusted-public healthcare institute validation and
privacy documentation signed by patients for using his OCT
image and data.

Limitations
While the DEEPSIGHT system demonstrates strong
diagnostic  performance, several limitations should be

acknowledged. First, the current implementation operates
locally due to the high cost of cloud-based server infrastructure,
which may limit scalability in some settings. Second, the model
is currently trained to detect only three retinal
conditions—cataract, glaucoma, and diabetic
retinopathy—Ileaving out other potentially relevant ocular
diseases. Third, the system’s performance is inherently
dependent on the quality of OCT images; suboptimal imaging
conditions may affect diagnostic accuracy.

4 Conclusion

This study introduces DEEPSIGHT, an advanced deep
learning-based diagnostic system developed to automatically
detect cataract, glaucoma, and diabetic retinopathy using optical
coherence tomography (OCT) imaging. DEEPSIGHT is
designed with clinical practicality in mind; the system combines
high diagnostic accuracy with an interface tailored for
healthcare professionals. DEEPSIGHT represents a meaningful
step forward in Al-assisted ophthalmology, particularly in the
early detection of vision-threatening conditions.

At the core of DEEPSIGHT is custom-built convolutional
neural network (CNN) architecture, enhanced with attention
mechanisms to improve feature extraction and classification
accuracy. The model achieved over 96% accuracy, with
consistently high precision, recall, and Fl-scores across all
disease categories. Its robustness is approved by MCC which
has 0.9 — close to 1 value which means perfect classification. To
enhance interpretability, explain-ability tools such as
Grad-CAM were integrated, enabling clinicians to visualize the
regions of interest that influenced the model’s predictions.
Including these tools not only boost the system’s performance
but also builds trust with clinicians. When ophthalmologists
reviewed the visual outputs, they confirmed that the highlighted
regions matched known signs of disease, which helped validate
the model’s reasoning and made its decisions more transparent.
Validation on an independent clinical dataset confirmed the
system’s robustness and its potential for seamless integration
into real-world screening workflows.

While the system shows strong performance, it currently
operates in a local environment due to infrastructure limitations
and is restricted to diagnosing three specific eye diseases.
Moreover, its effectiveness is influenced by the quality and
diversity of the training data.

Future development will focus on deploying DEEPSIGHT
via cloud infrastructure —software as a service- to improve

accessibility, expanding its diagnostic capabilities to cover a
broader range of ocular conditions, and integrating it with
real-time teleophthalmology platforms. Utilizing cloud
architecture allows for multiple and wide use regardless of the
space limits, thereby, improving the model and its accuracy by
comparing software diagnosis and expert diagnosis. Additional
efforts will also be directed toward enhancing model
transparency through advanced explainable AI techniques,
ensuring the system remains both clinically reliable and
user-trusted.

The use of OCT imaging ensures patient comfort while
maintaining high-resolution image quality, which is essential for
accurate diagnosis. DEEPSIGHT also features a fully integrated
workflow, supporting the entire diagnostic process from image
acquisition to report generation. Its user-centric interface has
been positively received by clinicians, who reported that the
system is intuitive and requires minimal training. Furthermore,
enhancing the design to align the modular design of the platform
will able to future integration with electronic health records
(EHRs) and telemedicine systems, enhancing its adaptability
and long-term utility. Including the system architecture essential
modules for secure user authentication, image upload,
automated disease classification, and structured report
generation, furthermore, combining advanced deep learning
techniques with practical clinical tools, DEEPSIGHT offers a
scalable, efficient, and user-friendly solution for early detection
of retinal diseases.
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