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Abstract: This study introduces a novel fractal derivative alongside its corresponding integral, delving into essential properties such as
the fractal Laplace transform, the fractal chain rule, and derivative operations. We also explore the solution of a linear fractal differential
system. Furthermore, we provide two illustrative examples that allow us to compare the proposed fractal differential equation to existing
definitions, including the Hausdorff derivative, Caputo derivative, and Yang derivative. This comparative analysis underscores the
efficacy of the extended definition for addressing non-integer order differential equations.
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1 Introduction

Fractional and fractal calculus, including the Caputo fractional calculus [1], the nabla fractional calculus [2], cotangent
fractional calculus [3], Hilfer cotangent fractional calculus [4], and fractal-fractional calculus [5], play a pivotal role in
both applied and theoretical fields across science and engineering. Notably, Wen Chen introduced the innovative Hausdorff
derivative, which has found practical application in mathematical models addressing real-world challenges [6] [7] and
anomalous transport phenomena [9]. Akgul also contributed to this realm by presenting a novel fractional derivative with
distinct kernels [10].

The literature boasts an array of research endeavors related to fractional and fractal calculus. For instance, Pandey
mathematically modeled the COVID-19 pandemic using the Caputo-Fabrizio fractional derivative [11] and the Maize
Streak Virus Epidemic Model Using Caputo-Fabrizio Fractional Derivative in [12]. In another context, Evirgen examined
the dynamics of the Nipah virus using the Caputo fractional derivative [13], while Sadekotman delved into the fractional
modeling of TiO2 nanopowder synthesis employing the Caputo fractional derivative [14]. Furthermore, Kumar explored
alkali-silica chemical reactions using the Caputo fractional derivative [15], and Sadek addressed the observability and
controllability of fractal linear dynamical systems [16]. Kolebaje ventured into mathematical modeling of COVID-19
with the Atangana-Baleanu fractional derivative [17], and Sadek89 examined the observability and controllability of
fractional linear systems using conformable derivatives [18]. The realm of research also includes topics like the
conformable finite element method for solving conformable fractional partial differential equations [19], stability
analysis of conformable linear infinite-dimensional systems [20], and the generalization of the BDF methods for solving
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matrix fractional differential equations [21]. These are just a few examples among the multitude of research works in this
field. The definition of the Hausdorff derivative for a function x(ℓ) with a fractional order α ∈]0,1] (as introduced in [6,
7]) can be expressed as follows:

Cα(x)(ℓ) = lim
z→t

x(z)− x(ℓ)
zα − ℓα

, (1)

if x is differentiable, then

Cα(x)(ℓ) =
1

ℓα−1α
x′(ℓ).

The Yang derivative, proposed in [22], for a function x(ℓ) with a fractional order α ∈]0,1], is given by:

Fα(x)(ℓ) =
1

αeαℓ
x′(ℓ).

Now, we introduce a novel fractal derivative for the function x, defined as:

Fα(x)(ℓ) = lim
h→t

x(h)− x(ℓ)
ehα − eℓα ,

If x is differentiable, then this fractal derivative can be expressed as:

Fα(x)(ℓ) =
ℓ1−α

αeℓα x′(ℓ).

The structure of this paper is as follows: In Section 2, we introduce the novel fractal derivative and explore its some
properties, such as the fractal chain rule. Section 3 delves into fractal integrals, and in Section 4, we examine the fractal
Laplace transform, discussing how fractal derivatives and integrals interact with each other. To provide a numerical basis
for comparing the stability characteristics of the new fractal derivative equation, the Hausdorff derivative equation, and
their corresponding fractional-order equations (in the Caputo sense), we present examples in example 3 and example 4.

2 New fractal derivative

First, we introduce a truncated exponential function, denoted as:

eℓk =
k

∑
i=1

ℓi

i!
,

With this concept in place, we can proceed to define another fractional derivative, which is presented below.

Definition 1.Consider a function x defined on a subset I ⊂ R, where x : I −→ R. We introduce the fractal derivative Fα
k

of x with respect to order α ∈ (0,1] as follows:

Fα
k (x)(ℓ) = lim

h→t

x(h)− x(ℓ)
ehα

k − eℓα

k
,

We characterize x as α-differentiable when Fα
k (x)(ℓ) exists for all ℓ ∈ I.

So,

Fα
1 (x)(ℓ) = lim

h→t

x(h)− x(ℓ)
hα − ℓα

, (2)

and

Fα
∞ (x)(ℓ) = lim

h→t

x(h)− x(ℓ)
ehα − eℓα , (3)

The expression in Eq. (2) corresponds to the fractal derivative as defined in Eq. (1) in the works of Chen [6,7]. In contrast,
the expression in Eq. (3) represents the fractal derivative introduced in the current paper. It’s worth noting that when
α = 1, Eq. (2) reduces to the conventional definition of the first derivative of a function x at a specific point ℓ.
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Definition 2.Consider a function x defined on the interval I ⊂R and taking real values. The fractal derivative, denoted as
Fα , of x with respect to an order α ∈ (0,1] is given by the following expression:

Fα(x)(ℓ) = lim
h→t

x(h)− x(ℓ)
ehα − eℓα .

We refer to x as α-differentiable if the value of Fα(x)(ℓ) exists for all ℓ ∈ I.

Lemma 1.Here are the fractal derivatives of a few functions:
1.Fα(1) = 0.
2.Fα(ℓp) = p

αeℓα
ℓp−α .

3.Fα(eeℓ
α

) = 1.

4.Fα(eλeℓ
α

) = λeλeℓ
α

.

Remark.A function x is considered α-differentiable, and if α = 1, it implies that x is differentiable.

Theorem 1.Suppose we have an interval I ⊂ R, and within this interval, there is a specific point a ∈ I. If a function
x : I −→ R is α-differentiable at the point a for some α ∈ (0,1], it implies that the function x exhibits continuity at this
particular point a.

Proof.We have

x(h)− x(a) =
x(h)− x(a)
ehα − eaα (ehα − eaα

).

Then,

lim
h→a

[x(h)− x(a)] = lim
h→a

x(h)− x(a)
ehα − eaα lim

h→a
(ehα − eaα

),

so
lim
h→a

[x(h)− x(a)] = Fα(x)(a).0,

this suggests that as the variable h approaches the point a, the function x(h) converges to x(a), thus establishing that
function x maintains continuity at point a.

Theorem 2.Consider the interval I contained within the set of real numbers. Let a,b,c ∈ I and suppose x : I → R and
y : I → R are both α-differentiable functions. In this context, we can express the following relationships:

1.Fα(ax+by) = aFα(x)+bFα(y).
2.Fα(c) = 0, for all x(ℓ) = c.
3.Fα(xy)(ℓ) = Fα(x)(ℓ)y(ℓ)+ x(ℓ)Fα(y)(ℓ).

4.Fα

(
x
y

)
(ℓ) = Fα (x)(ℓ)y(ℓ)−Fα (y)(ℓ)x(ℓ)

y(ℓ)2 .

Proof.Relationships (1) to (2) are derived based on the principles outlined in Definition 2. As for (3): Let’s proceed by
considering a fixed value of t.

Fα(xy)(ℓ) = lim
h→ℓ

x(h)y(h)− x(ℓ)y(ℓ)
ehα − eℓα

= lim
h→ℓ

x(h)y(h)− x(ℓ)y(h)+ x(ℓ)y(h)− x(ℓ)y(ℓ)
ehα − eℓα

= lim
h→ℓ

x(h)− x(ℓ)
ehα − eℓα y(h)+ lim

h→t
x(ℓ)

y(h)− y(ℓ)
ehα − eℓα

= Fα(x)(ℓ)y(h)+Fα(y)(ℓ)x(ℓ).
As for (4): Next, with a constant value of t,

Fα(
x
y
)(ℓ) = lim

h→ℓ

x(h)
y(h) −

x(ℓ)
y(ℓ)

ehα − eℓα

= lim
h→ℓ

x(h)y(ℓ)−y(h)x(ℓ)
y(h)y(ℓ)

ehα − eℓα

= lim
h→ℓ

x(h)y(ℓ)− x(ℓ)y(ℓ)+ x(ℓ)y(ℓ)− y(h)x(ℓ)
y(h)y(ℓ)(ehα − eℓα

)

= lim
h→ℓ

x(h)− x(ℓ)
ehα − eℓα

y(ℓ)
y(h)y(ℓ)

− lim
h→t

x(ℓ)
y(h)y(ℓ)

y(h)− y(ℓ)
ehα − eℓα ,

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


436 L. Sadek et al.: A new fractal derivative and its properties

since x and y are α-differentiable so

Fα(
x
y
)(ℓ) = Fα(x)(ℓ)

y(ℓ)
y(ℓ)y(ℓ)

− x(ℓ)
y(ℓ)y(ℓ)

Fα(y)(ℓ)

=
Fα(x)(ℓ)y(ℓ)−Fα(y)(ℓ)x(ℓ)

y(ℓ)2 .

Theorem 3.(Fractal chain rule) Let I ⊂ R and x : I −→ R differentiable and y x : I −→ R α-differentiable. Then the
function xoy is α-differentiable,

Fα(xoy)(ℓ) = x′(y(ℓ))Fα(y)(ℓ).

Proof.We have,

Fα(xoy)(ℓ) = lim
h→ℓ

x(y(h))− x(y(ℓ))
ehα − eℓα

= lim
h→ℓ

x(y(h))− x(y(ℓ))
y(h)− y(ℓ)

y(h)− y(ℓ)
ehα − eℓα

= x′(y(ℓ))Fα(y)(ℓ).

Lemma 2.Let I ⊂ R and the function x : I −→ R differentiable at ℓ, then

Fα(x)(ℓ) =
t1−α

αetα x′(ℓ).

Proof.We get

Fα(x)(ℓ) = lim
h→ℓ

x(h)− x(ℓ)
ehα − eℓα

= lim
h→ℓ

x(h)− x(ℓ)
h− ℓ

lim
h→ℓ

h− ℓ

ehα − eℓα

= lim
h→ℓ

x(h)− x(ℓ)
h− ℓ

1

limh→ℓ
ehα −eℓα

h−ℓ

= x′(ℓ)
1

αℓα−1eℓα .

Yang in [22] generalized derivative is defined:

Fα(x)(ℓ) =
1

h′(ℓ)
x′(ℓ), h′(ℓ)> 0.

–The derivative for the power-law function, represented in [22] as h(ℓ) = ℓα , is defined as follows:

Fα(x)(ℓ) =
1

αℓα−1 x′(ℓ).

–The derivative concerning the exponential function (not the Yang derivative), denoted as in [22] by h(ℓ) = eαℓ, is
defined as follows:

Fα(x)(ℓ) =
1

αeαℓ
x′(ℓ).

Remark.

1.If α = 1, we have Fα = Fα .
2.Definition 1 establishes the equivalence between the general derivative in [22] (h(ℓ) = eℓ

α

k ).
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3 Fractal integral

In this section, we present the fractal integral and two theorems’ important role.

Definition 3.Consider a continuous function x : I −→ R, where I ⊂ R. Then, the fractal integral Iα of x for α ∈ (0,1] is
defined as follows:

Iα(x)(ℓ) =
∫ ℓ

0
αsα−1esα

x(s)ds, ℓ ∈ I.

Theorem 4.Let I ⊂ R and the continuous function x : I −→ R. Then

Fα Iα(x) = x.

Proof.Let tıI. Iα(x)(ℓ) is clearly differentiable. Hence,

Fα (Iα(x))(ℓ) =
1

αℓα−1eℓα

d
dℓ

Iα(x)(ℓ)

=
1

αℓα−1eℓα

d
dt

∫ ℓ

0
αsα−1esα

x(s)ds

=
1

αℓα−1eℓα αℓα−1eℓ
α

x(ℓ)

= x(ℓ).

Theorem 5.Let 0 < α ≤ 1 and x : I ⊂ R−→ R be differentiable. We have

Iα(Fα(x)(ℓ)) = x(ℓ)− x(0).

Proof.

Iα(Fα(x)(ℓ)) =
∫ ℓ

0
αsα−1esα

Fα(x)(s)ds.

=
∫ ℓ

0
αsα−1esα 1

αsα−1esα x′(s)ds

=
∫ ℓ

0
x′(s)ds

= x(ℓ)− x(0).

4 The fractal Laplace transform

Definition 4.Let I ⊂R, 0 < α ≤ 1 and the function x : I −→R. We define the fractal Laplace transform of order α for the
function x as follows:

Lα{x(ℓ)}(s) = α

∫
∞

0
e−seℓ

α

x(ℓ)ℓα−1eℓ
α

dℓ.

We pose Xα(s) := Lα{x(ℓ)}(s).
Theorem 6.Let 0 < α ≤ 1 the function x : I ⊂ R−→ R be differentiable. We have

Lα {Fα(x)(ℓ)}(s) = sXα(s)− e−sx(0).

Proof.

Lα {Fα(x)(ℓ)}(s) = α

∫
∞

0
e−seℓ

α

Fα(x)(ℓ)ℓα−1eℓ
α

dℓ

= α

∫
∞

0
e−seℓ

α 1
αℓα−1eℓα x′(ℓ)ℓα−1eℓ

α

dℓ

=
∫

∞

0
e−seℓ

α

x′(ℓ)dℓ

= [e−seℓ
α

x(ℓ)]∞0 −αs
∫

∞

0
−e−seℓ

α

x(ℓ)ℓα−1eℓ
α

dℓ

= −e−sx(0)+ sXα(s).
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Lemma 3.Let the function x : I ⊂ R−→ R such that Lα{x(ℓ)}(s) = Xα(s) exists. We have

Xα(s) = L{x((log(ℓ))
1
α )}(s),

with L{y(ℓ)}(s) =
∫

∞

1 e−sℓy(ℓ)dℓ.

Proof.The proof can be readily established by introducing the variable h as h = eℓ
α

.

Theorem 7.Let 0 < α ≤ 1. Then

1.Lα{1}(s) = e−s

s ,s > 0.

2.Lα

{
eeℓ

α
}
(s) = e−s+1

s−1 ,s > 1.

3.Lα{eλeℓ
α

}= eλ−s

s−λ
,s > λ .

Proof.The proof follows directly from the definition.

Proposition 1.

1.Let the functions x and y are fractal transformable, then

Lα{x+ y}= Lα{x}+Lα{y}.

2.Let the function x is farctal transformable and λ ∈ R, then

Lα{λx}= λLα{x}.

Proof.Considering the two preceding propositions, it can be affirmed that Lα qualifies as a linear operator.

Example 1.Consider the fractal problem: {
Fα(x)(ℓ) = λx(ℓ), ℓ > 0,
x(0) = x0,

(4)

the exact solution is x(ℓ) = eλeℓ
α

e−λ x0.

Proof.Applying the fractal Laplace Transform to Eq. (4), we have

Lα{Fα(x)(ℓ)}(s) = Lα{λx(ℓ)}(s),

Based on Theorem 6 and Proposition 1, we obtain:

sXα(s)− e−sx0 = λXα(s).

Simplifying this we get

Xα(s) =
e−s

s−λ
x0. (5)

Applying the inverse fractal Laplace transform to Eq. (5), we obtain the solution x(ℓ) = eλeℓ
α

e−λ x0. The solution of Eq.
(4), which is derived using the fractal Laplace transformation method, is illustrated in Figure 1 for various values of α .
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Fig. 1: The solution of Eq. (4) for different values of α where λ =−1 and x0 = 1.

Example 2.Let the linear fractal differential system{
Fα(x)(ℓ) = Ax(ℓ)+ y(ℓ), ℓ≥ 0,
x(0) = x0.

(6)

with x,y : [0,a)−→Rn are vector functions and A is an n×n matrix. We utilize the fractal Laplace transform to represent
the solution of a linear fractal differential system. The precise solution of the linear fractal equation (6) is given by:

x(ℓ) = eAeℓ
α

e−Ax0 +α

∫ ℓ

0
eA(eℓ

α −esα
)y(s)sα−1esα

ds.

Example 3.In this example, we provide essential numerical comparisons to assess the stability of the fractal differential
equation using the new fractal derivative, the Hausdorff derivative [23], the Yang derivative [22], and the Caputo derivative
[24]. These comparisons are made for the following dynamical system [23]:{

Fα(x)(ℓ) =−x(ℓ), ℓ≥ 0,
x(0) = x0,

(7)

where x(ℓ) : [0,∞)→ R. A comparison of the solutions of Eq. (7) and its corresponding system when replacing the novel
fractal derivative by Caputo derivative [24], Hausdorff derivative [6,7] and Yang derivative [22] is presented in Figure
2. From Figure 2, it is clear that the new fractal derivative system converges to zero much faster than its corresponding
fractional-order system.

Example 4.In this example, we present necessary numerical comparisons of the fractal differential equation using the
new fractal derivative, Hausdorff derivative [23], Yang derivative [22] and the Caputo derivative [24]). For the following
dynamical system [14]: 

Fα(x1)(ℓ) =−k1x1(ℓ)x2(ℓ)− k2x1(ℓ)x3(ℓ),

Fα(x2)(ℓ) =−k1x1(ℓ)x2(ℓ)+ k3x3(ℓ)
2,

Fα(x3)(ℓ) = k1x1(ℓ)x2(ℓ)− k2x1(ℓ)x3(ℓ)− k3x3(ℓ)
2,

Fα(x4)(ℓ) = k1x1(ℓ)x2(ℓ)+ k2x1(ℓ)x3(ℓ),

Fα(x5)(ℓ) = k2x1(ℓ)x3(ℓ)+ k3x3(ℓ)
2,

(8)

with initial conditions:
x1(1) = 12.35,x2(1) = 24.7,x3(1) = 0,x4(1) = 0,x5(1) = 0.
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Fig. 2: Comparisons of numerical solutions of the dynamical system using the four definitions when they have the same
initial condition x(0) = 1 and λ =−1 for α = {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.

Figure 3 illustrates a comparison between the solutions of a nonlinear system (8) and its corresponding system. This
comparison is made by substituting the new fractal derivative Fα with the Yang derivative, Caputo derivative, and
Hausdorff derivative.

5 Conclusion

In this study, we introduced a novel concept of the fractal derivative along with several associated theorems and the
integral of this new fractal derivative. These developments have yielded significant outcomes, especially in enhancing
the stability of non-integer order differential equations. As we look ahead, our forthcoming research will delve into the
practical applications of this innovative definition.
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Fig. 3: Comparisons of numerical solutions of the nonlinear dynamical system using the four definitions for α = 0.85.
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