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Abstract: Traditional extensions of the exponential distribution, while aiming to capture more complex hazard rate behaviors and
improve data fit, often introduce additional parameters that complicate crucial statistical processes such as estimation, inference, and
model selection. This complexity is particularly evident with small or restricted datasets, where overparameterization can lead to
identifiability issues and increased computational challenges. Addressing this critical need for parsimonious yet flexible models, this
study proposes and explores the novel one-parameter ”Extended Exponential-Linear” (EE-L) distribution. Unlike classical extensions,
the EE-L enhances modeling flexibility for data exhibiting heavier tails or increasing hazard rates by multiplicatively modifying the
exponential kernel with a linear function of the variable, thus preserving a single-parameter structure for easier estimation and
interpretation. Statistical properties of the EE-L distribution, including its moments, hazard rate function, and quantile function, are
derived. Simulation results demonstrate that parameter estimates for the EE-L distribution remained within 10 percent of actual values
across various sample sizes (1000, 500, 200, 100, 50), with the exception of very small samples (20). Furthermore, its application to
life testing data revealed that the maximum likelihood parameter estimate was not significantly different from the true parameter
value. Finally, a comparative analysis of a waiting time dataset demonstrated the EE-L distribution’s superior fitting performance
compared to the exponential, inverse exponential, modified exponential, and Lomax distributions.

Keywords: Exponential distribution, exponential-linear distribution, reliability life testing, censored data

1 Introduction

The exponential distribution is a common model in probability and statistics used frequently in various domains
including reliability engineering, survival analysis, and queueing theory [l,2]. Its mathematical tractability and
memoryless characteristics make it a good starting point for representing non-negative continuous data. Elementary
studies [3,4] defined the exponential distribution as a reasonable model for populations marked by skewed data, as noted
in Equation (1).

fx(x):le*lx,x>07 A >0, (1)

where X denotes a random variate from an exponential population, with A being a scale parameter (the rate parameter).
Despite the exponential distribution’s utility in modeling skewed data, its inherent assumption of a constant hazard rate
often proves restrictive in practice, particularly when analyzing phenomena that exhibit varying risk over time. This
significant theoretical limitation has, in fact, motivated the development of numerous extensions that introduce additional
parameters to capture more complex behaviors such as increasing, decreasing, or bathtub-shaped hazard functions [5,6].

These extended distributions provide the necessary flexibility to accurately model a broader spectrum of real-world
phenomena with varying risk characteristics. Among these common extensions in literature are the Weibull distribution,
the Gamma distribution and the generalized exponential family [7,8,9]. Notably, the Weibull distribution introduces a
shape parameter to model monotone hazard rates while according to [8], the Gamma distribution generalizes the
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exponential by adding a shape parameter controlling skewness and tail behavior. Similarly, [7] incorporated additional
parameters to the exponential distribution to increase its flexibility, particularly in modeling varied hazard functions.

While these modified models effectively address the exponential distribution’s restrictive constant hazard rate
assumption by offering increased fit and interpretability for diverse real-world phenomena, their enhanced flexibility
comes with significant practical and theoretical trade-offs. Specifically, the inclusion of additional parameters, while
improving model fidelity, typically complicates crucial statistical processes, like parameter estimation, inference, and
model selection. This complexity is particularly pronounced in scenarios involving small samples or restricted data,
where the estimation procedures may become unstable or unreliable [10]. Furthermore, this pursuit of greater flexibility
through added parameters potentially contributes to issues of identifiability (where multiple parameter sets could
produce similar model fits). It inherently increases the computational challenges associated with model fitting and
analysis [11]. Thus, addressing one theoretical limitation introduces a new set of challenges related to model complexity
and robustness.

Consequently, there is a need for parsimonious models that can enhance the flexibility of the exponential distribution
without increasing the number of parameters. Such models may preserve the simplicity and interpretability of the
exponential distribution while tolerating more realistic hazard rate shapes and tail behaviours. Therefore, this present
study proposes and explores a novel one-parameter distribution, termed the “Extended Exponential-Linear” (EE-L)
distribution. Unlike classical extensions that introduce additional shape parameters, the EE-L distribution achieves its
enhanced flexibility by multiplicatively modifying the exponential kernel with a linear function of the variable. This
innovative approach maintains the advantageous single-parameter structure, thereby facilitating simpler estimation and
interpretation. The study further aims to derive the complete statistical properties of this novel EE-L distribution,
including its moments, hazard rate function, and quantile function. It will finally assess its performance through
comprehensive simulation studies.

The pursuit of enhanced distributional flexibility while maintaining parsimony has fueled considerable knowledge
expansion, leading to numerous studies that demonstrate high interest in proposing novel methods to expand the family of
standard probability distributions [12, 13, 14]. This widespread effort highlights the ongoing academic endeavor to develop
models that provide improved data fit and realistic hazard rate behaviors without succumbing to the pitfalls of excessive
parametric complexity. This wave of innovation includes the introduction of various new “generators” and families of
distributions, such as the new generalised class of distributions [15], McDonald-G (Mc-G) family [16], beta Marshal-
Olkin family [17], Kumaraswamy Marshal-Olkin family [18], log-gamma-G family [19], Weibull-G family [20], the
exponentiated half-logistic family [21], Lomax Generator [22], a new lifetime exponential-X family [23], new extended-F
family [24], a flexible reduced logarithmic-X family [25], a new extended-family of distributions [26], odd generalized
exponential-G family [27], Logistic-X family [28], the extended odd Fréchet family [29], and the truncated Cauchy power
family [30], among others.

We proceed with the study by organizing the ensuing paragraphs into four sections. Immediately after the
introduction is the methods section, where the EE-L distribution and its validity are established. The next section
considers the statistical properties of the EE-L distribution and its parameter estimations. The fourth section presents
numerical simulations and applications together with a discussion of the results. In the final section, we provide the
study’s conclusion.

2 Methods

2.1 The extended exponential-linear (EE-L) distribution and its validity

Let X be a non-negative random variable. If X follows the ‘Extended Exponential-Linear distribution, then its probability
density function (pdf) can be defined as:

2(24x)e Px
f(x):%,mo,ﬁm. )

2.2 Proof of the legitimacy of the extended exponential-linear distribution

To show that f(x) is a probability density function (pd f), we need to verify two properties:

1.Non-negativity: f(x) > 0 for all x > 0.
2.Normalization: The integral of f(x) over its domain equals 1, i.e., [ f(x)dx = 1.
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Step 1: Non- negatwlty

Given f(x) = E%g%;fx>aﬁ>o.
Note that

«B>0,82>0.

e 2+4+x>0forx>0.

e e P¥> 0forall x.
« The denominator 2 + 1 > 0.

Therefore, f(x) > 0 for all x > 0.
Step 2: Normalization

LGS

It can be shown that [;° e P*dx = % and [y xe P¥dx = #
Therefore,

[ st = off 3+ 5]

Conclusion: Since f(x) >0 forall x > 0 and [;° f(x)dx =1, f(x) is a valid probability density function.

2.3 Cumulative distribution function (cdf)

We derive the cumulative distribution function (cd f) as:

F(x) = P(X <x)

:./lef(t)dt

F(x) = & §Et+n

:2B+1/ (241)e Plar.

We write the integral

Split the integral

X X X
/(2+t)e*5’dz:2/ e*B’dtJr/ te Plar.
0 0 0

feta=[aet],
=5 (1 76—3):) .

For [)te P'dt, we use integration by parts: Let u =t = du = dt, dv = e Pldt = v = —%e’ﬁ’. Then
"X X
/ te Pldr = —ge P! x+é/ e Plar
0 0 0

= —%‘e_ﬁx B2 (l—e‘ﬁx).

Compute each integral:
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Combining the integrals, we have
' Bragp — 2 (1 _eBx) _txp=Bry 1 (1 _ B
/0(2—H)e dt—ﬁ(l e ) 5e ﬁz(l e )
(o) u-egen
Multiply by the constant factor
2 - —
F(x) = 2[;+1 [(;23 52)(1_6 BX) %e ﬁx]

Hence, the cumulative distribution function of the distribution is

Fx)=1- (1+2£f;1) B x>0, 3)

lim F(x) =0, lim F(x) =1and b > a = F(b) > F(a).

x—0 X—»oo

2.4 The survival and hazard functions

We derive the survival function S(x), which is the probability that the event of interest has not occurred by time x, from
the cd f as follows:

S(x) =1—Fx(x) = <1+2[§j—1) P x> 0. )
The hazard function /(x), an instantaneous rate at which events occur, given no prior event until time x, is derived as:
h(x) = £
Hence,
hx) =BG 5)
The cumulative hazard rate function is then given as:
/ (e
= InS(x
Therefore,
H(x)zﬁx—ln(wzgjl). ©)

2.5 Graphical display of the probability density and hazard functions

Figure 1 and Figure 2 show the plots of the probability density functions (pdf) at different values of . It can be observed
in Figure 1 that as the value of  increases (from § = 0.03 to f = 0.1), the peak systematically shifts to the left (towards
x=0). For all the plotted 3 values in Figure 2, the peak of the pd f occurs at x = 0. This indicates that for larger f values,
the highest probability density is at the very beginning of the distribution. As 8 increases, the peak height of the pd f also
increases. This signifies that a larger B concentrates the probability density more intensely around its specific mode. Also,
as 3 increases, the dispersion of the distribution becomes smaller and more concentrated around its peak, and its “tail”
decays more rapidly. Conversely, smaller 8 values result in a much wider and flatter distribution, extending further along
the x-axis before asymptotically approaching zero.

Figure 3 and Figure 4 show plots of the hazard function for different values of 3. In general, as 8 increases, the initial
hazard rate, h(0), also increases. All the hazard functions are monotonically increasing, indicating that the instantaneous
failure rate rises over time. This reflects an “aging” or “wear-out” behavior, where the likelihood of failure grows as the
item ages. Each function exhibits asymptotic behavior, approaching the value of 3 as x increases. This is evident in the
graph, where each curve levels off toward a horizontal line at its corresponding 3.

This distribution is considered an extension of the exponential distribution. The pdf transforms the exponential by
multiplying it by a linear factor 2 4+ x and normalizing. This linear factor increases the weight on larger values of x,
providing for greater flexibility in modeling data with heavier tails or increasing hazard rates. When the linear term 2 + x
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J(x)

Fig. 2: Probability density function (pdf) at § = 1,2,3, and 4

is replaced by a constant (e.g., 1), the distribution simplifies to the exponential (up to normalization). Thus, the proposed
distribution generalizes the exponential by incorporating an extra form component, making it more flexible while keeping
the exponential decline.

The proposed distribution mixes the exponential decay with a linear-increasing component, allowing improved
flexibility in modelling skewed data with declining tail weight. The extra term in the numerator includes a
shape-modifying component that changes the early rise and decay of the distribution, in contrast to the traditional
exponential distribution. This new distribution also has a structural similarity to the gamma distribution when the shape
parameter approaches 2, and it also resembles the linear exponential distribution family. However, the presence of a
polynomial component multiplied by an exponential kernel makes it a member of the larger family of generalized
exponential models [31].

J(x)
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Fig. 3: Graph of hazard function (h(x)) at § = 0.03,0.05,0.08, and 0.1
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Fig. 4: Graph of hazard function (i(x)) at § = 1,2,3, and 4

3 Statistical properties of the new distribution

3.1 Moments and incomplete moments
The n™ moment of the random variable X about the origin, W), is given by
W, = E(X")
= / X'f(x)dx
0

2 —Bx
= %/0 X'(24x)e Prdx

= 2/[;11 [2/0 x"e’ﬁxdx—i—/o x"“eﬁxdx} .

e

Recall the gamma integral: f;° ke Prax =

1 2I°(n+1 I'(n+2
.ur/l = 2B+1 [ ﬁ(n—l )+ (ﬁn )} (7)

Incomplete moments are given by
t
() = [ 2 fx)ax
_ [ -
= m/{) X'(24x)e Prdx

t t
= 25% [2/0 x”e_ﬁxa')c—i—/(J x"“e_ﬁxdx] .

These integrals are incomplete gamma integrals: f(; xkePrgy = %, where 7¥(s,z) is the lower incomplete gamma
function. Therefore,
n(r) = gy [2ELED 4 e B0 ®)
3.2 The mean and the variance
The mean u is the first moment:
1= E(X)

_ 1 |2r@ , re

=t [T+

_ _1 2

= b [2+ 3]
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Hence,
2(B+1) ) 9)

The second moment is

The variance is

V(X) = —u?

_4B+6 ( 2(B+1) )2
T B2(2B+1) B(2B+1) ) -

Therefore,

_ 4B%+8B+2
V(X) - ﬁ2(2ﬁ+1)2' (10)

3.3 Moment generating function

The moment generating function (MGF) My (¢) is defined as:

Myx(t) = E(e™)
= / e f(x)dx
0
2 ® - —X)X
= 2£+1 A (2+x)e~B=7qx
= 2/[;11 {2 A ef(Bfr)xdx—i—/O xe(B’)xdx]
_ B [ 2 1
= sher [t (ﬁft)z} 1<p
Hence,
226
My(r) = ZEB=20E0 1 o g, (an

2B+1)(B—1)

3.4 Order statistics

Order statistics refer to the statistics obtained from the ordered sample values. The pd f of the k™ order statistic Xy ina
sample of size n from a pdf, f(x), with cdf, F(x), is defined as:

Friy () = gt F @I 1= FOI ™ £ ()

= WM [1 - (1 + zgil)efﬁx} - [(1 + 2[%1 ) eiﬁx] nikﬁz(zzzifr)leim.

Therefore,

n—k

n!p? X —px k=1 —px —px
fX<k)(x)= (kfl)!(nfk)!!?2ﬁ+1)”’k“ {1— B;;fflﬂe B } [(ﬁx+2[3+l)e B } (2+x)e P, (12)
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3.5 Entropies

The entropy E of a continuous probability distribution is defined as: E = — [;° f(x)In f(x)dx. Hence,

_ “ B2(24x)eBx B2(24x)ePx
E——/O 31 ln( 3Bl )dx.

This integral can be computed numerically, as it may not have a simple closed-form solution.

3.6 Quantile function

Bx

(13)

Given the cumulative distribution function: F(x) = 1 — (1 + 28 +1) ¢ P* the quantile function is the inverse of the cd f:

Q(p) =F~!(p), 0 <0 < 1. Thus, we solve for x in terms of p:

le_(l"'zgil)efﬁx

(1) = (14 5557)
The following implicit equation in terms of x is derived:

Bx+(2B+1)= (2B +1)(1— p)eP*.

This equation involves x both inside and outside the exponential, making it transcendental and not solvable in closed form
using elementary functions. We, therefore, express the solution using the Lambert W function. The Lambert W function,
also known as the product logarithm, is a special mathematical function that solves equations where the unknown appears
both inside and outside an exponential term. While it is not an elementary function, it is widely implemented in statistical
and scientific computing software (such as R), allowing practitioners to compute quantiles without manually solving

transcendental equations. Let y = Bx+ (23 4+ 1). Then
P — oy (2B+1) _ oy, —(2B+1)
Substituting back, we have
y = @B+ 1)(1-pjere P+
vl — (284 1)(1 - p)e
—ye” = (2B +1)(1 - p)e” G,
Set z = —y, then
26 = —(B+1)(1=ple .
By definition, the Lambert W functionis expressed as:
=W (—(2[3 +1(1 —p)e*@ﬁ“)) .
Recall that z = —y = —(Bx+2B +1), and so

—Bx—(2B+1) =W (—(2B+1)(1—p)e*P+V)

Therefore,
= —(2[3+1)—W(—(2ﬁﬁ+1)(1—p)e*<2/3+1>).
The final quantile function is
0(p) = 7(2B+1)fW(f(ZﬁﬁH)(lfp)e‘“’“”).

(14)

The Lambert W function is implemented in many software packages (e.g. lambertW in R). This expression gives the

quantile x for any p € (0,1).
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3.7 Parameter estimation
3.7.1 Maximum likelihood estimator (MLE)

Given the data x1,x3, ..., x,, the likelihood function is
n

L(B) =[]/ (x:B)
i=1
H B2(2+x;)e ~Bx;
2B+
The log-likelihood function is also defined as:

i 2Inf+In(2+x)—Bxi—In(2f +1)]

1n[3+Zln (2+x)— Zx,—nln 2B +1).
=1

Derivative with respect to f3:

Set derivative to zero for MLE:

2n 2n
g =g =0

Multiply by B(28 + 1) to clear the denominator:
22B+1)—xB(2B+1)—-28=0
4B +2—-23B*—xB—2B =0
which gives
2%B%+ (x—2)B—2=0.
This is a quadratic equation in 8: af8*> +bB + ¢, where a = 2%,b = ¥ — 2, and ¢ = —2. The solutions of f3 are given by the
quadratic formula: § = —hEy b dac w. Hence,

ﬁ 2—it ( ) +16X

4x
Since the product of the roots, & = 5—2 = 1 , is negative, it follows that one root must be positive and one must be
negative. Given that § > 0, we take the posmve root. So, the MLE estimator for 8 is

A

- - 2 —
By = W 15)

3.7.2 Method of moments (MoM) estimator

The first moment of X is:

_ 24
EX) = gty

Set the sample mean, ¥ = 1 f‘,l X;, to be equal to E(X).
= FpT
PBp+1)=2(B+1).
Expanding and rearranging, the expression can be written as
2%+ (x—2)B—-2=0.
This is the same quadratic equation as for the Maximum Likelihood Method. This means that for this particular
distribution, the MLE and MoM estimators are identical. This quadratic in § can be solved explicitly as

Briom = %}C)H@f (16)
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4 Numerical application

4.1 Simulation

According to the Probability Integral Transformation, if X is a continuous random variable with a cumulative distribution
function (cdf) F(x), then U = F(X) follows a continuous uniform distribution over the interval (0, 1) [32]. The inverse
transform sampling method was employed to simulate samples from the given distribution using the following steps:

1.Generate a random number « from the standard uniform distribution in the interval [0, 1].
2.Compute the inverse of the cd f, F~!(u), which is the quantile of the distribution.
3.Determine x = F ! (u).

The resulting values of X represent random samples from the desired distribution with the probability density function
(pdf), f(x). Sample sizes of 1000, 500, 200, 100, 50, and 20 were considered. Table 1 provides a comparison of the
performance of MLE /MoM across these sample sizes for parameter values § = 0.05, 10,75, and 150. The performance
evaluation is based on the estimated parameter values and their absolute percentage differences from the true values.

As observed from Table 1, the MLE /MoM provided estimates that were within 10% of the actual parameter values
across all sample sizes except for a small sample size of 20. Overall, the results demonstrate that the MLE /MoM estimator
is reliable for moderate to large samples but can suffer from bias and variability in small samples. This highlights the
importance of a sufficiently large sample size for precise parameter estimation in this distribution.

Table 1: MLE /MoM at different simulated sample sizes

Actual: § =0.05 Actual: B =10 Actual: =75 Actual: B =150
Sample Estimated % Estimated B % Estimated B % Estimated B %
Size MoM/MLE  Diff. MoM/MLE  Diff. MoM/MLE  Dift. MoM/MLE  Diff.
1000 0.0496 0.9 9.962 0.4 71.145 5.1 148.367 1.1
500 0.0497 0.6 10.124 1.2 70.653 5.8 151.636 1.1
200 0.0524 4.8 9.532 4.7 80.405 7.2 139.017 7.3
100 0.0488 25 9.165 8.4 77.804 3.7 154.555 3.0
50 0.0490 2.0 10.825 8.3 69.392 7.5 146.545 2.3
20 0.0389 222 7.956 20.4 116.133 54.8 144.074 4.0

4.2 Application to life testing

Consider n samples of some manufactured components that were subjected to some reliability life tests from a specific
population of interest. The random variable X of interest is the time it takes for the component to fail. Suppose the
underlying failure times are X(y),...,X(,), where X(;) < X(;y1), i = 1,...,n— 1. Assuming that the reliability life tests
conclude at the " failure, where r is less than or equal to n, the number of failures is treated as a fixed value, while the
failure times are regarded as random variables.

According to [32], the likelihood function L of the first r order statistics, X(l) < X(z) <...< X(,), of the random variable
of interest in this study can be specified as:

L(ﬁ) = fX(l),.,.,X(r) (X(l),...,)C(r))

w [(2B4Bx 1N 1" S BA(24a)e PO
- (n—vr)! [( Zﬁ:El) )e ﬁx(,)} H{(le(il)le}

_ B ( (2+x() e B( leuw(nfr))f(r)),(Zﬁ +Bxpy+1)""

(=) (2f4-1)r(n=r)
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The log-likelihood function gives

In(L(B) =In ((nf—'r),) +2rinf—nn(2f+1)+In <H (2 +x(i))>
i=1
-B (Z:_lx(i) +(n— r)xm) +(n—r)In(2B + Bxg) + 1).
Find the derivative with respect to 3
dinL _ 2r 2n r (n=r)(2+x(,))
dﬁL =B T 2B+1 (Ziqx(i) + (n—r)x(,>> + BB+

Solve the likelihood equation

2 o r (n—r)(2+x()
BT 21 (Ziflx@ +(n— r)x(,>) + BHPry L 0. an

The likelihood equation is not linear in 3. Thus, we cannot determine the root explicitly using algebraic methods. We
therefore resort to a numerical approach. In R, the “uniroot()” function is suitable for finding a single root of a function
within a specified interval.

A sample of size 100 was simulated from the EE-L distribution using the parameter value § = 0.05. Table 2 shows
the first 70 out of 100 ordered data points. It is assumed that these observations represent the outcomes of a reliability life
test involving 100 devices until the failure of the 70’ device. On the MLE parameter estimates, we deduce from Equation
(17); and given that n = 100, r =70, x(,) = 49.5856 (from Table 2) together with the “uniroot()” function in R, the value of
B was estimated as By = 0.04813. In other words, values in Table 2 represent ordered failure times from the simulated

Table 2: Ordered data simulated from the EE-L distribution

Simulated Ordered Data

[1] 3.7926 4.0897 4.3662 5.8803 5.9505 6.6676 8.1031

[8] 10.4429 10.5411 11.3303 12.2567 13.1069 13.3871 13.6298
[15] 14.2039 14.8874 15.0295 15.1541 15.3266 15.6665 15.7072
[22] 16.7137 179174 18.3817 18.6990 20.0083 20.0705 20.4284
[29] 21.2887 21.5424 21.8303 22.0174 22.8246 23.2372 23.3174
[36] 23.7597 23.7777 23.9057 24.0011 25.5058 25.5302 25.6415
[43] 26.6340 26.6929 27.4430 27.4651 27.5097 27.9717 28.1296
[50] 28.5201 29.4151 29.6169 30.1805 30.8115 30.8214 32.6889
[571 34.3636 35.8719 37.1771 38.1047 38.2006 40.4376 41.1967
[64] 42.2768 43.5901 45.3356 45.5006 47.5298 48.5596 49.5856

reliability life test. Each entry corresponds to the time until failure for one of the devices, arranged from the earliest to
the latest failure observed up to the 70" failure. These ordered statistics serve as the empirical input for the likelihood
estimation in Equation (17). The maximum likelihood estimates are not significantly different from the actual value of the
parameters; we clarify that this conclusion is based on the numerical closeness of the estimated 3 to the true parameter
value (8 = 0.05) used in the simulation, with a relative error small enough to suggest the estimator is performing well in
this scenario.

5 Application to real-life dataset

In this section, we assess the performance of the EE-L distribution by applying it to model a real-life dataset. We
assessed its competitiveness by comparing it with other known probability distributions such as the exponential, inverse
exponential, modified exponential, and Lomax distributions. We employed various information criteria, such as Akaike
Information Criterion (AIC), Hannan-Quinn Information Criterion (HQIC), and the Bayesian Information Criterion
(BIC), as well as performing the Kolmogorov-Smirnov (K-S) test to assess the goodness of fit for the considered
distributions. The best distribution is determined based on having the highest p-value for the K-S test and the lowest
values for AIC, BIC, HQIC, and the K-S test statistic. The dataset applied in this work consists of the waiting times (in
minutes) of one hundred bank customers before they receive service. Previous studies by [33] and [34] have also
analysed this dataset.

The dataset provided below includes the following waiting times (in minutes) of one hundred bank customers before
they receive service:
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0.8,08,1.3,15,1.8,19,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4.0,4.1,4.2,4.2,43,43,44,4.4,4.6,4.7,4.7,
4.8,49,49,5,53,55,5.7,5.7,6.1,6.2,6.2,6.2,63,6.7,69,7.1,7.1,7.1,7.1,7.4,7.6,7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8,
8.8,8.9,89,95,9.6,9.7,9.8,10.7, 109, 11, 11, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13, 13.1, 13.3, 13.6, 13.7,
139, 14.1,15.4,15.4,17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27, 31.6, 33.1, 38.5.

The results show that the EE-L distribution is the most effective among the competing distributions based on the results
presented in Tables 3 and 4. This is because it has the lowest values for AIC, BIC and HQIC, indicating better model
fit. Additionally, it has the highest p-value for the K-S statistic, further supporting its superiority compared to other

distributions.

Table 3: Parameter estimates for waiting time dataset

Model Parameter  Estimate  S.E. p-value
EEL B 0.17612 0.01267 <0.0001
EXP A 0.101245 0.010125 <0.0001
IE a 5.34761 0.53476 <0.0001
ME a 8.3396 74.363429 0.9107
B 4145006 19.414514  0.8309
A 0.101243  0.010127  <0.0001
LOMAX « 522880 543980 0.3364
A 509.0150 5347990  0.3412
Table 4: Model selection criteria for waiting time dataset
Model  -II AIC BIC HQIC KS_Stat KS_pval
IE 336.5585 675.1170 677.7222 676.1714 0.167454  0.007336
Exp 329.0209 660.0418  662.6469 661.0961 0.173011  0.005025
Lomax 329.4751 6629502 668.1605 665.0589 0.175879 0.004113
EEL 320.5352  643.0705 645.6757 644.1248 0.088083  0.419739
ME 329.0225 664.0450 671.8605 667.2081 0.173038  0.005015

The EE-L distribution outperforms the selected known distributions by capturing the behavior of the waiting time
dataset. Figures 5 and 6 show the comparison of the EE-L distribution with other distributions using the waiting time
dataset, based on the plot of fitted densities. The plot reveals that the EE-L distribution demonstrates a favorable and
superior fit when compared to the existing distributions. The EE-L distribution better represents the dataset’s flexibility

Density

0.04 008 012

0.00

IE
Exp
Lomax

- EEL

ME

Fig. 5: Fitted pdf with the histogram for waiting time dataset

compared to other distributions, which may either be too simple or have heavy tails, such as the Lomax. The fit is validated
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Fig. 6: Fitted cdf with empirical cdf for waiting time dataset

by the P-P plot in Figure 7, showing that the EE-L distribution aligns slightly better with the empirical distribution,
particularly across the entire range.
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™
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|

Fig. 7: P-P plots of EE-L for the waiting time dataset

6 Concluding remarks

In this paper, we present a new modification of the exponential distribution with a single parameter called the Extended
Exponential-Linear distribution (EE-L). The statistical properties of the EE-L distribution are obtained, including
moments, entropy measures, hazard function, survival function, order statistics, and other relevant quantities.
Furthermore, the parameter of the EE-L distribution is estimated using maximum likelihood and the method of moment
estimations. Simulation studies were conducted to assess the performance of the estimation technique under various
scenarios. In future work, a study may be conducted to estimate the parameter of the proposed EE-L distribution using a
Bayesian approach. The behavior of the hazard rate function has been investigated, and the results show that the hazard
functions are monotonically increasing, indicating that the instantaneous failure rate rises over time. The proposed
distribution was also applied to the bank waiting time dataset to illustrate its effectiveness. The EE-L distribution
exhibited a reasonable fit to the dataset when compared to other distributions evaluated in this work for modelling
real-life datasets, particularly the Exponential distribution. This suggests that the EE-L distribution may be a suitable
choice for modelling datasets with varying complexity and heavy-tailed characteristics. Further studies could investigate
the potential application of the EE-L distribution in other fields or industries.
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