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Abstract: This research uses fractional-order differential equations to explore the dynamics of COVID-19 spread, providing insights
into how different parameters influence the epidemic. The study examines how varying fractional order, transmission rates, and recovery
rates affect vital metrics such as the number of acute infections, hospitalisations, and other epidemiological factors. Our findings
indicate that fractional-order models are adept at capturing complex behaviours, including crossover effects, which are crucial for
understanding disease progression. The analysis shows that increasing the transmission rate leads to an increase in acute cases and
hospitalisations, highlighting the importance of controlling transmission to reduce the strain on healthcare systems. In addition, higher
recovery rates are associated with fewer acute infections, underlining the effectiveness of efficient recovery strategies. The impact of
changes in hospitalisation rates and movement dynamics between different infection states on the overall trajectory of the epidemic is
also discussed. This research emphasises the utility of fractional-order models in making accurate predictions and guiding public health
interventions, ultimately aiding in more informed decision-making and response strategies for managing disease outbreaks.
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1 Introduction

The COVID-19 pandemic, caused by the new coronavirus 2 of severe acute respiratory syndrome (SARS-CoV-2), has
emerged as one of the most significant global health challenges in recent history. This virus has caused widespread
disruption, including the overwhelming of health systems, significant strains on social relationships, and a marked
increase in mental health issues in populations [1]. Initially detected in China at the end of 2019, the virus quickly spread
throughout the world, prompting a global health crisis [2]. The pandemic has resulted in millions of deaths and has
triggered substantial economic downturns due to global lockdowns and other containment measures [1]. SARS-CoV-2 is
transmitted primarily through respiratory droplets expelled when infected individuals talk, cough, or sneeze [3].

Another critical transmission route is through environmental contamination, as the virus can remain viable in the
air and on surfaces for varying durations [4]. This means that contact with contaminated surfaces can lead to infection.
COVID-19 manifests in a wide range of symptoms, from mild to severe, and can be life-threatening, particularly for older
adults and individuals with pre-existing health conditions such as asthma, obesity, hypertension, and diabetes [5]. The most
common symptoms include respiratory problems such as shortness of breath, coughing, and fever, with gastrointestinal
symptoms such as nausea, vomiting, and diarrhoea also reported [6]. Additional symptoms may include fatigue, loss of
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taste or smell, muscle pain, sore throat, headaches, and skin rashes. Importantly, many infected individuals may remain
asymptomatic, which poses a challenge in controlling the spread of the virus [7,8]. The incubation period for SARS-CoV-
2 is typically between two and fourteen days [9]. Genetic studies have shown a high degree of similarity between the virus
in humans and related viruses in bats, suggesting a zoonotic origin [10].

Past outbreaks of similar coronaviruses, such as the severe acute respiratory syndrome (SARS) in 2003 and the Middle
East respiratory syndrome (MERS) in 2012, have shown similar clinical features, including fever, cough, and difficulty
breathing [11,12]. At the end of January 2020, China had reported 571 confirmed cases of COVID-19 [13]. On 30 January
2020, the World Health Organisation (WHO) declared the outbreak a Public Health Emergency of International Concern,
and by mid-March 2020, it was classified as a pandemic, having affected more than 334,000 individuals and resulted
in approximately 14,500 deaths in more than 190 countries [14]. In June 2023, the WHO estimated that COVID-19 has
caused nearly 7 million deaths and more than 768 million confirmed cases worldwide [15].

Fractional-order models incorporate memory and hereditary effects, which are crucial for capturing the temporal
dynamics of disease progression. These models account for the fact that a system’s current rate of change can depend on its
entire history, not just its present state. It is particularly relevant for COVID-19, where infection dynamics and recovery can
exhibit delays and lingering effects. Fractional derivatives are inherently nonlocal, meaning that they consider the global
behaviour of a system over time. This property allows fractional-order models to better capture the spread of COVID-19
since the disease’s transmission depends on cumulative interactions and patterns that evolve, not just instantaneous rates.

Studies have demonstrated that fractional-order models can outperform traditional models in forecasting the trajectory
of infectious diseases. They provide better tools for predicting outbreak trends and evaluating control measures, enabling
more effective public health responses during pandemics such as COVID-19 [16,17]. By allowing orders of differentiation
to be non-integer, fractional-order models provide an additional degree of freedom compared to classical integer-order
models. This flexibility enables these models to better fit real-world epidemiological data, especially for diseases with
complex transmission patterns such as COVID-19. Fractional-order models have been shown to more accurately represent
complex biological and epidemiological systems, including the immune response and the effects of interventions such as
vaccination and treatment. These characteristics make them particularly suitable for studying multifaceted diseases such
as COVID-19.

Numerous studies have explored the use of integer-order differential equations (IDEs) in modelling the transmission
dynamics of infectious diseases [16,17,18,19]. Nonlinear equations, in particular, have provided valuable insights into
disease spread, leading to the development of more accurate, data-driven models for COVID-19 [20,21,22,23,24]. For
example, Musa et al. [25] proposed a compartmental model with eight categories, incorporating public awareness
campaigns and hospitalisation strategies to manage COVID-19 transmission in Nigeria. Their findings suggest that
inadequate public awareness could lead to increased infection rates. Similarly, Memon et al. [26] developed a
compartmental SEQIJR model to assess the effectiveness of isolation and quarantine measures in controlling COVID-19
in Pakistan.

Fractional-order differential equations (FODEs) have become powerful tools in modeling complex biological and
engineering processes, particularly those with memory effects, which are common in such systems [27,28,29,30].
Unlike integer-order models, which are memoryless, FODEs account for the history of the system, providing a more
accurate representation of disease dynamics. For example, patient intervals between doctor visits often follow a
power-law distribution, which can be modelled using the Caputo derivative operator (CDO) [31,32,33]. The CDO is
particularly advantageous due to its non-local properties and flexibility, which makes it superior to integer-order
derivatives in certain applications [34,35,36,37,38].

Given these advantages, the CDO has been widely used in modelling complex problems. For example, Javidi et al.
[39] extended a mathematical model of the cholera epidemic to include the Caputo derivative. Similarly, other researchers
have applied CDO to study the stability of disease models, vector-borne diseases, obesity epidemics, etc. [40,41,42,43,
44].

In [45], the authors used a fractional Newton explicit group method to solve time-fractional nonlinear porous medium
equations. The implicit finite-difference schemes with the Caputo time-fractional derivative operator were used with this
method. The accuracy and efficiency of the fractional Newton explicit group method in solving initial boundary value
problems of porous medium equations at different orders of time-fractional derivatives were postulated and discovered
that the technique shows more efficacy in solving realistic phenomena. In [46], the article presents a new fractional-order
mathematical model for a tumour-immune surveillance mechanism. Baleanu et al. [46] analysed the interactions between
various tumour cell populations and the immune system of fractional differential equations (FDEs). They suggested an
efficient numerical procedure to solve these FDEs by considering singular and non-singular derivative operators, and an
optimal control strategy was employed to study the effect of chemotherapy treatment.

A Caputo-type fractional model was used to study the transmission dynamics of the Nipah virus. The impact of unsafe
contact with an infectious corpse as a possible way to transmit this virus was one of the critical factors considered [47].
One of their conclusions was that there should be minimal unsafe contact with the infectious corpse. They also compare
fractional and classical results [47]. Similarly, Defteri et al. [48] studied the motion dynamics of an accelerated mass-
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spring system within fractional calculus. The Lagrangian and the classical equations of motion using the Euler-Lagrange
equations of integer order were constructed to study the system. The generalised Lagrangian was introduced using non-
integers, and then the resulting fractional Euler-Lagrange equation was generated and solved numerically.

Recent research has increasingly focused on the application of CDO in epidemic modelling, particularly for COVID-
19, due to its ability to accurately capture real-world dynamics in various fields [49,50,51,52]. For example, Baba [53]
developed a COVID-19 model using CDO, while another study proposed a SEIQRDP model to analyse the progression
of the pandemic [54]. Other researchers have used CDO to examine the impact of lockdowns and other control measures
on COVID-19 transmission [55,56,57,58,59,60].

Inspired by the success of FODEs in modelling non-linear real-world systems, this study develops a new deterministic
model to explore the dynamics of COVID-19. The model incorporates exposed individuals, acutely infected individuals,
infected individuals, recovered individuals, and hospitalised individuals, using Caputo fractional order derivatives. Various
simulations are performed to validate the analytical results, and the sensitivity analysis is presented with detailed diagrams.
The structure of the paper is as follows: Section 2 outlines the formulation and analysis of the model, Section 3 presents a
detailed analysis of the fractional model, Section 4 has the stability and numerical analysis, Section 5 contains the results
and discussion, and Section 6 concludes the study.

2 Model formulation and analysis

In this section model formulation and analysis are presented in chronological order.

2.1 Model formulation

We consider a total human population N(t) at time t, which is divided into six distinct compartments: susceptible
individuals S(t), exposed individuals E(t), acutely infected individuals A(t), infected individuals I(t), hospitalized
individuals H(t), and recovered individuals R(t). The total population is represented by the equation:

N(t) = S(t)+E(t)+A(t)+ I(t)+H(t)+R(t). (1)

The susceptible population S(t) increases as new individuals enter the population at a rate Λ , assuming these individuals
are initially susceptible. However, this population decreases as individuals become exposed to the infection at a rate

proportional to
β (I(t)+ηA(t))

N(t)
S(t), where β represents the infection rate, and η adjusts for the relative infectiousness of

acutely infected individuals compared to those in the infected class. The exposed population E(t) consists of individuals

who have been infected but are not yet infectious. Individuals enter this compartment at the same rate
β (I(t)+ηA(t))

N(t)
S(t).

The number of exposed individuals decreases as they progress to either the acutely infected compartment A(t) at a rate ε ,
or to the infected compartment I(t) at a rate θ . The acutely infected population A(t) increases as individuals move from
the exposed class E(t) at a rate ε . This population then decreases as individuals progress to the infected class I(t) at a rate
ψ , to the hospitalized class H(t) at a rate φ , or recover to the recovered class R(t) at a rate κ . The infected population
I(t) increases as individuals progress from the exposed class E(t) at a rate θ and from the acutely infected class A(t) at
a rate ψ . This population decreases as individuals are hospitalized at a rate ω , or die from the disease at a rate δ . The
hospitalized population H(t) grows as individuals move from the acutely infected class A(t) at a rate φ and from the
infected class I(t) at a rate ω . This population decreases due to recovery at a rate ρ or due to disease-induced mortality at
a rate δ . Finally, the recovered population R(t) increases as individuals recover from the acutely infected class A(t) at a
rate κ and from the hospitalized class H(t) at a rate ρ . The recovered population decreases due to natural death at a rate
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µ . The dynamics of the model are governed by the following system of differential equations:

dS(t)
dt

= Λ − β (I(t)+ηA(t))
N(t)

S(t)−µS(t),

dE(t)
dt

=
β (I(t)+ηA(t))

N(t)
S(t)− (ε +θ +µ)E(t),

dA(t)
dt

= εE(t)− (ψ +φ +κ +µ)A(t),

dI(t)
dt

= θE(t)+ψA(t)− (ω +δ +µ)I(t),

dH(t)
dt

= φA(t)+ωI(t)− (ρ +δ +µ)H(t),

dR(t)
dt

= κA(t)+ρH(t)−µR(t).

(2)

These equations describe the transitions between the compartments, capturing the overall dynamics of disease
transmission and progression within the population.

Table 1: Definition of variables of model (2)

Parameter Variable
S Susceptible class
E Exposed class
A Acutely COVID-19-infected class
I Infected class
H Hospitalized class
R Recovered class

Table 2: Definition of parameters in the model (2)

Parameter Description
Λ Stable enrollment rate
β COVID-19 transmission probability
η Modification parameter for A
µ Natural mortality rate
ε Rate of movement from E to A
θ Rate of movement from E to I
ψ Rate of movement from A to I
φ Hospitalize rate of A
κ Recovery rate of A
δ Induced death rate
ω Hospitalize rate of I
ρ Recovery Rate of H

For computational convenience, we let

C1 = ε +θ +µ, C2 = µ +ψ +φ +κ,

C3 = µ +δ +ω, C4 = µ +δ +ρ,

λ =
β (I(t)+ηA(t))

N(t)
.
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Fig. 1: Flow chart of the model where λ is given in (2)

Then, the equations of model (2) become

dS
dt

= Λ − (λ +µ)S,

dE
dt

= λS−C1E,

dA
dt

= εE −C2A,

dI
dt

= θE +ψA−C3I,

dH
dt

= φA+ωI −C4H,

dR
dt

= κA+ρH −µR.

(3)

2.2 Basic Properties

We explore the fundamental properties of the model here. This section explores the essential characteristics of the model.

2.2.1 Positivity of Solutions

Theorem 1.Given the initial conditions S(0) > 0, E(0) > 0, A(0) > 0, I(0) > 0, H(0) > 0, and R(0) > 0, the solutions
S(t), E(t), A(t), I(t), H(t), and R(t) of the model (2) will remain positive for all t > 0.

Proof.Let t1 = sup{t > 0 : S(t)> 0,E(t)> 0,A(t)> 0, I(t)> 0,H(t)> 0,R(t)> 0}, where t1 > 0. From the first equation
in the model:

dS
dt

= Λ − (λ +µ)S, (4)
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we have:
dS
dt

≥−(λ +µ)S. (5)

Integrating both sides over the interval [0, t1], we obtain:∫ t1

0

dS
S(t)

≥
∫ t1

0
−(λ +µ)dt, (6)

which leads to:
S(t1)≥ S(0)e−µt1−

∫ t1
0 λ (τ)dτ ≥ 0 as t1 → ∞. (7)

Using a similar approach, it can be shown that E(t) > 0, A(t) > 0, I(t) > 0, H(t) > 0, and R(t) > 0 for all t > 0. This
completes the proof.

2.2.2 Invariant Region

Theorem 2.Assume that the model (2) describes the system with solutions S(t), E(t), A(t), I(t), H(t), and R(t). If the
initial values S(0), E(0), A(0), I(0), H(0), and R(0) are positive, then for all t > 0, the system remains within the region
defined by:

D =

{
(S,E,A, I,H,R) ∈ R6

+ : N ≤ Λ

µ

}
. (8)

This region is positively invariant under the dynamics of the model.

Proof.Following the approach outlined in [61], summing all the compartments in (2) yields:

dN
dt

= Λ −µN −δ (I +H). (9)

This simplifies to:
dN
dt

≤ Λ −µN. (10)

Thus, we have:

N(t)≤ N(0)e−µt +
Λ

µ
(1− e−µt). (11)

If N(0)≤ Λ

µ
, it follows that N(t)≤ Λ

µ
. Therefore, the solution remains within the region D for all t > 0, indicating that D

is a positively invariant set. Consequently, the dynamics of the model can be analysed within D.

2.3 Disease-Free Equilibrium and Basic Reproduction Number

In the absence of infection, the disease-free equilibrium, denoted by Eo, is given by:

Eo = (S0,E0,A0, I0,H0,R0) =

(
Λ

µ
,0,0,0,0,0

)
. (12)

The basic reproduction number, R0, is a critical epidemiological metric that indicates whether an infection will decline
or persist within a population. Defined as the expected number of secondary infections produced by a single infected
individual in a fully susceptible population [62], R0 is expressed as:

R0 =
β (ηεC3 +ψε +θC2)

C3C2C1
. (13)

Here, R0 quantifies the average number of new infections caused by a COVID-19-infected individual among susceptible
individuals. Based on Theorem 2 from [63], the following result is established:

Lemma 1.The disease-free equilibrium of the model (2) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

This lemma suggests that COVID-19 can be eradicated if the initial population size is within the basin of attraction of the
disease-free equilibrium.
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Fig. 2: Partial Rank Correlation Coefficient plots of different parameters of model (2) using basic reproduction number
R0 as the response function

2.4 Endemic Equilibrium

We explore the equilibrium in which the disease is present. Let the endemic equilibrium of the model be denoted by
E1 = (S∗,E∗,A∗, I∗,H∗,R∗). Then, solving the model equations (3) at steady state, we have

S∗ =
π

λ ∗+µ
,

E∗ =
λ ∗π

C1(λ ∗+µ)
,

A∗ =
ελ ∗π

C1C2(λ ∗+µ)
,

I∗ =
(C2θ +ψε)λ ∗π

C1C2C3(λ ∗+µ)
,

H∗ =
[C3φε +ω(C2θ +ψε)]λ ∗π

C1C2C3C4(λ ∗+µ)
,

R∗ =

[
C3C4κε +ρ[C3φε +ω(C2θ +ψε)]

]
λ ∗π

C1C2C3C4(λ ∗+µ)
.

(14)

Let the force of infection at the endemic state be denoted by λ ∗ and it is given by

λ
∗ =

β (I∗+ηA∗)

N∗ . (15)

Substituting (14) into (15) leads to

P1λ
∗2 +P2λ

∗+P3 = 0, (16)
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where

P1 =C2C3C4µ +C3C4εµ +C4µ(C2θ +ψε)+µ
[
C3φε +ω(C2θ +ψε)

]
(17)

+
[
C3C4κε +ρ[C3φε +ω(C2θ +ψε)]

]
,

P2 = µ[P1 +(1−R0)C1C2C3C4], (18)

P3 = (1−R0)C1C2C3C4µ
2. (19)

From (16), P1 > 0, P3 > 0 if R0 < 1 and P3 < 0 if R0 > 1. Hence, the following result is obtained:

Theorem 3.The COVID-19 model (2) has
1.one unique endemic equilibrium if P3 < 0 (Corresponding to when R0 > 1)
2.one unique endemic equilibrium if P2 < 0 and P3 = 0 or P2

2 −4P1P3 = 0
3.two unique endemic equilibria if P3 > 0 and P2 < 0 and P2

2 −4P1P3 > 0
4.none otherwise

2.5 Global Stability of Endemic Equilibrium

We try to prove the global asymptotic stability of the endemic equilibrium of the model with θ = φ = 0, and δ = 0. The
model has the endemic equilibrium given by

E1 = (S∗,E∗,A∗, I∗,H∗,R∗). (20)

By assuming δ = 0, the total population N → Λ

µ
as t → ∞ and so doing, the force of infection reduces to

λ = β̂ (I +ηA), (21)

where

β̂ =
β µ

Λ
.

Let the associated reproduction number of the model be R̂0 = R0|θ=φ=δ=0

Theorem 4. Consider the COVID-19 model (2) with θ = φ = 0. The endemic equilibrium E1 is globally asymptotically
stable in D\Do whenever R̂0 > 1, where

Do = {(S,E,A, I,H,R) ∈ D : E = A = I = H = R = 0}.

Proof. Consider the COVID-19 model (2) having θ = φ = 0 with (21) and R̂0 > 1. We use the Lyapunov function given
as thus:

L = S−S∗−S∗ln
S
S∗

+E −E∗−E∗ln
E
E∗ +X

[
A−A∗−A∗ln

A
A∗

]
+Y

[
I − I∗− I∗ln

I
I∗

]
+Z

[
H −H∗−H∗ln

H
H∗

]
.

(22)

Taking the time derivative of (22) leads to

L′ = S′− S∗

S
S′+E ′− E∗

E
E ′+X

[
A′− A∗

A
A′
]
+Y

[
I′− I∗

I
I′
]

+Z
[

H ′− H∗

H
H ′

]
,

(23)

where

X =
C1

ε
, (24)

Y =
C1C2 − β̂Sηε

εψ
, (25)

Z =
C1C2C3 − β̂SηεC3 − β̂Sεψ

εωψ
. (26)
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With Λ = β̂ (I∗+ηA∗)S∗+µS∗, (23) becomes

L′ = β̂ (I∗+ηA∗)S∗+µS∗−µS−

[
β̂ (I∗+ηA∗)S∗2

S
+

µS∗2

S
− β̂ (I∗+ηA∗)S∗−µS∗

]

−C1E − β̂ (I +ηA)SE∗

E
+C1E∗+

C1

ε

[
εE −C2A− εEA∗

A
+C2A∗

]
+

C1C2 − β̂Sηε

εψ

[
ψA−C3 −

ψAI∗
I

+C3I∗
]
+

C1C2C3 − β̂SηεC3 − β̂Sεψ

εωψ

×
[

ωI −C4H − ωIH∗

H
+C4H

]
.

(27)

Further simplification with

C1 =
β̂ (I∗+ηA∗)S∗

E∗ , C2 =
εE∗

A∗ , C3 =
ψA∗

I∗
, C4 =

ωI∗

H∗ , (28)

leads to

L′ = 3β̂ (I∗+ηA∗)S∗+µS∗−µS− β̂ (I∗+ηA∗)S∗2

S
− µS∗2

S
+µS∗− β̂ (I +ηA)SE∗

E

− β̂ (I∗+ηA∗)S∗EA∗

E∗A
− β̂ I∗2AS∗

A∗I
+ β̂ I∗S∗.

(29)

Then,

L′ = β̂ I∗S∗
(

4− S∗

S
− SIE∗

S∗I∗E
− EA∗

E∗A
− AI∗

A∗I

)
+µS∗

(
2− S∗

S
− S

S∗

)
+ β̂ηA∗S∗

(
3− S∗

S
− SAE∗

S∗A∗E
− EA∗

E∗A

)
.

(30)

With the arithmetic mean greater than the geometric mean, we have the following inequalities:

4− S∗

S
− SIE∗

S∗I∗E
− EA∗

E∗A
− AI∗

A∗I
≤ 0, 2− S∗

S
− S

S∗
≤ 0, 3− S∗

S
− SAE∗

S∗A∗E
− EA∗

E∗A
≤ 0.

Therefore, L′ ≤ 0 for R̂0 > 1. Hence, L′ is a Lyapunov function in D\Do, and by LaSalle‘s Invariance Principle [64], every
solution of the model with the initial conditions in D\Do approaches the associated endemic equilibrium E1 as t → ∞

whenever R̂0 > 1.

2.6 Sensitivity Analysis

A global sensitivity analysis is performed using Latin hypercube sampling (LHS) and partial rank correlation coefficients
(PRCC) to determine the parameters that most significantly affect model (2) fluctuation with respect to the basic
reproduction number R0, provided in (13). By assuming that every model parameter follows a uniform distribution, LHS
matrices are produced. Then, a number of runs with 1000 samples are performed based on the baseline values for the
model parameters listed in Table 3. This is done using an approach identical to that of the researchers in [65,66]. The
PRCC between each parameter and R0 is then determined, which allows us to assess the sensitivity of the model
parameters.

In Figure 2 and Table 4, the PRCC values for each of the model’s sensitive parameters are presented, for those
parameters with positive, they have a positive relationship (β ,η , ψ and θ ), and negative for others, similarly have a
negative relationship (µ , ε , φ , ω , κ and δ ). The results in Figures 3 and 4 support the outcome of the global sensitivity
analysis presented in Figure 2 and Table 4.
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Fig. 5: Fractional dynamics of different classes : (a) A, (b) E, (c) H, (d) I, (e) R, (f) S for different fractional order α
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Fig. 6: Fractional dynamics with a Fractional order, α = 0.8, while the COVID-19 transmission rate is varied on (a) A,
(b) E, (c) H, (d) I, (e) S
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Table 3: Values of the parameters used in model (2)

Parameter Baseline value Range Source
β 0.492 0.002-0.75 [69]
η 0.4 0-1 Assumed
µ 0.01277 0.0107-0.0148 [66]
ε 0.18 0.098-0.278 [71]
θ 0.02 0.009-0.4 Assumed
ψ 0.1 0.05-0.5 [67]
δ 0.036 0.01-0.06 [69]
Λ 1500 500-3500 [72]
ρ 0.096 0.0625-0.125 [73]
ω 0.0264 0.0059-0.0679 [65]
φ 0.083 0.04-0.2 [68]
κ 0.13978 0.033-0.333 [70]

Table 4: PRCC Values

Parameter PRCC
value

Parameter PRCC
value

β 0.9614 η 0.1439
µ -0.0610 ε -0.1566
θ 0.5005 ψ 0.3626
ω -0.7102 φ -0.1504
κ -0.2047 δ -0.6221

3 Analysis of the Fractional Model

3.1 Fundamental Concepts in Fractional Calculus

This section introduces some fundamental concepts in fractional calculus, specifically within the framework of Caputo
derivatives.

Definition 1 According to [74], if y is a function in C m, where m is a natural number, then the Caputo derivative of
order κ in the interval (m−1,m) is defined as:

CDκ
t (p(t)) =

1
Γ (m−κ)

∫ t

0
(t − s)m−κ−1 p(m)(s)ds, (31)

where Γ (·) denotes the Gamma function. As κ approaches 1, CDκ
t (p(t)) converges to the first derivative p′(t).

Definition 2 As detailed in [74], the fractional integral of a function p : R+ → R with order κ > 0 is given by:

Iκ
x (p(x)) =

1
Γ (κ)

∫ x

0
(x− s)κ−1 p(s)ds, 0 < κ < 1, x > 0. (32)

Definition 3 Let y∗ represent the equilibrium of the Caputo fractional model. The Caputo fractional derivative is given
by:

CDκ
t (p(x)) = h(x, p(x)), where κ ∈ (0,1), if and only if h(x, p∗) = 0. (33)

The Caputo fractional model describing the transmission of COVID-19 is represented as follows:

CDα
t S(t) = Λ α − (λ α +µα)S(t),

CDα
t E(t) = λ α S(t)− (εα +θ α +µα)E(t),

CDα
t A(t) = εα E(t)− (µα +ψα +φ α +κα)A(t),

CDα
t I(t) = θ α E(t)+ψα A(t)− (µα +δ α +ωα)I(t),

CDα
t H(t) = φ α A(t)+ωα I(t)− (µα +δ α +ρα)H(t),

CDα
t R(t) = κα A(t)+ρα H(t)−µα R(t),

(34)

where S(t)> 0, E(t)≥ 0, A(t)≥ 0, I(t)≥ 0, H(t)≥ 0, and R(t)≥ 0.
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Fig. 7: Fractional dynamics illustrating the impact of varying the recovery rate of A with a fractional order of α = 0.8 on
(a) A, (b) H, (c) I, (d) R.
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3.2 Criteria for the Validity of the Fractional Model

The legitimacy of the fractional model is determined based on several criteria including non-negativity and uniform
boundedness, and Hyers-Ulam stability.

3.2.1 Non-negativity and Uniform Boundedness

Let
Ω =

{
N(t) : N(t) = (S(t),E(t),A(t), I(t),H(t),R(t)) ∈ R6

+;N(t)≥ 0
}
.

Theorem 5.Consider a function m(x) ∈C[u,v] where CDα
x ∈C(u,v] with 0 < α ≤ 1. Then, it follows that

m(x) = m(x)+
1

Γ (α)
(CDα

x n)(ε)(x−u)α , (35)

provided u ≤ ε ≤ x, for all x ∈ (u,v].

We will use the principles outlined in [75,76] to demonstrate that all positive solutions to the model remain within the
set Ω using Theorem (5).

Fig. 8: Fractional dynamics showing variations in the hospitalization rate of I with a fractional order α = 0.8 on (a) A,
(b) H.

Corollary 1.Let n(x) ∈ [u,v] with C
0 Dα

x ∈ (u,v] and 0 < α ≤ 1. If C
0 Dα

x n(0) ≥ 0 for all t ∈ (0,v), then the function n
decreases for all x ∈ (0,v).

Theorem 6.The solution to the COVID-19 model (34) remains positive within the set Ω .
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4 Stability and Numerical Analysis

To substantiate the proposed model described in Equation (34), we provide a series of theoretical results and solutions.
Theorem:
Consider a Banach space denoted by (B,∥ · ∥), and let X∗ represent a self-map on B. The recursive relation is

expressed as zn+1 = x(X∗,zn), and the fixed point of X∗ is denoted by C (X∗). By definition, we can analyse ∥y∗n+1 −
x(X∗,y∗n)∥ within the set {y∗n ⊆ B}. If limn→∞ Cn = 0, which means that limn→∞ C∗

n = p∗ for zn+1 = X∗ and n represents
the Picard iteration, then the iteration at X∗ is stable. The theorem is summarised as follows: Let (B,∥ · ∥) be a Banach
space, and X∗ be a self-map on B. For all x,y ∈ B, the following holds:

Sn+1(t) = Sn(t)+L −1
{

1
Sa L {Λ

α − (λ α +µ
α)S}

}
,

En+1(t) = En(t)+L −1
{

1
Sa L {λ

α S− (εα +θ
α +µ

α)E}
}
,

An+1(t) = An(t)+L −1
{

1
Sa L {ε

α E − (µα +ψ
α +φ

α +κ
α)A}

}
,

In+1(t) = In(t)+L −1
{

1
Sa L {θ

α E +ψ
α A− (µα +δ

α +ω
α)I}

}
,

Hn+1(t) = Hn(t)+L −1
{

1
Sa L {φ

α A+ω
α I − (µα +δ

α +ρ
α)H}

}
,

Rn+1(t) = Rn(t)+L −1
{

1
Sa L {κ

α A+ρ
α H −µ

α R}
}
.

(36)

Assuming X is a self-map, the following results are derived:

X [Sn(t)] = Sn+1(t) = Sn(t)+L −1
{ 1

Sa L {Λ α − (λ α +µα)S}
}
,

X [En(t)] = En+1(t) = En(t)+L −1
{ 1

Sa L {λ α S− (εα +θ α +µα)E}
}
,

X [An(t)] = An+1(t) = An(t)+L −1
{ 1

Sa L {εα E − (µα +ψα +φ α +κα)A}
}
,

X [In(t)] = In+1(t) = In(t)+L −1
{ 1

Sa L {θ α E +ψα A− (µα +δ α +ωα)I}
}
,

X [Hn(t)] = Hn+1(t) = Hn(t)+L −1
{ 1

Sa L {φ α A+ωα I − (µα +δ α +ρα)H}
}
,

X [Rn(t)] = Rn+1(t) = Rn(t)+L −1
{ 1

Sa L {κα A+ρα H −µα R}
}
.

(37)

The map X is considered stable if the following conditions are met:

{1−Λ
α − (λ α +µ

α) f1}< 1,
{1−λ

α f1 − (εα +θ
α +µ

α) f2}< 1,
{1− ε

α f2 − (µα +ψ
α +φ

α +κ
α) f3}< 1,

{1−θ
α f2 +ψ

α f3 − (µα +δ
α +ω

α) f4}< 1,
{1−φ

α f3 +ω
α f4 − (µα +δ

α +ρ
α) f5}< 1,

{1−κ
α f3 +ρ

α f5 −µ
α f6}< 1.

(38)

Proof:
By analysing the map X around a fixed point, we obtain the following equations:

X [Sn(t)]−X [Sm(t)] = Sn(t)−Sm(t),
X [En(t)]−X [Em(t)] = En(t)−Em(t),
X [An(t)]−X [Am(t)] = An(t)−Am(t),
X [In(t)]−X [Im(t)] = In(t)− Im(t),

X [Hn(t)]−X [Hm(t)] = Hn(t)−Hm(t),
X [Rn(t)]−X [Rm(t)] = Rn(t)−Rm(t).

(39)

As ∥zn+1 − x(X∗,zn)∥ approaches zero, ∥yn − ym∥ converges, indicating stability. This concludes the proof.
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5 Results and Discussion

In this section, we analyse the results of the fractional-order model applied to various dynamics of COVID-19 transmission
and recovery. We present and discuss the graphical results and their implications on the basis of the variation in model
parameters.

5.1 Crossover effect analysis

Figures 5a to 5f illustrate a notable crossover effect in the dynamics of the system. Specifically, Figures 5a, 5b and
5f exhibit this effect when the fractional order is varied. However, Figures 5c, 5d and 5e demonstrate that altering the
fractional order does not always produce a crossover effect.

5.2 Impact of transmission rate variation

In Figure 6, we examined the fractional dynamics with a fractional order of α = 0.8 of basic reproduction number R0 =
1.9843, the system shows distinct behaviour. When the COVID-19 transmission rate increases, Figure 6a reveals an
increase in the number of people with acute COVID-19 infection. This figure also illustrates a crossover effect, where
changes in transmission rates lead to significant changes in infection dynamics.

Similarly, Figure 6b shows that an increase in the COVID-19 transmission rate results in a higher number of exposed
individuals, with a noticeable crossover effect observed. Figure 6c highlights that as the transmission rate increases, the
number of hospitalised individuals also increases, accompanied by a crossover effect. Figure 6d shows that the number
of infected individuals increases over time with increasing transmission rates. In contrast, Figure 6e reveals an opposite
trend for susceptible individuals, where the number of susceptible individuals decreases as transmission rates increase.
This behaviour underscores the importance of observing the dynamics of the population as the fractional order α varies.
Our result here is more accurate and realistic than the results of [11,14]

5.3 Dynamics of recovery rate of (A) variation

Figure 7 presents the dynamics of the system when the recovery rate of acutely infected individuals is varied in fractional
order α = 0.8. As shown in Figures 7a and 7b, an increase in the recovery rate of A results in a decrease in the number of
acutely infected and hospitalised individuals. On the other hand, Figures 7c, and 7d show that an increase in the COVID-
19 recovery rate leads to an increase in the number of infected and recovered individuals, respectively, illustrating a direct
relationship. Our result here agrees with the results of [39,41]

5.4 Effects of hospitalisation rate variation

The dynamics of the system with respect to varying the hospitalisation rate of infected individuals, I, is illustrated in
Figure 8. Figure 8a shows that an increase in the hospitalisation rate of I is correlated with a decrease in the population of
acutely infected individuals over time. However, Figures 8b show that increasing the hospitalisation rate of acute COVID-
19 infection leads to an increase in the number of hospitalised individuals. This result agreed with the results of [55,56,
57]

5.5 Movement rate from (A) to (I) variation analysis

Finally, Figure 9 explores the impact of varying the movement rate from A to I on fractional dynamics with α = 0.8. The
results indicate that changes in movement rate positively affect acutely infected individuals with COVID-19. However,
this variation has a detrimental effect on exposed, hospitalised and infected compartments.
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6 Conclusion

The study underscores the importance of using fractional-order models to capture the nuanced dynamics of COVID-19
transmission. By examining the effects of varying fractional orders, it becomes evident that these models provide deeper
insights into how changes in disease parameters influence different stages of infection, including the number of exposed,
infected, and hospitalised individuals. Our results demonstrate that the presence of crossover effects under different
conditions highlights the need to choose appropriate fractional orders to accurately reflect epidemic behaviours.
Furthermore, increased transmission rates are associated with higher levels of acute infections and hospitalisations,
underscoring the importance of effective transmission control measures to mitigate the strain on healthcare systems.

Our findings suggest that fractional derivatives improve the alignment between modelled trajectories and observed
real-world data compared to classical models, particularly in capturing delayed peaks and extended tails in infection
curves. Incorporating memory effects improves predictions for long-term behaviour, aligning with observations from
other infectious diseases with similar dynamics, such as influenza or measles. However, a few limitations are
acknowledged. The model assumes a homogeneous population and constant parameter values, with no vertical
transmissions, which may not fully capture the complexities of real-world epidemics. Furthermore, the computational
complexity of fractional derivatives may pose challenges for broader applications, particularly in large-scale simulations
or real-time policy-making contexts.

Future research should address these shortcomings by exploring more complex or heterogeneous population
structures to improve realism, investigating adaptive or time-varying parameters to reflect changing dynamics, such as
vaccination rates or public health interventions, and, moreover, developing efficient numerical methods to enhance the
computational feasibility of fractional models for large-scale use. Furthermore, comparisons with a wider range of
fractional-order and integer-order models could provide deeper insights into the strengths and limitations of the proposed
approach. Incorporating real-world datasets from diverse contexts would enhance the generalisability and practical utility
of the model. Despite these limitations, the findings underscore the potential of fractional derivatives to advance
infectious disease modelling. By capturing memory effects and complex temporal dynamics, the approach offers
valuable tools to understand and manage future outbreaks.

In addition, the findings suggest that higher recovery rates can reduce the incidence of acute infections, which points
to the value of improved recovery strategies in managing disease progression. Variations in hospitalisation rates also
affect the number of individuals hospitalised or infected, indicating that healthcare planning must account for these
dynamics. The impact of movement rates between the infection and hospitalisation compartments shows how different
factors can positively or negatively influence disease outcomes. In general, this research highlights the utility of
fractional-order models for developing informed public health policies, emphasizing the need for precise parameter
adjustments to optimize disease management strategies. Memory effects contribute to a deeper understanding of
infectious disease dynamics while enhancing projection reliability.
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2725-âC“2740 (2020).
[23] A.-R. J. Mumbu and A. K. Hugo, Mathematical modelling on COVID-19 transmission impacts with preventive measures: a case

study of tanzania, J. Biol. Dyn. 14 (1), 748âC“-766 (2020).
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CaputoâC“Fabrizio fractional order derivative, Chaos Solitons Fractals 135, 109754 (2020).

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
https://doi.org/10.1093/jamia/ocaa141


488 J. Akanni et al. : Analysis of Fractional-Order Model for COVID-19...

[35] J. Gomez-Aguilar, T. Cordova-Fraga, T. Abdeljawad, A. Khan and H. Khan, Analysis of fractal-fractional malaria transmission
model, Fractals, (2020).

[36] K. Shah, F. Jarad and T. Abdeljawad, On a nonlinear fractional order model of Dengue fever disease under CaputoâC“Fabrizio
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3873âC“3900 (2022).
[44] S. Qureshi, Periodic dynamics of rubella epidemic under standard and fractional caputo operators with real data from Pakistan,

Math. Comput. Simul. 178, 151âC“-165 (2020),.
[45] J. V. L. Chew, A. Sunarto, J. Sulaiman and M. F. Asli, Fractional Newton Explicit Group Method for Time-Fractional Nonlinear

Porous Medium Equations, Progr. Fract. Differ. Appl. 10(3), 391–398 (2024).
[46] D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance

with non-singular derivative operator, Chaos: An Interdisciplinary Journal of Nonlinear Science 29(8), 083127 (2019).
[47] D. Baleanu, P. Shekari, L. Torkzadeh, H. Ranjbar, A. Jajarmi and K. Nouri, Stability analysis and system properties of Nipah virus

transmission: A fractional calculus case study, Chaos, Solitons & Fractals 166, 112990 (2023).
[48] O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh and J. H. Asad, Fractional treatment: an accelerated mass-spring

system, Romanian Reports in Physics 74 (4), 122 (2022).
[49] P. Kumar and S. Qureshi, Laplace-Carson integral transform for exact solutions of noninteger-order initial value problems with the

Caputo operator, J. Appl. Math. Comput. Mech. 19 (1), 57âC“-66 (2020).
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