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Abstract: Wiener-Hermite expansion linked with perturbation technique (WHEP) is used to solve the
stochastic tow-dimensions non-linear Navier-Stokes equations. An approximate formula for the
ensemble average, variance and some higher statistical moments of the stochastic solution process are
obtained using WHEP technique and some cases study are considered to illustrate the method of
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1. Introduction

The Navier-Stokes equations are nothing more
than a continuum formulation of Newton’s laws of
motion for material. They are a set of non linear
partial differential equations which are thought to
describe fluids motion for gasses and liquids, from
laminar to turbulent flows, on scales ranging from
below a millimeter to astronomical lengths.

The boundary value problems for PDEs with
irregular coefficients, fluctuating source terms, or
randomly excited boundary conditions are used in
many fields of science and technology to describe
uncertainty, probabilistic distribution of irregulariti-
es, or large ensembles of measurements under
similar but randomly fluctuating conditions(e.g., see
[1-7]).

Since Meecham and his co-workers [8]
developed a theory of turbulence involving a
truncated Wiener-Hermite expansion (WHE) of the
velocity field, many authors studied problems
concerning turbulence [9-14]. A number of general
applications in fluid mechanics were also studied in
[15-17]. Scattering problems attracted the WHE
applications through many authors [18-22]. The
non-linear oscillators were considered as an opened
area for the applications of WHE as can be found in
[23-29]. There are many applications in boundary

value problems [30,31] and generally in different
mathematical studies.

The application of the Wiener-Hermite expansion
(WHE) aims at finding a truncated series solution to
the solution process of differential equations. The
truncated series are composed of two major parts;
the first is the Gaussian part which consists of the
first two terms, while the rest of the series constitute
the non-Gaussian part. In non-linear cases, there
exist always difficulties of solving the resultant set
of deterministic integro-differential equations
obtained from the applications of a set of comprehe-
nsive averages on the stochastic integro-differential
equation resulted after the direct application of
WHE. Many authors introduced different methods
to face these obstacles. Among them, the WHEP
technique was introduced in [28] using the perturb-
ation method to solve non-linear problems. Many
authors used the WHEP algorithm to find the appr-
oximations of the statistical moments of the solution
process for a family of the stochastic differential
equations which have an important in the applied
sciences as diffusion equation, oscillatory, and
Schrodinger equations (see, [32-43]).

This paper is organized as follows: in section 2,
we give the description of the problem that includes
the tow-dimensions Navier-Stokes equation under a
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stochastic excitation. In section 3, we introduce a
survey on the Wiener-Hermite expansion and some
formulas are obtained for the ensemble average,
variance and some higher statistical moments of the
stochastic process. In section 4, the equations which
describe the deterministic kernels of the Wiener-
Hermite expansion of the stochastic solution
process of the problem are found using the statistic-
al properties of Wiener-Hermite polynomials
(WHPs). In section 5, we apply the perturbation
theory to approximate the non-linear deterministic
system. Finally in section 6, some case studies are
presented to illustrate the mathematical analysis of
the WHEP technique.

2. Description of the stochastic problem

Let us consider the following stochastic two-di-
mensions nonlinear perturbed Navier-Stokes equati-
ons

av”(“aV+Vavj:a{62\z/+82\zl}ap+oW(x;w),
ot ox oy oy

0<x<L, 0<y<lL,
u(x,y,0) =4 (x,y), v(x ¥.0) =, (x,y),

u(0,y,t)=u(L,y,t)=0,v(x,0,t) =v(x,L,t) =0,

t>0,

1)
where ¢ is a deterministic scale for the nonlinear
term and the inhomogeneity term ow (x; w) IS Space

Wiener process scaled by o and o is a random
outcome of a triple probability space (Q,P,B) where

Q is a sample space, Bis a o-algebra associated
with Q and P is a probability measure.
Eliminating p by differentiation the second and

third equations from (1) with respect to y and X
respectively, we get

vov wvau v o
ov ol oy ox oOxox  ox® oyox
- +e
oty Juou_avou_ ot o'
oyox oyoy oyt oyox
v ov  du ol
“ae o ol ap) oM

)
From the first equation of (1), we choose a random
function w(X, y,t;®) such that satisfies

= oy (3)
OX oy
Substituting from (3) into (2), hence the stochastic
model (1) tends to the following form

Ny te) | oW VY| o, onicw)
at a(x.y) '
oy (0,y,t) _oy(L,yt)
¥,.0)=4(x,Y), = =0
v (% y,0) =¢(x,y) o o
oy (x,0,t) ow(xL,t) _0
x  ox
(4)
where %) s the Jacobian determinate and
o(x,y)
s,
ot Toaxloy? oy oy ox
(5)

3. The Wiener Hermite expansion (WHE)
The Wiener-Hermite polynomials HO (X, %0 X,)

(WHPs) are the elements of a complete set of
statistically orthogonal random functions (See [14])
and satisfies the following recurrence relation,

H O (%), Xy %) = HED (X, Xy e, X )H O (X))

i-1

— PHE(X X X)X —X,), 122,
m=1
(6)
where
HO =1  HOx)=n(x),
H @ (x,%,) = HD 0 )HD (x,) = 5(x; — %,),
H® (x4, X0, Xg) = H® (%, %) H® (x5) =H P (x)5(x, = X3)
—HO(x,)50x - X3),
H® (xg, %o, X3,%4) = H® (%, %5, %5 )H P (x,)
—H® (x,%,)5(x3 — X,)
—HP(x;,%3)8(Xy = %,) = H @ (X5, %3) 5 (X — Xy),

()

E[H(i)(xl,x2 ...... X OHD (%, %, ... xj)]=o Vi# j}

(8)
where E denotes the ensemble average operator,
O0(-) is the Dirac delta function and n(x) is the

stochastic white noise process which has the
statistical properties,
ENC)] =0, E[N(x)N(%)] = (X —Xy) 9)
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Due to the completeness of the Wiener-Hermite
set, any stochastic function u(x;w) can be expanded

as
u(x; @) =u@(x) + Ju(l)(x; %) H® (x)dx, +
R

Iu(z) (X Xg, %o ) H® (g, X, )dx,0lX, +

RZ

Ju® 06, %5, %5) H® (31, %, X5) g + oo
R3

(10)

4. Application of the WHE to approximate the
stochastic solution process

In this section, the first order series of Wiener-
Hermite expansion of the stochastic solution
process (X, Y,t;®) of the problem (4) is consider-
ed and takes the following form,

L
w (%Y, to) =@y, 1)+ [wr® (Y, 6x)H® (x)dx,
0

(11)
where the mean and the variance of the stochastic
solution processes Uu(X,Y,t;®) and Vv(X,Y,t;®)

are obtained from the following relations,
6!//(0)
E[u(x, y,t; =——
[u(x, y.t; w)] Y
oy ov?
E[v(x,y,t;®)] = o (12)

Var[u(x, y,t;m)] = T[ vt J
Var[v(x, y,t; w)] = f(ag:) ] dx,

Hence, substituting from (11) into (4), we get the
following stochastic equation

ov? 4 (0) i OR®

p —aVi|y (X,y’t)*'.([‘// HE (4 )dx, |+
L W w2, ) © v2,®
J(a(wa(’xvyl;/ )+6(Wa(’xvy;y )]H(D(Xl)dxl+
0 ! '
LL (1) 2®
”a (Xa)(xvy) Do (6 )HO (x,)ax,ax,
00

0) 72,,(0)

ATV

(13)

The deterministic kernels @ and " are

obtained from non-linear deterministic system
which reduces after taking some statistical averages
of Eq. (13) using the statistical properties of WHPs
(See Appendix 1) and it is given by the following
form.

Ny® 0w Vi)tV Wl))dx Vi,
ot a(x,y) o o(xy)
6V2l//(1) N 6(1//(1),V2l//(0)) N a(v/(o)’vzw(l))
ot o(x,y) o(x,y)
Vi ® + o8 (x—x,),

V/(O) (Xv y,O) = ¢(X, y)v V/(l) (X, yvov Xl) =0,

oy0.y.t) _ oy @(Ly.b) _,

oy oy
oy (x0t) _ oy (xLt) oy (x0,tx) _
OX oy OX
ow P (x,Lt,x) op®0,y,t,x) oy (0,Lt,x) _0
ox oy oy
(14)

5. The application of perturbation method

In this section, we consider the perturbation theo-
ry to find some approximations for the determinis-
tic non-linear system (14). Let us consider the

kernels @ and " in second correction of &
(See Appendix 2, [33]) as follow,

v =p O+ Oy + ey ()

2(1

(X, Y, 65%).

(15)
Substituting from (15) into (14), we get the
following system of iterative linear equations

%[Vz (0] aViy

@ =Py ux)+ar P () ytx) + ety

(0) _ 6l//(§0) (01 y,t) _ GWéO)(L, y’t)
wo (X Y,0)=4(XY), =
0 6y 6y
_ oy (x0.0) _ oy (L) _
B ox a ox T
(16)
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Wzl//él) _y

p Vi ® + o5 (x - x,),

) o
v (x,y,0,%) = Oy’ (0,y,1,%) _ ows (L, y,t, %)

% oy
_ oy (x0.tx) _ dpg’(x Litx,) 0
OX X =Y
17)
e +{6(W00)’VZW(O)) A a(l//"l)’vzl/’él))dx } V0
o axy) 5 %Y
o (0) O, t ) (0) Lyt
v (x, y,0) =¥ O¥.0 _ oLy, 1)
% oy
61/11(0) (X’O’t) — 61//1(0)()(! th’) = 0
OX OX '
(18)
vy +{5(V/él),vzl//é°)) N Ay v (1))} g
1
a a(x,y) a(x, y)
® : ® :
w0 (x, y,0:x) = ¥ QY X) _ oy (L y. %)
% oy
ovPon)_avPLun)
OX ox '
(19)
oW ) | o V)
P | o) a(x,y)
ot L{@(Wél)’vz%(l)) N 6(!//1‘”:V2l//é”)}dx
oL axy) a(x, y) L
= av4l//2(0)
0 (0) 0’ t P (0) L, t
wO(x, y,0) = ¥z Oy _ 0y (Ly.Y
oy oy
_ayP (00 _ayP(xLit)
6X aX !
(20)
A Vi) oW Vi) |
%,,,g) N a(x,y) a(x,y) oy
oW V) | o V)
a(x,y) a(x,y)
o ; @ :
V/él)(xl yyO, Xl) = al/lz (O, y’t' Xl) - a1/12 (Ll yvty Xl)
% oy
Ay (x0,t;%) _ dwP (X, Lit;x) 0
15)4 B X =Y,

(19)

6. The application of eigenfunctions expansion

The system of iterative linear partial differential
equations (16-21) of the pervious section has the
following general form

%[vzxy(x, Y]+ f %y t) =aVA¥(x, y.1),

t>0, 0<x<L, 0<y<L, WY(VY,0)=d(xYy),
ovY(0,y,t) o¥(L,y.t) o¥(x0,t) o¥(x,L,t) 0
oy oy ox &
(22)

which has a general exact solution which is discuss-
ed in appendix 1. Finally, from the pervious results,
the exact solutions of the components of the pertur-
bation series take the following form,

p = ZZR (n,m, t)sm(L xjsm( yj
n=1 m= (23)
R(n,mt)=T,,e """,
Tom = izﬂqﬁ(x, y)sin(mr x]sin(m” yjdxdy
00 L L
v =
2 & (nz N ((@m-D)7x (N
E%Rzm'm't)sm( ] x]sm(L yjsm( 3 xl),
_ 80 -tz 1(t-0)
e 7 L
(24)
0 . (27
w© _(ZQ (t)sm[ stm(L x),
Ql(t)_ R 5 (2.L,1), Qz(t)— R A(22,1),
Qs(t)=—L R.(23.0), Q4<t>-—L—2R(24t>,
R,(n,m, t)= zije*”*-m“*” q,(z)dr,
R,(n,m,t)= 4 je*“‘w“*”q (r)dr
A I g ’
o) = 3@ [RALHRL2,)]
00 =2 [R,(LOR,020) ()
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(a2 )
V,(t) = %2[2R9(2,1, t) - R, (2L 1)]

V,(t) = %Z[Rs (2,2,t) - 2R,(2,2,1)]

V,(t) = %Z[RG (23,t) - Ry(2,3,1)]

V, (t) = %2 R, (2,4,1),

LZ
V5 (t) = E RB (215701

t
[e @ gy (r)de,

n,m 0

R.(n,m,t)=

L’

4
24

t
J‘e*aﬂn‘m(tff) a, (T)dT,

n.m 0

Rs(n,m,t)=

4 b ~& =T
R7(n,m,t)=ﬁje Al g (r)dz,

n,m 0

t
4 Ie—aﬂm‘m(t—r)

R, (n,m,t)=
8( ) Lz/1

G(7)d7,

n.m 0

t N
e g, (r)dr,

n,m 0

Ry(n,m,t)=

)

q3(t) = _2(7[-] [Rl (1711 t) Rz (17210]!

q, () = —;(’E] R,(L2,O[7R, (1L t) + 25R, (1,2,1)]
13

qs(t) =?q3(t): L

q,(t) = ;[’[j R,(1,2,)[3R, (L1 t) ~10R, (1,2,1)].

o (2 (-7 ). (2%
78 —(nzlan(t)sm( 1 xj]sm(LyJ

312 L2
&) =" [Ro(2L1)] a,t) = =T [Ry,(23,1)]

4
24

t
e gy (r)dr,

n,m 0

Rlo(nlm:t):

Gs (7) = —3(73 [RALHQEM) + LR, ALV, ()]

Q(t) = —225(”] [R@2HR,@L2,1)],

(26)

(27)

(28)

a <2 . ((2n=-Drx - (2n (7
2 —[n;bn(t)sm( C xDsm( C yjsm(Lxlj,
by (t) = %[4&1(1,2,0 - 2R,,(1,2,t) + 3R,(1,2,1)],

b, (t) = Lg[Rn(s,z, t)+Ri;(23,1)]

t
J'e*fﬂn,m(T*f) 0y (T)dT ,

n,.m 0

4
R,,(n,mt)=——
11( ) Lzl

t
I g @A) Oyo(r)dz,

n,m 0

4
R.(n,mt)=——
12( ) L2/1

4
24

t
J. g “n() 0y (7)dz,

n.m 0

R;(n,m,t)=

0 0)=-3 £ ROLVO) 4= 0,0,

Gult) = —3(’[] [R, L1 0Q,(1)]

(29)

6. Cases study

In section, we consider some cases study
illustrate graphically some approximations of the
statistical moments of the stochastic solution
process which were obtained from the application
of the WHEP technique.

Case study 1:

In this case, the mean and variance functions
approximations are presented for a given initial
condition over a given domain of the coordinates of
the problem and the graphical behavior of this case
are shown in the figures (1-4).

(1.a)

E[v(x,y.0)]. d=x v, o=1, =1
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(1.b) (2.b)

E[vix.y.t)] d=x v, o=l. &=l E[u(x,y.t)] ¢=x ¥y, o=1, =1

(1.c)
(2.c)

E[u(.\'.yiit)_l.’q#:x y.o=1, =1

Fig.1 The second correction of E[v(X,Y,t; w)]for
£=10,L=1in(a) x=0.8, (b) y=0.8and Fig.2 The second correction of E[u(X, Y,t;w)]for
£=10,L=1in(a) x=0.8, (b) y=0.8 and

©) t=1
(2a) (C) t=1
E[uix,y.0)] ¢=x v, =1, a=1 (3 . a')

Va{v(x,y.t)]. d=x v, o=1, =1
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(3.b) (4.b)

Varfv(x.y.0)]. #=x y. o=l =1

Var{u(x,y.t)] #=x y, o=1, &=1

(3-c) (4.c)

Fig.4 The second correction of Var[u(x, y,t; )]
Fig.3 The second correction of Var[v(x,y,t;o)]for  ¢o; ¢ =10, L=1in(a) x=0.2, (b) y=0.2and
£=10,L=1in(a) x=0.2, (b) y=0.2and

(c)t=1 Case study 2:

The variation of the statistical moments functions
with the time at fixed point is present in this case
for different values of & and for given domain and

(4.2) some prompters, the figures (6-8) are displayed this
case.

©) t=1

Var{u(x.y.t)]. d=x y. o=1, 2=1
(5.a)

E[v(xy,D)], =xy, o=1, x=0.5, y=0.8
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(5.b) (7.a)
E[v(xy,D)], #=xy, o=1, x=0.5, y=0.8 Var[u(x,y,t)], g=xy, =1, x=0.8, y=0.2
151 — e=0

Fig. 5 The second correction of E[v(X,y,t;w)] at
fixed point for different values of &, for L =2

0.00004 [

0.00003 |

0.00002 |

0.00001 |

0.0

0.1 0.2 03 0.4

t

(7.b)

Var[u(xy, D], p=xy, o=1, x=0.8, y=1.2

. 0.010 r
in(@ata=1and(b)at =3
— €=0
0.008 |
(6.a)
-- €=10
0.006 [
' E'[u(x,y,t)], q?:x Yy, o—=l', x=0.5, y:'0.8 _ —20
NI 1 0.004f
N . — €=0
sk N . ] RALTN €=30
.': '-_ -=- €=10 0002 o .~'~.
2k 1 e 0000 [mifim st mmmmmmmE— . K
.: L * ‘.\ '._ 0.0 0.2 0.4 0.6 0.8 1.0 12
1b ::'.' "-‘ €=30 ] t
0;/}“ Fig. 7 The second correction of Var[u(X, y,t;®)]
00 02 04 06 08 10 at fixed point for different values of ¢, for ¢ =1
t in(@at L=1and(b)at L=2
(6.b)
E[uxy,p)], ¢=xy, o=1, x=0.5, y=0.8
0.0F ! ; - . .
— €=0 (8 ’ a)
" Var[v(xy,D], p=xy, o=1, x=0.8, y=.2
0.0001 | o
- €=20
0.00008 |
€=30
0.00006 |
— €=0
L L L 0.00004
03 04 05 T e=10
t 0.00002 | - €=20
0.0000 | €=3%
Fig. 6 The second correction of E[u(Xx, y,t;w)] at ' 0 12

fixed point for different values of ¢, for L =2 t
in(@at a=1and(b)at « =5
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9.
(8.b) (©-c)
E t = =1,x=0.5, y=1.2
Var[v(xy,t)], g=xy, c=1, x=0.8, y=.2 oF '[u(x,y, ). ¢>—xy g .’X Y T
25%1078 Fr T T T T I 5ok
5F : - 0'" correction
2.x1076 | R
aF
: . ==+ 1%correction
15x1076 | 3 ¢
1.x1078 | 2t 2" correction
i : '
5.x10°7 | 0 _\‘%_ .......
(YR e
Ok 0.0 02 0.4 06 08 1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

t

Fig. 8 The second correction of Var[v(X,y,t;®)]

at fixed point for different values of ¢, for L =2
in(@ata=1and(b)at « =6

Case study 3:

The comparison between different corrections
related to the approximation of the statistical
moments of the stochastic solutions process are
considered in this case and the figures (9-14)
illustrate this comparison for some given data
related to the problem

(9.a)

E[u(xy, D], ¢p=xy, c0=1x=0.5, y=0.2

I 0'M correction

-05F

==+ 1%correction
—10F .

21 correction

—15}F

0.0 0.2 0.4 0.6 0.8 1.0 12 14

(9.b)

E[u(xy,D)], p=xy, o0=1x=0.5, y=0.2

0.0F

I o' correction

-05F

==+ 1%correction
71‘0 -

2" correction

—15}

0.00 0.05 0.10 0.15 0.20 0.25 0.30

9.d)

E[uxy,t)], ¢=xy, c0=1x=0.5, y=1.2

I o'M correction

- 1% correction

2" correction

0.20 0.25 0.30

Fig. 9 A comparison between different corrections

0.0F
—01f
—02F
—03F
—04af
o5k

-06

of E[u(x,y,t;w)] for L=2

in(@ a=1Le=10, (b) aa=4,6=10,
() a=1 =40 and(d) =1, =40

(10.a)
E[V(Xy,D], g=xy, o=1
- o' correction
==+ 1%correction
2" correction
0.00 0.05 0.10 0.15 0.20 0.25 0.30
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(10.b) (12.a)

Var[u(x,y, )], g=xy, o=1, x=0.8, y=0.2

ELVO.D), 6=xy, =1

05F

0.00004 |

Do - i .
P 0'" correction ’
04F ey - oM correction

‘ -
P 0.00003 |

o
0.3F [ - 15t ti
e correction ==+ 1%correction
- 0.00002
L .
02 AR P nd i
., 2" correction nd .
0.00001 F 2" correction
o1f
Oz \ \ \ \ \ A
0.0L, 0.00 005 010 015 020 025 0.30

0.0

Fig. 10 A comparison between different corrections
of E[v(X,Y,t;w)] for (12.b)
a=1=10,x=0.8, y=02

in(@ L=1and (b) L=2,

Var[u(x,y, )], g=xy, o=1, x=0.8, y=0.2

..........

0.00004 | ih .
— 0*" correction

(11 . a) 0.00003 |
==+ 1%correction
00F EVOy D) o0y oL : 0.00002
2" correction
e 0.00001 f
0" correction
OFs L L L
==+ 1%correction 0.0 0.1 0.2 03 04
—10F t
. 21 correction
—-15} :.-'-: 1 . - H 1
o o v " v s Fig. 12 A comparison between different corrections

of Var[u(x,y,t;®)] for L=1a =1
in(a) e=10 and (b) £=50,

t

(11.b)
E[v(xy.D], g=xy, o=1
00F i U
ot correction
(13.a)
1% correction
Var[u(x,y, D], p=xy, o=1, x=0.8, y=0.2
2"d correction ] . .
006 ; D - o'f correction
0..08 0_.10 004l - 1% correction
t :
. . . . : =eeo 2" correction
Fig. 11 A comparison between different corrections 002r
of E[v(X,y,t;w)] for T "
0.00 _._‘-'“.1-.{.—--"""'."- ] ) J
L=2,¢£=100,x=0.8, y=0.2 0.0 0.2 04 0.6 08 1.0

in(@ a=1and (b) =5, t
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(13.b)

Var[u(x,y,b)], ¢=xy, o=1, x=0.8, y=0.2

0.00015

ot correction
0.00010
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Fig. 13 A comparison between different corrections
of Var[u(x,y,t;®)] for L=2,6 =50
in(@ a=1and (b) =6,

(14.a)
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1.x1078 21 correction

0.0 0.1 0.2 03 0.4

Fig. 14 A comparison between different corrections
of Var[v(x,y,t;w)] for L=2, £=10
in(@ a=1and (b) =4,

Case study 4:

Some higher statistical moments are considered in
this case for some a given data. The figures (15-20)
display some comparison between different
corrections of the approximation functions of the
third, fourth and fifth statistical moments of the
solution process.

(15.a)

E[uxy.D]°, ¢=xy, o=1, x=0.8, y=0.2

- 0'" correction
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2" correction
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- 12 1 1 1 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10

t

(15.b)

E[uxy.D]°, ¢=xy, o=1, x=0.8, y=0.2

0'" correction

1% correction

2" correction

0.4 0.5

Fig. 15 A comparison between different corrections
of E[u(x,y,t;o)] for L=2, £=10
in(@ a=1and (b) =4,
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¢ t
Fig. 16 A comparison between different corrections (18b)
. 4 .
of Eu(x,y,ta)]" for L=1 a=1 E[Vxy.DT, d=xy, o=1, x=0.2, y=0.5
in(@ £=10 and (b) £=100 WF
- o' correction
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00"

Fig. 17 A comparison between different corrections
of E[u(x,y,t;o)]° for L=1, £=50
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Fig. 18 A comparison between different corrections
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of E[v(x,y,t;@)] for L=1, a=1
in(a) =10 and (b) =200

15F
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(19h)

E[v(xy.D]*, p=xy, o=1, x=0.2, y=0.5
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Fig. 19 A comparison between different corrections
of E[V(X,y,t;@)]* for L=1, &=400
in(@ a=1and (b) =8

(20.a)
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2" correction
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0.00 0.02 0.04 0.06 0.08 0.10

Fig. 20 A comparison between different corrections
of E[v(X,y,t;@)] for L=1, =1
in(@) £€=10 and (b) £=50

7. Conclusion

The WHEP technique proved to be successful in
introducing an approximation of the stochastic
solution process for the non-linear perturbed tow-
dimensions Navier-Stokes equation exited randomly
by the space white noise process. The application of
WHEP algorithm includes tow steps; the first step
shows the application of Wiener-Hermite expansion
to approximate the stochastic solution process of the
problem in terms of deterministic kernels and use
the statistical properties of WHPs to obtain a set of
deterministic equations in these deterministic
kernels. The second step of WHEP technique uses
the perturbation technique to approximate the
deterministic kernels in the first step. Some
statistical moments of the solution process were
obtained to illustrate the statistical behavior of the
solution process. From the results of WHEP
technique and the use of mathematical software
(Mathematica 7), some case studies were presented
to illustrate many corrections for the statistical
moments of the solution process of the problem.

Appendix 1

The statistical properties of Wiener-Hermite
polynomials (WHPs) (See [45]) which were used in
this paper are
E[H® (%X )HP (X, X)] =0 Vi = j

k
E{]‘[ H (1)(xm)} =0 V ke oddnumbers
m=1
E[H® ()H® (%, X, )H @ (x,, %5)] =0
E[H (2)()(1: Xz)H (2)(X3, Xa)] =

5(X1 - X4)5(X2 - Xs) + 5()(1 - X3)5(X2 - X4)
E[H @ (Xl)H ® (Xz)H @ (Xs! XA)] =

O(X —X3)0(X, —X,) + (X, — %X,)0(X, — X3)
E[H ® ()H (6)H ® 06)H O (x,)] =
O(X = X,)0 (X — X,) + (X, — %X3)0(X, — X,)
+ (X, —%X)0(X, —X3)
(30)

Appendix 2

Proof 1. From the application of eigenfunction
expansion (See [46]), we put the general solution of
Eg. (22) in the following form

F(x Y1) = i iTn,m (t)sin(n:[ xjsin(n:_” y\J

n=l m=1

(31)
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Subsisting from (31) into (22), we get

Ms

ng /1n,m [Tn,m (t) + j“n m'n (t)]sm[L stm(L y]

JiN
3
.L

=Y, A :“(U (n? +m?),

iTm (O)sm(ijsm[Lﬁ j:cD(x, y)

1 m=1

>

1 MS

(32)

Multiplying Egs. (32) bySin(k”xjsin(lﬂ yj, and
L L

integrate both sides from them respect to xand y,

we get

/1n,m [Tn,m (t) + j“n m'n (t)] I n, k m,|l

Ms

n=1

3
I
JiN

Lu (kx . (Ix
H f (X, y,t)sm(L x)sm[L yjdxdy,

iiTn (0) Ink m,l II.T(D(XI y)Sin(rt[XJSin(nl” YJ,
n=1 m=1 00
(33)
where
L 0 n%k
:jsin(n” x)sin(m” xjdx: L (34)
0 L L — n=k
2

Then from the property (34), the final expansi-
ons of Eq. (33) tends to the following recurrence

ordinary differential equation,

[Tk,l O+ 4, Ty, (t)] =F.,®,
Ej{t f(xy, t)sm(kl_ xjsm( yjdxdy

Fk,l (t) =

&

A

n,m

T,n(0)= Liﬁd)(x y)sm[L xjsm( yj

(35)
which has the general solution under the initial

condition

t
T.,0=T,0) e 4 J.eW‘I(H) F.,(z)dz

0

(36)

Proof 2. The solution of equation (4), if exists, is a
series power of £ .
Rewriting Eq. (4), it can take the following form

2

Ny _ aViy = on(x;w) - g@l//é‘V(// 61//6Vt//
ot ox oy oy ox

@37)

Following Pickard approximation, the equation
can be rewritten as

avzl//ml

., Viv,)
ot

4 _ .
—-aViy,, =on(X o) - ({ ax.y)
(38)
where the solution at n=0, v, is corresponding
for the simple linear caseat ¢ =0.

At n =1, the iteration takes the form:

2 2
A :an(x;w)_{W}
o(x,y)

which has the following general solution (See the
result of proof 1)

n =33 Ina)+-w(0]an(rtfx)snw[”f’y],

n=lm=1

(39)

In(t):

4 Lkt . (nx . (mrx
G(x,y,t — ——y |dz dxdy,
B Hl (X, y )sm( 3 xjsm[ i yj 7 dxdy

nm

G (X Y, t) e —Znm (t= T)|:6(W0lv l/’o):|

a(x,y)
pt) =T, ™"
4o LLL .[nﬂj.(mﬁ )
G,(x,V,t) sin| — x [sin| — y |dz dxdy,
L%,mm 206y, sin| = =Y y
G,(x,y,t) =e " “n(x; )
(40)
or
p(x YD) = + ey (41)
At n =2, the iteration takes the form
V2 oy, V2
T%—av“y/z =on(x; a))—g[(lgleyl)//l)}
(42)

which has the following general solution by the
same method
(]

w,(% Y. ) =pi? + ey + &yl

(43)
Proceeding like this, one can get the following
u, Xy, =y +ep® +2y@ + 2y + +e"
(44)
Assuming the solution exists, it will be
w(x Y.t =Limy, (X y,) = X2y,
—>00 i=0
(45)
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and therefore that the kernels of the stochastic
Wiener-Hermite of y(X,y,t;w)are a power series
of ¢.
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