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1 Introduction

Ostrowski’s inequality has been a well-known result in
classical mathematical literature since 1938, when A.
Ostrowski in [14] established an upper bound for the
approximation of the integral average of a function by its
pointwise value over a given interval.

More precisely, let F : 𝐼 ⊂ [0, +∞) → R be a function
differentiable in the interior 𝐼◦ of the interval 𝐼. Assume
that the derivative F ′ belongs to the space of integrable
functions over the interval [𝑢, 𝑤], with 𝑢, 𝑤 ∈ 𝐼 and 𝑢 < 𝑤.
If |F ′ (𝑥) | ≤ 𝑀 holds, then the following inequality is valid:����F (𝑥) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑢) 𝑑𝑢
���� ≤
𝑀

𝑤 − 𝑢

[
(𝑥 − 𝑢)2 + (𝑤 − 𝑥)2

2

]
In recent years, various generalizations of Ostrowski’s

inequality have emerged for different classes of functions,
such as functions of bounded variation, Lipschitz
functions, monotone functions, absolutely continuous
functions, convex functions, 𝑠-convexas and ℎ-convexas.
Additionally, extensions have been developed for 𝑛-veces
differentiable mappings, with error estimates associated
with certain specific mean values, as well as applications

in numerical quadrature rules. For a broader perspective
on these developments and generalizations, consulting
recent works in the literature is recommended (see, [1],
[2], [3], [4], [5], [6], [7], [9], [12], [19], [21], [22] ).

In [17], in 2019, Ostrowski-type inequalities were
introduced for functions whose modulus of the derivative
is relatively convex.

On the other hand, in 2014, the conformable fractional
derivative was introduced in [10]. Works related to this
fractional derivative, as well as other fractional derivatives,
can be found in the literature on fractional calculus (see,
[20], [15], [16], [18]).

In this work, we present new Ostrowski-type
inequalities for functions whose modulus of the
conformable fractional derivative is relatively convex. To
this end, we will take into account the results from [17]
and [10].

2 Preliminaries

In this section, we present the fundamental concepts on
which this work is developed. First, we introduce the
classical notion of convexity, originally formulated by W.
J. Jensen.
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Definition 1(ver [3]). Let 𝐼 be an interval inR. A function
F : 𝐼 → R is said to be convex if, for any 𝑥, 𝑦 ∈ 𝐼 and any
𝜏 ∈ (0, 1), if the following inequality holds:

F (𝜏𝑥 + (1 − 𝜏)𝑦) ≤ 𝜏F (𝑥) + (1 − 𝜏)F (𝑦).

If the inequality holds in the opposite direction, then F
is said to be concave..

In 1961, W. Orlicz introduced the concept of
𝑠-convexity in [13], and later, in 1978, W. Breckner
formulated a second version of this definition in [6].
These definitions are presented below.

Definition 2(ver [9]). Let 0 ≤ 𝑠 ≤ 1. A function F :
[0, +∞) → R is said to be 𝑠-convex in the first sense, or
𝑠1-convex, if it satisfies the inequality:

F (𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑠F (𝑥) + 𝛽𝑠F (𝑦),

for all 𝑥, 𝑦 ∈ [0, +∞) and 𝛼, 𝛽 ∈ (0, 1) such that

𝛼𝑠 + 𝛽𝑠 = 1.

Similarly, a function F is said to be 𝑠-convex in the
second sense, or 𝑠2-convex, if it satisfies the inequality:

F (𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑠F (𝑥) + 𝛽𝑠F (𝑦),
for all 𝑥, 𝑦 ∈ [0, +∞) and 𝛼, 𝛽 ∈ (0, 1) such that

𝛼 + 𝛽 = 1.

If in either of the above inequalities the relation is
reversed, the function F is said to be 𝑠-concave in the first
or second sense, respectively.

The following results are relevant for the development
of this work. First, we present a theorem that establishes an
Ostrowski-type inequality using a function whose modulus
of the derivative is convex.

Theorem 1(ver [3]). Let F : 𝐼 ⊂ R → R be a
differentiable function in the interior 𝐼◦ of the interval 𝐼,
and suppose that F ′ belongs to the space of integrable
functions on [𝑢, 𝑤], where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤. If F ′ is
convex on [𝑢, 𝑤], then the following inequality holds:����F (𝑥) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑢) 𝑑𝑢
����

≤ (𝑤 − 𝑢)
6

[(
4
(𝑤 − 𝑥
𝑤 − 𝑢

)3
− 3

(𝑤 − 𝑥
𝑤 − 𝑢

)2
+ 1

)
|F ′ (𝑢) | +(

9
(𝑤 − 𝑥
𝑤 − 𝑢

)2
− 4

(𝑤 − 𝑥
𝑤 − 𝑢

)3
− 6

(𝑤 − 𝑥
𝑤 − 𝑢

)
+ 2

)
|F ′ (𝑤) |

]
.

and it is valid for all 𝑥 ∈ [𝑢, 𝑤].

This inequality is optimal in the sense that the constant
1
6 cannot be replaced by a smaller value.

Furthermore, using functions whose modulus of the
derivative is 𝑠-convex in the second sense, M. Alomari et
al. [4] established the following result.

Theorem 2([3]). Let F : 𝐼 ⊂ R+ → R+ be a differentiable
function in the interior 𝐼◦ of the interval 𝐼, and suppose that
F ′ belongs to the space of integrable functions on [𝑢, 𝑤],
where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤. If F ′ is 𝑠-convex in the second
sense on [𝑢, 𝑤], for some fixed 𝑠 ∈ (0, 1], and it holds
that |F ′ (𝑥) | ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤], then the following
inequality holds for each 𝑥 ∈ [𝑢, 𝑤]:����F (𝑥) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑢) 𝑑𝑢
���� ≤
𝑀

𝑤 − 𝑢

[
(𝑥 − 𝑢)2 + (𝑤 − 𝑥)2

𝑠 + 1

]
.

Other equally relevant results were established by M.
Alomari in [2], who formulated a version of the Ostrowski
inequality using functions whose 𝑞-th powers of the
modulus of their derivative are 𝑠-convex in the second
sense.

Theorem 3([2]). Let F : 𝐼 ⊂ R+ → R+ be a differentiable
function in the interior 𝐼◦ of the interval 𝐼, and suppose that
F ′ belongs to the space of integrable functions on [𝑢, 𝑤],
where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤. If |F ′ |𝑞 is 𝑠-convex in the
second sense on [𝑢, 𝑤] for some 𝑠 ∈ (0, 1] with 𝑝, 𝑞 > 1
and 1

𝑝
+ 1

𝑞
= 1, and if |F (𝑥) | ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤], then

the following inequality holds:����F (𝑥) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑢) 𝑑𝑢
����

≤ 𝑀

(1 + 𝑝)1/𝑝

(
2

𝑠 + 1

)1/𝑞 [
(𝑥 − 𝑢)2 + (𝑤 − 𝑥)2

𝑤 − 𝑢

]
.

Theorem 4([2]). Let F : 𝐼 ⊂ R+ → R+ be a differentiable
function in the interior 𝐼◦ of the interval 𝐼, and suppose that
F ′ belongs to the space of integrable functions on [𝑢, 𝑤],
where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤. If |F ′ |𝑞 is 𝑠-convex in the
second sense on [𝑢, 𝑤] for some fixed 𝑠 ∈ (0, 1], with
𝑞 ≥ 1, and if |F ′ (𝑥) | ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤], then the
following inequality is satisfied:����F (𝑥) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑢) 𝑑𝑢
����

≤ 𝑀

(
2

𝑠 + 1

1/𝑞) [
(𝑥 − 𝑢)2 + (𝑤 − 𝑥)2

2(𝑤 − 𝑢)

]
.

In the framework of generalized convexity, a class of
functions called relatively convex functions with respect to
a given function has emerged.

Notably, A. Noor, K. I. Noor and M. U. Awan
introduced the following definitions in [11] .
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Definition 3([3]). Let 𝑘𝑔 be a subset of 𝐻. It is said that 𝑘𝑔
is relatively convex with respect to the functionℊ : 𝐻 → 𝐻

if the following condition holds:

𝜏ℊ(𝑣) + (1 − 𝜏)𝑢 ∈ 𝑘𝑔,

for all 𝑢, 𝑣 ∈ 𝐻, 𝑢,ℊ(𝑣) ∈ 𝑘𝑔 𝜏 ∈ [0, 1].

This notion allows generalizing the classical idea of
convexity by incorporating a reference function ℊ, which
determines the relative convex structure of the set.

Definition 4([11]). Let 𝐼 be an interval in R. A function
F : 𝑘𝑔 ⊆ R → R is said to be relatively convex with
respect to the function ℊ : R→ R if, for all 𝑥, 𝑦 ∈ R and
for all 𝜏 ∈ [0, 1], the following inequality holds:

F (𝜏ℊ(𝑥) + (1 − 𝜏)𝑦) ≤ 𝜏F (ℊ(𝑥)) + (1 − 𝜏)F (𝑦).

If the inequality above is satisfied in the opposite sense,
then F is said to be relatively concave with respect to ℊ.

A simple case of constructing these relatively convex
sets was presented in [8] within a study of the noise level
around railway stations located in urban areas, represented
by the set [0, 50] ∪ [125, 130].

When the railway transport system is moved outside
the cities, the noise level is reduced to the interval [0, 50]
The authors define the function ℊ : R→ R as:

ℊ(𝑥) =
{
𝑥, si 𝑥 ∈ [0, 50]
0, otherwise.

This function describes the efforts to maintain the
sound level within normal limits. Under this definition, it
was concluded that the set [0, 50] ∪ [125, 130] is
relatively convex with respect to ℊ.

Definition 5([11]). A function F : 𝐾𝑔 → [0, +∞) is said
to be relatively 𝑠-convex in the second sense with respect
to the function ℊ : 𝐻 → 𝐻, where 𝑠 ∈ (0, 1] is fixed, if the
following inequality holds:

F (𝜏ℊ(𝑥) + (1−𝜏)ℊ(𝑦)) ≤ 𝜏𝑠F (ℊ(𝑥)) + (1−𝜏)𝑠F (ℊ(𝑦))

for all 𝑥, 𝑦 ∈ [0, +∞), ℊ(𝑥), 𝑦 ∈ 𝑘𝑔 and 𝜏 ∈ [0, 1].

If the inequality above is satisfied in the opposite sense,
we say that, F is relatively 𝑠-concave in the second sense.

The following results constitute the foundation of this
work and were established in [17] by M. Vivas-Cortez et
al.

Lemma 1([17]). Let F : 𝐼 ⊂ R → R be a differentiable
function on 𝐼◦, where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤, andℊ : R→ R

be a function. If F ′ belongs to the space of integrable
functions on [𝑢, 𝑤], then the following equality holds:

F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧 =

(ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏F ′ (𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) 𝑑𝜏

− (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏F ′ (𝜏ℊ(𝑥) + (1 − 𝜏)𝑤) 𝑑𝜏.

for all 𝑥 ∈ ℊ−1 (𝐼).

Lemma 2([17]). Let F : 𝐼 ⊂ R → R be a differentiable
function on 𝐼◦, where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤, andℊ : R→ R
be a function. If F ′ belongs to the space of integrable
functions on [𝑢, 𝑤], then the following equality holds:

F (𝑥) − 1
𝑤 − ℊ(𝑢)

∫ 𝑤

ℊ(𝑢)
F (𝑧) 𝑑𝑧 =

(ℊ(𝑢) − 𝑤)
∫ 1

0
𝑝(𝜏)F ′ (𝜏ℊ(𝑢) + (1 − 𝜏)𝑤) 𝑑𝜏,

for all 𝜏 ∈ [𝑢, 𝑤].

The following definition is fundamental for the
development of this work and was introduced by R. Khalil
in [10].

Definition 6([10]). Let F : [0,∞) → R. The
“conformable fractional derivative” of order 𝛼 is defined
as

𝑇𝛼F (𝜏) = lim
𝜀→0

F (𝜏 + 𝜀𝜏1−𝛼) − F (𝜏)
𝜀

,

for all 𝜏 > 0 and 𝛼 ∈ (0, 1).

This conformable fractional derivative is also known as the
𝛼-derivative.

An important result that follows from this definition is
the following:

Theorem 5([10]). If F is 𝛼-differentiable, then

𝑇𝛼F (𝜏) = 𝜏1−𝛼F ′ (𝜏).

3 Main Results

In this section, we present new Ostrowski-type
inequalities for functions whose modulus of the
𝛼-derivative is relatively convex and relatively 𝑠-convex in
the second sense.

The following lemma will be necessary

© 2025 NSP
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Lemma 3. Let F : 𝐼 ⊆ R → R be a 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼, where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤,
and ℊ : R → R be a function. If 𝑇𝛼F belongs to the
space of integrable functions on [𝑢, 𝑤], then the following
equality holds:

F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧 =

(ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1𝑑𝜏

− (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1𝑑𝜏.

Proof.We start from the relation given in Lemma 1 of [17]
and substitute 𝑇𝛼 (F )(𝜏) for F ′, using the relation given in
[10], which states that F ′ (𝜏) = 𝑇𝛼 (F) (𝜏 )

𝜏1−𝛼 . Thus, we obtain

(ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1𝑑𝜏

and

(ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1𝑑𝜏

From these two expressions, the desired result follows.

Theorem 6. Let F : 𝐼 ⊆ R+ → R+ be a 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼, such that 𝑇𝛼F belongs
to the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤.

If |𝑇𝛼 (F )| is relatively convex with respect to the
function ℊ : R→ R on [𝑢, 𝑤] and |𝑇𝛼 (F )(𝑥) | ≤ 𝑀 , then
the following inequality holds:����F (ℊ(𝑥)) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

𝑀

𝑤 − 𝑢 max
{
𝑢𝛼−1, 𝑤𝛼−1,ℊ(𝑥)𝛼−1}[

(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2)
2

]
for all 𝑥 ∈ ℊ−1 (𝐼):

Proof.We start from Lemma 3, and it follows that:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤���� (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1𝑑𝜏
��

+
���� (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1𝑑𝜏
��

= |𝐴| + |𝐵 |

Since |𝑇𝛼 (F )|) is relatively convex with respect to ℊ and
|𝑇𝛼 (F )(𝑥) | ≤ 𝑀 , it follows that:

|𝐴| ≤
(ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏(𝜏 |𝑇𝛼 (F )(ℊ(𝑥) | + (1 − 𝜏) |𝑇𝛼 (F )ℊ(𝑢) |)

| (𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) |𝛼−1𝑑𝜏

≤ (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏(𝜏𝑀 + (1 − 𝜏)𝑀)

max
{
𝑢𝛼−1,ℊ(𝑥)𝛼−1} 𝑑𝜏

=
𝑀

𝑤 − 𝑢 max
{
𝑢𝛼−1,ℊ(𝑥)𝛼−1} (ℊ(𝑥) − 𝑢)2

∫ 1

0
𝜏 𝑑𝜏

=
𝑀

𝑤 − 𝑢 max
{
𝑢𝛼−1,ℊ(𝑥)𝛼−1} (ℊ(𝑥) − 𝑢)2

2
In a similar way, it follows that:

|𝐵 | ≤ 𝑀

𝑤 − 𝑢 max
{
𝑤𝛼−1,ℊ(𝑥)𝛼−1} (ℊ(𝑥) − 𝑤)2

2
From the last two inequalities, the result is obtained.

Remark.If 𝛼 = 1 the result coincides with Theorem 5 from
[17], and if ℊ(𝑥) = 𝑥, the classical Ostrowski inequality is
obtained.

Example 1.For the function 𝐹 (𝑥) = 𝑒𝑥 , whose modulus
|𝑇𝛼𝐹 (𝑥) | = |𝑇𝛼𝑒𝑥 | = |𝑥1−𝛼𝑒𝑥 | is relatively convex with
respect to the function 𝑔(𝑥) = 𝑥2, we consider the case
𝛼 = 1

2 on the interval [1, 2], for which the inequality from
Theorem 6 holds.

Since |21/2𝑒2 | ≈ 10.45, we can choose 𝑀 = 10.5, and
noting that

max
𝑥∈[1,2]

{
1−1/2, 2−1/2, (𝑥2)−1/2} = 1,

we obtain the following inequality:����𝑒𝑥2 − 𝑒2 − 𝑒1

1

���� ≤ 10.5
(
𝑥4 − 3𝑥2 + 5

2

)
.

This inequality is illustrated in the following figure.

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1141-1152 (2025) / www.naturalspublishing.com/Journals.asp 1145

1.2 1.4 1.6

5

10

15

20

x

f(x)
ex

2

− (e2 − e)

10.5 x4 − 3x2 + 5

2

Figure 1: Graph of
���𝑒𝑥2 − 𝑒2−𝑒

1

��� ≤ 10.5
(
𝑥4 − 3𝑥2 + 5

2

)
.

Lemma 4. Let F : 𝐼 ⊆ R → R be a 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼, where 𝑢, 𝑤 ∈ 𝐼 with 𝑢 < 𝑤,
andℊ : R→ R be a function. If 𝑇𝛼F belongs to the space
of integrable functions on [𝑢, 𝑤] for all 𝜏 ∈ [0, 1]:

F (𝑥) − 1
𝑤 − ℊ(𝑢)

∫ 𝑤

𝑔 (𝑢)
F (𝑧) 𝑑𝑧 =

(ℊ(𝑢) − 𝑤)
∫ 1

0
𝑝(𝜏)𝑇𝛼 (F )(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏,

where 𝑝(𝜏) is defined as follows:

𝑝(𝜏) =


𝜏, 𝜏 ∈

[
0,

𝑤 − 𝑥
𝑤 − ℊ(𝑢)

]
𝜏 − 1, 𝜏 ∈

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢) , 1
]

for all 𝑥 ∈ [𝑢, 𝑤].
Proof.Starting from Lemma 2 given in [17], we substitute
𝑇𝛼 (F )(𝜏) by F ′ (𝑡), so that F ′ (𝜏) =

𝑇𝛼 (F) (𝜏 )
𝜏1−𝛼 , and we

obtain:

∫ 𝑤−𝑥
𝑤−ℊ(𝑢)

0
𝜏F ′ (𝜏ℊ(𝑢) + (1 − 𝜏)𝑤) 𝑑𝜏 =∫ 𝑤−𝑥

𝑤−ℊ(𝑢)

0)
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤) (𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏,

and

∫ 1

𝑤−𝑥
𝑤−ℊ(𝑢)

𝜏F ′ (𝜏ℊ(𝑢) + (1 − 𝜏)𝑤) 𝑑𝜏 =∫ 1

𝑤−𝑥
𝑤−ℊ(𝑢)

𝜏𝑇𝛼 (F )(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤) (𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏.

From these two expressions, the result is obtained.
Theorem 7. Let F : 𝐼 ⊆ R+ → R+ be a 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼, such that 𝑇𝛼F belongs to
the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤. If |𝑇𝛼 (F )| is relatively convex with respect to the
function ℊ : R → R on [𝑢, 𝑤], then the following
inequality holds:����F (𝑥) − 1

𝑤 − ℊ(𝑢)

∫ 𝑤

ℊ(𝑢)
F (𝑧) 𝑑𝑧

����
≤ (ℊ(𝑢) − 𝑤)

6
max{ℊ(𝑢)𝛼−1, 𝑤𝛼−1}

[(
4
(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3

−3
(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2
+ 1

)
|𝑇𝛼 (F )(ℊ(𝑢)) | +

(
9
(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2

−4
(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3
− 6

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)
+ 2

)
|𝑇𝛼F (𝑤) |

]

for each 𝑥 ∈ [𝑢, 𝑤]. The constant 1
6 cannot be replaced by

a smaller value.
Proof.Using Lemma 4, the triangle inequality, and the fact
that |𝑇𝛼F | is relatively convex with respect to the function
ℊ : [𝑢, 𝑤] → R,the following holds:

����F (𝑥) − 1
𝑤 − ℊ(𝑢)

∫ 𝑤

ℊ(𝑢)
F (𝑧) 𝑑𝑧

����
≤

�����(ℊ(𝑢) − 𝑤) ∫ 𝑤−𝑥
𝑤−ℊ(𝑢)

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏

����
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+
�����(ℊ(𝑢) − 𝑤) ∫ 1

𝑤−𝑥
𝑤−ℊ(𝑢)

(1 − 𝜏)𝑇𝛼 (F )(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑢) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏

����
≤ (ℊ(𝑢) − 𝑤)

∫ 𝑤−𝑥
𝑤−ℊ(𝑢)

0
𝜏(𝜏 |𝑇𝛼 (F )ℊ(𝑢) |

+ (1 − 𝜏) |𝑇𝛼 (F )𝑤 |) |𝜏ℊ(𝑢) + (1 − 𝜏)𝑤 |𝛼−1 𝑑𝜏

+ (ℊ(𝑢) − 𝑤)
∫ 1

𝑤−𝑥
𝑤−ℊ(𝑢)

(1 − 𝜏) (𝜏 |𝑇𝛼 (F )ℊ(𝑢) |

+ (1 − 𝜏) |𝑇𝛼 (F )(𝑤) |) |𝜏ℊ(𝑢) + (1 − 𝜏)𝑤 |𝛼−1 𝑑𝜏

≤ (ℊ(𝑢) − 𝑤) max{ℊ(𝑢)𝛼−1, 𝑤𝛼−1}
[
|𝑇𝛼 (F )ℊ(𝑢) |∫ 𝑤−𝑥

𝑤−ℊ(𝑢)

0
𝜏2 𝑑𝜏 + |𝑇𝛼 (F )(𝑤) |

∫ 𝑤−𝑥
𝑤−ℊ(𝑢)

0
𝜏 − 𝜏2 𝑑𝜏

]
+ (ℊ(𝑢) − 𝑤) max{ℊ(𝑢)𝛼−1, 𝑤𝛼−1}

[
|𝑇𝛼 (F )ℊ(𝑢) |∫ 1

𝑤−𝑥
𝑤−ℊ(𝑢)

𝜏 − 𝜏2 𝑑𝜏 + |𝑇𝛼 (F )(𝑤) |
∫ 1

𝑤−𝑥
𝑤−ℊ(𝑢)

(1 − 𝜏)2 𝑑𝜏

]
= (ℊ(𝑢) − 𝑤) max{ℊ(𝑢)𝛼−1, 𝑤𝛼−1}

[
|𝑇𝛼 (F )ℊ(𝑢) |

1
3

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3
+ |𝑇𝛼 (F )𝑤 |

(
1
2

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2

−1
3

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3
) ]

+ (ℊ(𝑢) − 𝑤) max{ℊ(𝑢)𝛼−1, 𝑤𝛼−1}
[
|𝑇𝛼 (F )ℊ(𝑢) |(

1
2
− 1

3
− 1

2

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2
+ 1

3

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3
)

+ |𝑇𝛼 (F )(𝑤) |
(
1 − 1 + 1

3
−

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)
+

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2

−1
3

𝑤 − 𝑥
𝑤 − ℊ(𝑢)

)3 ]
=
ℊ(𝑢) − 𝑤)

6
max{ℊ(𝑢)𝛼−1, 𝑤𝛼−1}

[
|𝑇𝛼 (F )ℊ(𝑢) |(

4
(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3
− 3

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2
+ 1

)
+ |𝑇𝛼 (F )(𝑤) |(

9
(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)2
− 4

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)3
− 6

(
𝑤 − 𝑥

𝑤 − ℊ(𝑢)

)
+ 2

) ]
Remark.If 𝛼 = 1 in this Theorem 7, we obtain Theorem
6 from [17] and if ℊ(𝑢) = 𝑢, we recover the result of
Theorem 1.
Example 2.For the function 𝐹 (𝑥) = 𝑒𝑥 , whose modulus is
given by

|𝑇𝛼𝐹 (𝑥) | = |𝑇𝛼𝑒𝑥 | = |𝑥1−𝛼𝑒𝑥 |,

we observe that it is relatively convex with respect to the
function 𝑔(𝑥) = 𝑥3, with 𝛼 = 0.4, on the interval [2, 4].
Then, the inequality from Theorem 7 holds.Let us verify this, noting that:

max
𝑥∈[2,4]

{
(𝑥3)−0.6, 2−0.6, 4−0.6} = 0.44.

Therefore, the following inequality is obtained:

|𝑒𝑥 − 731.59|

≤ 0.293
[
10254.9

16
𝑥3 − 71031.9

16
𝑥2 + 401155.2

16
𝑥 + 208

16

]
.

This inequality is illustrated in the following figure.

Figure 2: Graphs of the functions
���𝑒𝑥 − 𝑒8−𝑒4

4

��� and

0.293
(

10254.9
16 𝑥3 − 71031.9

16 𝑥2 + 401155.2
16 𝑥 + 208

16

)
.

The following result pertains to functions whose modulus
of the 𝛼-derivative is relatively 𝑠-convex in the second
sense.
Theorem 8. Let F : 𝐼 ⊂ R+ → R+ be an 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼 such that 𝑇𝛼 (F ) belongs
to the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤. If |𝑇𝛼 (𝐹) | is relatively 𝑠-convex with respect to
the function ℊ : R → R for some fixed 𝑠 ∈ (0, 1], and
|𝑇𝛼 (𝐹) (𝑥) | ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤], then the following
inequality holds:����F(ℊ(𝑥 ) ) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F(𝑧) 𝑑𝑧
���� ≤

𝑀

𝑤 − 𝑢
max

{
ℊ(𝑥 )𝛼−1 , 𝑢𝛼−1 , 𝑤𝛼−1} [

(ℊ(𝑥 ) − 𝑢)2 + (ℊ(𝑥 ) − 𝑤)2

𝑠 + 1

]
for all 𝑥 ∈ [𝑣, 𝑤].
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Proof.By Lemma 3, the triangular inequality, and the fact
that |𝑇𝛼F | is relatively 𝑠-convex with respect to the
function ℊ : [𝑢, 𝑤] → R and that |𝑇𝛼 (𝐹) (𝑥) | ≤ 𝑀 for all
𝑥 ∈ [𝑢, 𝑤], it follows that:����F (ℊ(𝑥)) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤���� (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) (1 − 𝜏)𝑢)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1 𝑑𝜏

����
+

���� (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)

(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏

����
≤ (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏(𝜏𝑠) |𝑇𝛼 (F (ℊ(𝑥)) | + (1 − 𝑡)𝑠

|𝑇𝛼 (F )(𝑢) |) |𝜏ℊ(𝑥) + (1 − 𝜏)𝑢 |𝛼−1 𝑑𝜏 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢∫ 1

0
𝜏(𝜏𝑠) |𝑇𝛼 (F (ℊ(𝑥)) | + (1 − 𝑡)𝑠 |𝑇𝛼 (F )(𝑤) |) |𝜏ℊ(𝑥)+

(1 − 𝜏)𝑤 |𝛼−1 𝑑𝜏

≤ (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢 𝑀 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1}
∫ 1

0
𝜏(𝜏𝑠+

(1 − 𝜏)𝑠) 𝑑𝜏 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢 𝑀 max{ℊ(𝑥)𝛼−1, 𝑤𝛼−1}∫ 1

0
𝜏(𝜏𝑠 + (1 − 𝜏)𝑠) 𝑑𝜏

(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢 𝑀 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}[
1

𝑠 + 2
+ 1
(𝑠 + 1) (𝑠 + 2)

]
=

𝑀

𝑤 − 𝑢 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}[
(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑠 + 1

]
Example 3.For the function 𝐹 (𝑥) = 𝑥2, whose modulus
|𝑇𝛼𝐹 (𝑤) | = |𝑇𝛼𝑥2 | = |𝑥1−𝛼2𝑥 | is relatively 𝑠-convex with
respect to the function 𝑔(𝑥) = sin(𝑥), it holds that for
𝛼 = 0.7 on the interval [1, 4], the inequality from Theorem
8 is satisfied.Since |2𝑥1.3 | ≈ 12.13, we can choose 𝑀 = 12.2, and
noting that

max
𝑥∈[1,4]

{
1−0.3, 4−0.3, sin(𝑥)−0.3} = 1.05,

we obtain the following inequality:��(sin(𝑥))2 − 7
�� ≤ 4.27

(
(sin(𝑥))2 − 5 sin(𝑥) + 17

2

)
.

This inequality is illustrated in the following figure.
Remark.If in Theorem 8 we set 𝛼 = 1, we obtain Theorem
7 de [17], and if ℊ(𝑥) = 𝑥, we recover Theorem 2.

Figure 3: Graphs of the functions
��(sin(𝑥))2 − 7

�� and
4.27

(
(sin(𝑥))2 − 5 sin(𝑥) + 17

2

)
.

Theorem 9. Let F : 𝐼 ⊂ R+ → R+ be an 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼 such that 𝑇𝛼 (F ) belongs
to the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤. If |𝑇𝛼 (𝐹) | is relatively 𝑠-convex with respect to the
functionℊ : R→ R for some fixed 𝑠 ∈ (0, 1] and 𝑝, 𝑞 > 1
satisfy 1

𝑝
+ 1

𝑞
= 1 with |𝑇𝛼 ( 𝑓 ) | (𝑥) ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤],

then the following inequality holds:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤[

(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

]
𝑀

(𝑝 + 1)1/𝑞

(
2

𝑠 + 1

)1/𝑞

max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}
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Proof.By Lemma 3 and using Hölder’s inequality, we
obtain:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤����� (ℊ(𝑥) − 𝑣)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) (𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢)𝛼−1 𝑑𝜏

����� +
����� (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢) (𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1 𝑑𝜏

�����
≤ (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏 |𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) | | (𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢)𝛼−1 | 𝑑𝜏 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
|𝑇𝛼 (F )(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢) | | (𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1 | 𝑑𝜏

≤ (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

(∫ 1

0
𝜏𝑝 𝑑𝜏

)1/𝑝 (∫ 1

0
|𝑇𝛼 (F )|(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢) |𝑞 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1}𝑞 𝑑𝜏
)1/𝑞

+ (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢(∫ 1

0
𝜏𝑝 𝑑𝜏

)1/𝑝 (∫ 1

0
|𝑇𝛼 (F )|(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤) |𝑞

max{ℊ(𝑥)𝛼−1, 𝑤𝛼−1}𝑞 𝑑𝜏
)1/𝑞

where 1
𝑝
+ 1

𝑞
= 1.

Since |𝑇𝛼 (F )|𝑞 is relatively 𝑠-convex in the second
sense with respect to the function ℊ and |𝑇𝛼 (F )(𝑥) ≤ 𝑀 |,
we have

∫ 1

0
|𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) |𝑞 𝑑𝜏 ≤∫ 1

0
(𝜏𝑠 |𝑇𝛼 (F )(ℊ(𝑥)) |𝑞 + (1 − 𝜏)𝑠 |𝑇𝛼 (F )(𝑢) |) 𝑑𝜏

≤ 𝑀𝑞

∫ 1

0
(𝜏𝑠 + (1 − 𝜏)𝑠 𝑑𝜏 = 2𝑀𝑞

𝑠 + 1

and

∫ 1

0
|𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤) |𝑞 𝑑𝜏 ≤ 2𝑀𝑞

𝑠 + 1
,

Thus, we obtain:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤[

(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

] (
1

𝑝 + 1

)1/𝑝

max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}
(

2𝑀𝑞

𝑠 + 1

)1/𝑞

=

[
(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

]
𝑀

(𝑝 + 1)1/𝑞

(
2

𝑠 + 1

)1/𝑞

max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}
Remark.If 𝛼 = 1 in this Theorem 9, we obtain Theorem 8
from [17] and ifℊ(𝑥) = 𝑥, we recover the result of Theorem
3.
Example 4.For the function 𝐹 (𝑥) = 𝑥1/4, whose modulus

|𝑇𝛼𝐹 (𝑥) | = |𝑇𝛼𝑥1/4 | =
����14𝑥1−𝛼𝑥−3/4

����
is relatively 𝑠-convex with respect to the function 𝑔(𝑥) =

𝑥1/7, it holds that for 𝛼 = 0.3, 𝑠 = 0.3, and 𝑞 = 3 on the
interval [2, 7], the inequality from Theorem 9 is satisfied.Since ����14𝑥−0.05

���� ≈ 0.2411,

we may choose 𝑀 = 0.25, and observing that

max
𝑥∈{2,7}

{
(𝑥1/7)−0.7, 2−0.7, 7−0.7} = 0.94,

we obtain the following inequality:���𝑥1/28 − 1.445
��� ≤ 0.124

(
2
7
𝑥2/7 − 18

7
𝑥1/7 + 53

7

)
.

This inequality is illustrated in the following figure.

3 4 5 6 7

0.5

1

1.5

2

x

f(x) x1/ 28 − 1.445

0.124 2

7
x2/ 7 − 18

7
x1/ 7 + 53

7

Figure 4: Graphs of the functions
��𝑥1/28 − 1.445

�� and
0.124

(
2
7𝑥

2/7 − 18
7 𝑥

1/7 + 53
7

)
.
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Theorem 10. Let F : 𝐼 ⊂ R+ → R+ be an 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼 such that 𝑇𝛼 (F ) belongs
to the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤. If |𝑇𝛼 (F )|𝑞 is relatively 𝑠-convex with respect to
the function 𝑔 : R → R for some fixed 𝑠 ∈ (0, 1] , 𝑞 > 1,
and |𝑇𝛼 (F )(𝑥) | ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤], then the following
inequality holds:����F (ℊ(𝑥)) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

𝑀

(
2

𝑠 + 1

)1/𝑞 [
(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

2(𝑤 − 𝑢)

]
max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}

For each 𝑥 ∈ [𝑢, 𝑤].

Proof.Suppose 𝑞 > 1. By Lemma 3, and using the power
mean inequality, we obtain:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤���� (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F ) (𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) (𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢)𝛼−1𝑑𝜏

���� + ���� (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F ) (𝜏ℊ(𝑥)+

(1 − 𝜏)𝑤) (𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1𝑑𝜏

����
≤ (ℊ(𝑥) − 𝑣)2

𝑤 − 𝑢

(∫ 1

0
𝜏 𝑑𝜏

)1−1/𝑞 ( ∫ 1

0
𝜏( |𝑇𝛼 (F )(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢) | |𝜏ℊ(𝑥) + (1 − 𝜏)𝑢 |𝛼−1)𝑞) 𝑑𝜏
)1/𝑞

+ (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

(∫ 1

0
𝜏 𝑑𝜏

)1−1/𝑞 ( ∫ 1

0
𝜏( |𝑇𝛼 (F )(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑤) | |𝜏ℊ(𝑥) + (1 − 𝜏)𝑤 |𝛼−1)𝑞) 𝑑𝜏
)1/𝑞

Since |𝑇𝛼 (F )|𝑞 is relatively 𝑠-convex in the second sense
with respect to the function ℊ and |𝑇𝛼 (F )(𝑥) ≤ 𝑀 , we
have

∫ 1

0
𝜏( |𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) |

| (𝜏ℊ(𝑥) + (1 − 𝜏)𝑢)𝛼−1 |𝑞) 𝑑𝜏

≤ max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1}𝑞
∫ 1

0
𝜏𝑠+1 |𝑇𝛼 (F )(ℊ(𝑥)) |𝑞+

𝜏(1 − 𝑡)𝑠 |𝑇𝛼 (F )(𝑢) |) |𝑞 𝑑𝜏

= max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1}𝑀𝑞 1
𝑠 + 1

and∫ 1

0
𝜏( |𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤) |

| (𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1 |𝑞) 𝑑𝜏

≤ max{ℊ(𝑥)𝛼−1, 𝑤𝛼−1}𝑞𝑀𝑞 1
𝑠 + 1

Thus, we obtain:����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

𝑀

(
1
2

)𝑞 (
1

𝑠 + 1

)𝑞
max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}[

(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

]
Remark.If in Theorem 10 we set 𝛼 = 1, we obtain Theorem
9 de [17], and if ℊ(𝑥) = 𝑥, we recover Theorem 4.

Example 5.For the function 𝐹 (𝑥) = 𝑥1/2, whose modulus
|𝑇𝛼𝐹 (𝑥) |𝑞 = |𝑇𝛼𝑥1/2 |2 =

�� 1
2𝑥

1−𝛼𝑥−1/2
��2 is relatively 𝑠-

convex with respect to the function 𝑔(𝑥) = 𝑥1/3, it holds
that for 𝛼 = 0.6 and 𝑠 = 0.4 on the interval [2, 4], the
inequality of Theorem 10 is satisfied.

Since
�� 1
2𝑥

−0.1
�� ≈ 0.466, we may choose 𝑀 = 0.5, and

noting that

max
𝑥∈[2,4]

{
2−0.4, 4−0.4,

(
𝑥1/3

)−0.4
}
= max

𝑥∈[2,4]
{0.76, 0.57, 0.91}

= 0.91

we obtain the following inequality:���𝑥1/6 − 1.724
��� ≤ 0.27

(
𝑥2/3 − 6𝑥1/3 + 10

)
.

This inequality is illustrated in the following figure.

2.5 3 3.5 4

0.5

1

1.5

2

x

f(x) x1/ 6 − 1.724

0.27 x2/ 3 − 6x1/ 3 + 10

Figure 5: Graphs of the functions
��𝑥1/6 − 1.724

�� and
0.27

(
𝑥2/3 − 6𝑥1/3 + 10

)
.
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The following result is known as the Hermite-Hadamard
inequality for relatively 𝑠-convex functions in the second
sense,is not an original contribution of this work. Its proof
can be found in [11] and is essential for the proof of the
final theorem.

Theorem 11. Let F : 𝐾𝑔 ⊆ R → R a relatively 𝑠-convex
function in the second sense. Then, the following inequality
holds:

2𝑠−1F
(
𝑢 + 𝑔(𝑤)

2

)
≤ 1
𝑔(𝑤) − 𝑢

∫ 𝑔 (𝑤)

𝑢

F (𝑧) 𝑑𝑧

≤ F (𝑢) + F (𝑔(𝑤))
𝑠 + 1

If F is relatively 𝑠-concave in the second sense, then
the inequalities are reversed.

Theorem 12. Let F : 𝐼 ⊂ R+ → R+ be an 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼 such that 𝑇𝛼 (F ) belongs
to the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤. If |𝑇𝛼 (F )|𝑞 is relatively 𝑠-concave with respect to
the function ℊ : R → R for some fixed 𝑠 ∈ (0, 1], 𝑞 ≥ 1,
and 1

𝑝
+ 1

𝑞
= 1, and if |𝑇𝛼 (F )(𝑥) |) | ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤]

then the following inequality holds:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

2
𝑠−1
𝑞 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}

(1 + 𝑝)1/𝑝 (𝑤 − 𝑢)

[
(ℊ(𝑥) − 𝑢)2

�����𝑇𝛼 (F )(
𝑢 + ℊ(𝑥)

2

) ����� + (ℊ(𝑥) − 𝑤)2

�����𝑇𝛼 (F )
(
𝑤 + ℊ(𝑥)

2

) �����
]

Proof.Let 𝑞 > 1, by Lemma 3 and using Hölder’s
inequality, we have:����F (ℊ(𝑥)) − 1

𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤����� (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) (𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢)𝛼−1 𝑑𝜏

����� +
����� (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

∫ 1

0
𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑤) (𝜏ℊ(𝑥) + (1 − 𝜏)𝑤)𝛼−1 𝑑𝜏

�����
≤ (ℊ(𝑥) − 𝑢)2

𝑤 − 𝑢

( ∫ 1

0
𝜏𝑝𝑑𝜏

( ∫ 1

0
|𝑇𝛼 (F )(𝜏ℊ(𝑥)+

(1 − 𝜏)𝑢 | |𝜏ℊ(𝑥) + (1 − 𝜏)𝑢 |𝛼−1)𝑞 𝑑𝜏
)1/𝑞

Since |𝑇𝛼 (F )|𝑞 is relatively 𝑠-concave in the second sense,
we obtain by Theorem 11:

∫ 1

0
|𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑢) |𝑞 𝑑𝜏 ≤

2𝑠−1
����𝑇𝛼 (F )

(
ℊ(𝑥) + 𝑢

2

)����9
and∫ 1

0
|𝜏𝑇𝛼 (F )(𝜏ℊ(𝑥) + (1 − 𝜏)𝑤) |𝑞 𝑑𝜏 ≤

2𝑠−1
����𝑇𝛼 (F )

(
ℊ(𝑥) + 𝑤

2

)����9
From which we obtain:

����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

2
𝑠−1
𝑞 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}

(1 + 𝑝)1/𝑝 (𝑤 − 𝑢)

[
(ℊ(𝑥) − 𝑢)2����𝑇𝛼 (F )

(
𝑢 − ℊ(𝑥)

2

)���� + (ℊ(𝑥) − 𝑤)2
����𝑇𝛼 (F )

(
𝑤 − ℊ(𝑥)

2

)���� ]
Example 6.For the function 𝐹 (𝑥) =

√
10 − 𝑥, whose

modulus

|𝑇𝛼𝐹 (𝑥) |2 =

���𝑇𝛼√10 − 𝑥
���2 =

����𝑥1−𝛼 · 1
2
√

10 − 𝑥

����2
is relatively 𝑠-concave with respect to the function 𝑔(𝑥) =
𝑥2, it holds that for 𝛼 = 0.4, 𝑠 = 0.2, and 𝑝 = 2, on the
interval [2.5, 3], the inequality of Theorem 12 is satisfied.

Since

max
𝑥∈[2.5,3]

{
(𝑥2)−0.6, 2.5−0.6, 3−0.6} = 0.58,

we obtain the following inequality:

���√︁10 − 𝑥2 − 2.69
��� ≤ 0.26


(𝑥2 − 2.5)2 ·

���������
(

2.5 + 𝑥2

2

)1.2

4
(
10 − 2.5 + 𝑥2

2

)
���������

+(𝑥2 − 3)2 ·

���������
(

3 + 𝑥2

2

)1.2

4
(
10 − 3 + 𝑥2

2

)
���������


This inequality is illustrated in the following figure.
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Figure 6: Graphs of the functions
���√10 − 𝑥2 − 2.69

��� and
its upper bound.

4 Implications derived.

Corollary 1. Let F : 𝐼 ⊂ R+ → R+ be an 𝛼-differentiable
function on the interior 𝐼◦ of 𝐼 such that 𝑇𝛼 (F ) belongs
to the space of integrable functions, where 𝑢, 𝑤 ∈ 𝐼 with
𝑢 < 𝑤. If |𝑇𝛼 (𝐹) | is relatively 𝑠-convex with respect to the
functionℊ : R→ R for some fixed 𝑠 ∈ (0, 1] and 𝑝, 𝑞 > 1
satisfy 1

𝑝
+ 1

𝑞
= 1 with |𝑇𝛼 ( 𝑓 ) | (𝑥) ≤ 𝑀 for all 𝑥 ∈ [𝑢, 𝑤],

then the following inequality holds:����F (ℊ(𝑥)) − 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

𝑀

(1 + 𝑝)1/𝑝 max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}[
(ℊ(𝑥) − 𝑢)2 + (ℊ(𝑥) − 𝑤)2

𝑤 − 𝑢

]
for all 𝑥 ∈ [𝑢, 𝑤].

Proof.If in Theorem 9, we set 𝑠 = 1, the result is obtained.

Corollary 2. In Theorem 10, if we choose the function
ℊ(𝑥) = 𝑢+𝑤

2 , then we have:����F (𝑢 + 𝑤
2

)
− 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤(

𝑀 (𝑤 − 𝑢)
4

) (
2

𝑠 + 1

) 1
𝑞

max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}

with 𝑞 ≥ 1, where 𝑠 ∈ (0, 1] and |𝑇𝛼 (F )|𝑞 is relatively
𝑠- convex in the second sense with respect to the function
𝑔 : R→ R.

Corollary 3. If in Theorem 12 we choose 𝑠 = 1 andℊ(𝑥) =
𝑢+𝑤

2 , then we have:����F (𝑢 + 𝑤
2

)
− 1
𝑤 − 𝑢

∫ 𝑤

𝑢

F (𝑧) 𝑑𝑧
���� ≤

(𝑤 − 𝑢) max{ℊ(𝑥)𝛼−1, 𝑢𝛼−1, 𝑤𝛼−1}
4(1 + 𝑝)1/𝑝[ ����𝑇𝛼 (F )

(
3𝑢 + 𝑤

4

)���� + ����𝑇𝛼 (F )
(

3𝑤 + 𝑢
4

)���� ]
5 Conclusions
We trust that the concepts and techniques developed in
this paper provide a solid foundation for interested readers
to further explore and investigate new applications of
these recently introduced functions. We believe that their
potential impact can extend across various fields of pure
and applied sciences, thereby promoting the advancement
of knowledge and the development of future research in
these areas.
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