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1. Introduction 

     The Navier-Stokes equations are nothing more 

than a continuum formulation of Newton’s laws of 
motion for material. They are a set of non linear 

partial differential equations which are thought to 

describe fluids motion for gasses and liquids, from 
laminar to turbulent flows, on scales ranging from 

below a millimeter to astronomical lengths.  

    The boundary value problems for PDEs with 
irregular coefficients, fluctuating source terms, or 

randomly excited boundary conditions are used in 

many fields of science and technology to describe 
uncertainty, probabilistic distribution of irregulariti- 

es, or large ensembles of measurements under 
similar but randomly fluctuating conditions(e.g., see 

[1-7]).  

    Since Meecham and his co-workers [8] 
developed a theory of turbulence involving a 

truncated Wiener-Hermite expansion (WHE) of the 

velocity field, many authors studied problems 
concerning turbulence [9-14]. A number of general 

applications in fluid mechanics were also studied in 

[15-17]. Scattering problems attracted the WHE 
applications through many authors [18-22]. The 

non-linear oscillators were considered as an opened 

area for the applications of WHE as can be found in 
[23-29]. There are many applications in boundary 

value problems [30,31] and generally in different 

mathematical studies. 
    The application of the Wiener-Hermite expansion 

(WHE) aims at finding a truncated series solution to 

the solution process of differential equations. The 
truncated series are composed of two major parts; 

the first is the Gaussian part which consists of the 

first two terms, while the rest of the series constitute 
the non-Gaussian part. In non-linear cases, there 

exist always difficulties of solving the resultant set 

of deterministic integro-differential equations 
obtained from the applications of a set of comprehe- 

nsive averages on the stochastic integro-differential 
equation resulted after the direct application of 

WHE.  Many authors introduced different methods 

to face these obstacles. Among them, the WHEP 
technique was introduced in [28] using the perturb- 

ation method to solve non-linear problems. Many 

authors used the WHEP algorithm to find the appr-
oximations of the statistical moments of the solution 

process for a family of the stochastic differential 

equations which have an important in the applied 
sciences as diffusion equation, oscillatory, and 

Schrödinger equations (see, [32-43]).   

    This paper is organized as follows: in section 2, 
we give the description of the problem that includes 

the tow-dimensions Navier-Stokes equation under a 
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stochastic excitation. In section 3, we introduce a 

survey on the Wiener-Hermite expansion and some 

formulas are obtained for the ensemble average, 
variance and some higher statistical moments of the 

stochastic process. In section 4, the equations which 

describe the deterministic kernels of the Wiener-
Hermite expansion of the stochastic solution 

process of the problem are found using the statistic- 

al properties of Wiener-Hermite polynomials 
(WHPs). In section 5, we apply the perturbation 

theory to approximate the non-linear deterministic 

system. Finally in section 6, some case studies are 
presented to illustrate the mathematical analysis of 

the WHEP technique.     

2. Description of the stochastic problem  

     Let us consider the following stochastic two-di-

mensions nonlinear perturbed Navier-Stokes equati- 

ons  
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                                                                              (1)                                                                                                                 

where   is a deterministic scale for the nonlinear 

term and the inhomogeneity term );(  xW is space 

Wiener process scaled by   and   is a random 

outcome of a triple probability space ),,( BP  where 

  is a sample space, B is a σ-algebra associated 

with Ω and P is a probability  measure. 

      Eliminating p  by differentiation the second and 

third equations from (1) with respect to y  and x  

respectively, we get                                                                                                                    
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                                                                               (2) 

  From the first equation of (1), we choose a random 

function );,,(  tyx  such that satisfies  

y
u

x
v












,  .                                                 (3) 

   Substituting from (3) into (2), hence the stochastic 
model (1) tends to the following form                                                                                                                     
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where 
),(

(...,...)

yx

  is the Jacobian determinate and 
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3. The Wiener Hermite expansion (WHE)  

     The Wiener-Hermite polynomials ),..,,( 21

)(

i

i xxxH   

(WHPs) are the elements of a complete set of 

statistically orthogonal random functions (See [14]) 

and satisfies the following recurrence relation,    
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where 
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where E  denotes the ensemble average operator, 

)( is the Dirac delta function and )(xn is the 

stochastic white noise process which has the 

statistical properties,                      

 )()]()([,0)]([ 2121 xxxnxnExnE                    (9) 



 

M. A. El-Tawil, et al:  Approximations for some statistical moments  ….                                                                  1097      

 
    Due to the completeness of the Wiener-Hermite 

set, any stochastic function );( xu can be expanded 

as  
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4. Application of the WHE to approximate the 

stochastic solution process  

    In this section, the first order series of Wiener-

Hermite expansion of the stochastic solution 

process );,,(  tyx  of the problem (4) is consider- 

ed and takes the following form,  


L
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                                             (11) 
where the mean and the variance of the stochastic 

solution processes );,,( tyxu  and );,,( tyxv  

are obtained from the following relations,                                                  
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   Hence, substituting from (11) into (4), we get the 

following stochastic equation 
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     The deterministic kernels 
)0( and 

)(1  are 

obtained from non-linear deterministic system 

which reduces after taking some statistical averages 

of Eq. (13) using the statistical properties of WHPs 
(See Appendix 1) and it is given by the following 

form.  
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5. The application of perturbation method  

    In this section, we consider the perturbation theo- 

ry to find some approximations for the determinis- 
tic non-linear system (14). Let us consider the 

kernels 
)0(  and 

)(1  in second correction of   

(See Appendix 2, [33]) as follow,         
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     Substituting from (15) into (14), we get the 
following system of iterative linear equations 

 

,0
),,,(),0,(

),,(),,0(
,),()0,,(

,

)0(

0

)0(

0

)0(

0

)0(

0)0(

0

)0(

0

4)0(

0

2



























x

tLx

x

tx

y

tyL

y

ty
yxyx

t








 

                                                                             (16) 



 
1098                        M. A. El-Tawil, et al:  Approximations for some statistical moments  ….     
___________________________________________________________________________ 

,0
),,,(),,0,(

),,,(),,,0(
),0,,(

),(

1

)1(

01

)1(

0

1

)1(

01

)1(

0
1

)1(

0

1

)1(

0

4
)1(

0

2



























x

xtLx

x

xtx

y

xtyL

y

xty
xyx

xx
t









     

                                                                             (17) 

,0
),,,(),0,(

),,(),,0(
)0,,(

),(

),(

),(

),(

)0(

1

)0(

1

)0(

1

)0(

1)0(

1

)0(

1

4

1

0

)1(

0

2)1(

0

)0(

0

2)0(

0

)0(

1

2














































x

tLx

x

tx

y

tyL

y

ty
yx

dx
yxyxt

L









                                                                             (18) 

,0
);,,();,0,(

);,,();,,0(
);0,,(

,
),(

),(

),(

),(

1

)1(

11

)1(

1

1

)1(

11

)1(

1
1

)1(

1

)1(

1

4
)1(

0

2)0(

0

)0(

0

2)1(

0

)1(

1

2













































x

xtLx

x

xtx

y

xtyL

y

xty
xyx

yxyxt









 

                                                                             (19) 

,0
),,,(),0,(

),,(),,0(
)0,,(

,

),(

),(

),(

),(

),(

),(

),(

),(

)0(

2

)0(

2

)0(

2

)0(

2)0(

2

)0(

2

4

1

0

)1(

0

2)1(

1

)1(

1

2)1(

0

)0(

1

2)0(

0

)0(

0

2)0(

1

)0(

2

2














































































x

tLx

x

tx

y

tyL

y

ty
yx

dx
yxyx

yxyx

t L














 

                                                                             (20) 

,0
);,,();,0,(

);,,();,,0(
);0,,(

,

),(

),(

),(

),(

),(

),(

),(

),(

1

)1(

21

)1(

2

1

)1(

21

)1(

2
1

)1(

2

)1(

2

4

)1(

0

2)0(

1

)1(

1

2)0(

0

)0(

0

2)1(

1

)0(

1

2)1(

0

)1(

2

2




































































x

xtLx

x

xtx

y

xtyL

y

xty
xyx

yxyx

yxyx

t













  

                                                                             (19) 

6. The application of eigenfunctions expansion  

      The system of iterative linear partial differential 

equations (16-21) of the pervious section has the 
following general form  
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which has a general exact solution which is discuss- 

ed in appendix 1.  Finally, from the pervious results, 

the exact solutions of the components of the pertur- 
bation series take the following form,   
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6. Cases study  
     In section, we consider some cases study 

illustrate graphically some approximations of the 

statistical moments of the stochastic solution 
process which were obtained from the application 

of the WHEP technique.  

 

Case study 1:  

   In this case, the mean and variance functions 

approximations are presented for a given initial 
condition over a given domain of the coordinates of 

the problem and the graphical behavior of this case 

are shown in the figures (1-4).        

                                   )( a1.  
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Fig.1 The second correction of )];,,([ tyxvE for 

1 L,10  in (a) 8.0x , (b) 8.0y and  

(c) 1t  

)( a2.  
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Fig.2 The second correction of )];,,([ tyxuE for 

1 L,10  in (a) 8.0x , (b) 8.0y  and  

(c) 1t  

)( a3.  
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Fig.3 The second correction of )];,,([ tyxvVar for 

1 L,10  in (a) 2.0x , (b) 2.0y and  

(c) 1t  
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Fig.4 The second correction of )];,,([ tyxuVar  

for 1 L,10  in (a) 2.0x , (b) 2.0y and 

(c) 1t  

Case study 2:  

    The variation of the statistical moments functions 
with the time at fixed point is present in this case 

for different values of   and for given domain and 

some prompters, the figures (6-8) are displayed this 

case.     

 

                            )( a5.  

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

t

Evx,y,t, x y,1, x0.5, y0.8

  30

  20

  10

  0



 
1102                        M. A. El-Tawil, et al:  Approximations for some statistical moments  ….     
___________________________________________________________________________ 

                            )( b5.     

0.0 0.1 0.2 0.3 0.4

0.0

0.5

1.0

1.5

t

Evx,y,t, x y,1, x0.5, y0.8

  30

  20

  10

  0

 

Fig. 5 The second correction of  )];,,([ tyxvE  at 
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Case study 3:  

 

    The comparison between different corrections 
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considered in this case and the figures (9-14) 
illustrate this comparison for some given data 

related to the problem                                 

                                   )( a9.  

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.5

1.0

0.5

0.0

t

Eux,y,t, xy,1,x0.5, y0.2

2n d correction

1
st

correction

0
t h

correction

 

 

)9( b.  

0.00 0.05 0.10 0.15 0.20 0.25 0.30

1.5

1.0

0.5

0.0

t

Eux,y,t, xy,1,x0.5, y0.2

2n d correction

1
st

correction

0
t h

correction

 

)( c9.  

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

t

Eux,y,t, xy,1,x0.5, y1.2

2n d correction

1st correction

0
t h

correction

 

 

)( d9.  

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.1

0.2

0.3

0.4

0.5

t

Eux,y,t, xy,1,x0.5, y1.2

2n d correction

1
st

correction

0
t h

correction

 
 

Fig. 9 A comparison between different corrections 

of )];,,([ tyxuE  for 2L  

 in (a) 10,1   , (b)  10,4   , 

 (c) 40,1    and (d) 40,1    

 

 

)10( a.  

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.6

0.5

0.4

0.3

0.2

0.1

0.0

t

Evx,y,t, xy,1

2n d correction

1
st

correction

0
t h

correction



 
1104                        M. A. El-Tawil, et al:  Approximations for some statistical moments  ….     
___________________________________________________________________________ 

)10( b.  

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

t

Evx,y,t, xy,1

2n d correction

1
st

correction

0
t h

correction

 
Fig. 10 A comparison between different corrections 

of )];,,([ tyxvE  for 

2.0,8.0,10,1  yx  

 in (a) 1L  and  (b)  2L , 

 

)11( a.  

0.0 0.1 0.2 0.3 0.4 0.5

1.5

1.0

0.5

0.0

t

Evx,y,t, xy,1

2n d correction

1
st

correction

0
t h

correction

 

)11( b.  

0.00 0.02 0.04 0.06 0.08 0.10

0.6

0.5

0.4

0.3

0.2

0.1

0.0

t

Evx,y,t, xy,1

2n d correction

1
st

correction

0
t h

correction

 
Fig. 11 A comparison between different corrections 

of )];,,([ tyxvE  for 

2.0,8.0,100,2  yxL   

 in (a) 1  and  (b)  5 , 

 

 

 
 

)12( a.  

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

0.00001

0.00002

0.00003

0.00004

t

Varux,y,t, xy,1, x0.8, y0.2

2n d correction

1st correction

0t h correction

 
 

 

)12( b.  

0.0 0.1 0.2 0.3 0.4

0

0.00001

0.00002

0.00003

0.00004

t

Varux,y,t, xy,1, x0.8, y0.2

2
n d

correction

1
st

correction

0t h correction

 
 

 

Fig. 12 A comparison between different corrections 

of )];,,([ tyxuVar  for 1,1  L  

 in (a) 10  and  (b)  50 , 

 

 

 

)13( a.  

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

t

Varux,y,t, xy,1, x0.8, y0.2

2n d correction

1
st

correction

0
t h

correction

 



 

M. A. El-Tawil, et al:  Approximations for some statistical moments  ….                                                                  1105      

 

)13( b.  

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00000

0.00005

0.00010

0.00015

t

Varux,y,t, xy,1, x0.8, y0.2

2n d correction

1st correction

0t h correction

 
 

Fig. 13 A comparison between different corrections 

of )];,,([ tyxuVar  for 50,2  L  

 in (a) 1  and  (b)  6 , 

 
 

)14( a.  

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

t

Varvx,y,t, xy,1, x0.8, y0.2

2n d correction

1st correction

0t h correction

 

)14( b.  

0.0 0.1 0.2 0.3 0.4

0

1.106

2.106

3.106

t

Varvx,y,t, xy,1, x0.8, y0.2

2n d correction

1
st

correction

0
t h

correction
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Case study 4:  

   Some higher statistical moments are considered in 

this case for some a given data. The figures (15-20) 
display some comparison between different 

corrections of the approximation functions of the 

third, fourth and fifth statistical moments of the 
solution process.       

)15( a.  

0.00 0.02 0.04 0.06 0.08 0.10

12

10

8

6

4

2

0

t

Eux,y,t3
, xy,1, x0.8, y0.2

2n d correction

1st correction

0
t h

correction

 

                              )15( b.  

0.0 0.1 0.2 0.3 0.4 0.5

12

10

8

6

4

2

0

t

Eux,y,t3
, xy,1, x0.8, y0.2

2n d correction

1st correction

0
t h

correction

 
 

Fig. 15 A comparison between different corrections 

of 
3)];,,([ tyxuE  for 10,2  L  

in (a) 1  and  (b)  4 , 

 

 

).16( a  

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

t

Eux,y,t4
, xy,1, x0.5, y0.2

2n d correction

1
st

correction

0
t h

correction



 
1106                        M. A. El-Tawil, et al:  Approximations for some statistical moments  ….     
___________________________________________________________________________ 

).16( b  

0.00 0.02 0.04 0.06 0.08 0.10

0

1

2

3

4

t

Eux,y,t4
, xy,1, x0.5, y0.2

2n d correction

1st correction

0
t h

correction

 
 

Fig. 16 A comparison between different corrections 

of 
4)];,,([ tyxuE  for 1,1  L  

in (a) 10  and  (b)  100  

 

 

).17( a  

0.00 0.02 0.04 0.06 0.08 0.10

1.0

0.8

0.6

0.4

0.2

0.0

t

Eux,y,t5
, xy,1,x0.2,y0.5

2n d correction

1
st

correction

0
t h

correction

 
 

).17( b  

0.00 0.01 0.02 0.03 0.04 0.05

1.0

0.8

0.6

0.4

0.2

0.0

t

Eux,y,t5 , xy,1,x0.2,y0.5

2n d correction

1
st

correction

0
t h

correction

 
 

Fig. 17 A comparison between different corrections 

of 
5)];,,([ tyxuE  for 50,1  L  

in (a) 1  and  (b)  2  

 
 

 

 

).18( a  

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

t

Evx,y,t3
, xy,1, x0.2, y0.5

2n d correction

1st correction

0
t h

correction

 
 

 

).18( b  

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

0.2

0.4

0.6

0.8

1.0

t

Evx,y,t3
, xy,1, x0.2, y0.5

2n d correction

1st correction

0
t h

correction
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of 
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7. Conclusion 

   The WHEP technique proved to be successful in 

introducing an approximation of the stochastic 
solution process for the non-linear perturbed tow-

dimensions Navier-Stokes equation exited randomly 

by the space white noise process. The application of 
WHEP algorithm includes tow steps; the first step 

shows the application of Wiener-Hermite expansion 

to approximate the stochastic solution process of the 
problem in terms of deterministic kernels and use 

the statistical properties of WHPs to obtain a set of 
deterministic equations in these deterministic 

kernels. The second step of WHEP technique uses 

the perturbation technique to approximate the 
deterministic kernels in the first step. Some 

statistical moments of the solution process were 

obtained to illustrate the statistical behavior of the 
solution process. From the results of WHEP 

technique and the use of mathematical software 

(Mathematica 7), some case studies were presented 
to illustrate many corrections for the statistical 

moments of the solution process of the problem. 

 

Appendix 1 

    The statistical properties of Wiener-Hermite 

polynomials (WHPs) (See [45]) which were used in 
this paper are 
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Appendix 2 

   Proof 1.  From the application of eigenfunction 
expansion (See [46]), we put the general solution of 

Eq. (22) in the following form    
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        Subsisting from (31) into (22), we get   
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    Multiplying Eqs. (32) by 
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integrate both sides from them respect to x and y , 
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where 
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    Then from the property (34), the final expansi- 

ons of Eq. (33) tends to the following recurrence 

ordinary differential equation, 
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which has the general solution under the initial 

condition 
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Proof 2. The solution of equation (4), if exists, is a 

series power of . 

    Rewriting Eq. (4), it can take the following form  
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     Following Pickard approximation, the equation 

can be rewritten as 
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where the solution at 0n , 0 , is corresponding 

for the simple linear case at 0 . 

At 1n , the iteration takes the form: 
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which has the following general solution (See the 

result of proof 1) 
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or  
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   At 2n , the iteration takes the form 
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which has the following general solution by the 

same method 
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    Proceeding like this, one can get the following 
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and therefore that the kernels of the stochastic 

Wiener-Hermite of );,,(  tyx are a power series  

of  . 
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