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Abstract: In thispaper, we introduce and consider a new problem of findingu∈ K(u) such thatAu∈C, whereK : u→ K(u) is a closed
convex-valued set in the real Hilbert spaceH1, C is closed convex set in the real Hilbert spaceH2 respectively andA is linear bounded
self-adjoint operator fromH1 andH2. This problem is called the quasi split feasibility problem. We show that the quasi feasibility
problem is equivalent to the fixed point problem and quasi variational inequality. These s alternative equivalent formulations are used to
consider the existence of a solution of the quasi split feasibility problem. Some special cases are also considered. Problems considered
in this paper may open further research opportunities in these fields.
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1 Introduction

The split feasibility problems, introduced and studied by
Censor and Elfying [4], have played a fundamental and
significant part in the study of several unrelated problems.
These problems arise in diverse fields of pure and applied
sciences including image reconstruction, medica sciences
(medical image), signal processing, image denoising and
decomposition, see [1,2,3,4,5,6,13,26]. It has been
shown [1,2,3,4,5,6,13,21,26,28,29,30] that the split
feasibility problems are equivalent to fixed point
problems, variational inequalities and optimization
problems. These equivalent alternative formulations of
the split feasibility problems have been used to study the
existence of a solution as well as to develop various
numerical methods. In the formulation of split feasibility
problem, the underlying convex sets do not depend on the
solution. This fact has motivated us to consider a class of
split feasibility problem, which is called quasi split
feasibility problem. We would like to emphasized that
such type of quasi split feasibility problems have not been
investigated up to now. It has been shown that the quasi
split feasibility problems are equivalent to the fixed point
problems and quasi variational inequalities. These
equivalent formulations are used to study the existence of
a solution of the quasi split feasibility problem. This
result is new and original. Several special cases are also
discussed. Our results continue to hold for these cases.
Some iterative methods for finding the approximate

solutions of the quasi split feasibility problems are
suggested. It is expected that the ideas and techniques of
this paper may stimulate further research in this area. The
interested readers may find new and novel applications of
quasi split feasibility problems in image reconstruction,
medical imaging and related fields.

2 Preliminaries

Let H be real Hilbert space, whose inner product and norm
are denoted by〈., .〉 and‖.‖ respectively. LetK be a non-
empty, closed and convex set inH.
We now recall some basic concepts and results, which are
needed.

Definition 1. An operator T is said to be strongly
monotone, if there exists a constantα > 0 such that

〈Tu−Tv,u−v〉 ≥ α‖u−v‖2
, ∀u,v∈ H.

Definition 2. An operator T is said to expanding, if and
only if

‖Tu−Tv‖ ≥ ‖u−v‖, ∀u,v∈ H.

From Definition 2.1 and Definition 2.2, it follows that
every strongly monotone operator is expanding, but the
converse is not true.
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Definition 3. An operator T is said to be Lipschitz
continuous, if nad only if, there exists a constantβ > 0
such that

‖Tu−Tv‖ ≤ β‖u−v‖, ∀u,v∈ H.

Lemma 1. For a given z∈H, u∈K, a closed and convex
set, satisfies the inequality

〈u−z,v−u〉 ≥ 0, ∀v∈ K,

if and only if

u= PKz,

where PK is the projection of H onto the closed and convex
set K.

From Lemma 1, we have

〈PKz−z,v−PKz〉 ≥ 0, ∀v∈ K.

It is well known that the projection operatorPK is
nonexpansive and monotone, that is,

‖PKu−PKv‖ ≤ ‖u−v‖, ∀u,v∈ H

and

〈PKu−PKv,u−v〉 ≥ 0, ∀u,v∈ H.

Let K : u → K(u) be a point-to-set mapping which
associates closed and convex setK in a real Hilbert space
H1 of an element ofu ∈ H1 and letC be a closed and
convex set in the real Hilbert spaceH2. Let A : H1 → H2
be a bounded linear operator. LetPK(u) be a projection of
H1 onto the closed and convex-valued setK(u) andPC be
projection of H2 onto the closed and convex setC
respectively.
We consider the problem of finding

u∈ K(u) such that Au∈C. (1)

The problem (1) is called the quasi or implicit split
feasibility problem. Such type of problem are connected
with set-valued optimization problem, which arise in
signal and medical image reconstruction. We note that, if
K(u) = K, a closed convex set inH1, then problem (1)
reduces to finding

u∈ K such that Au∈C, (2)

which is known as the split feasibility problem. These
problems have been studied extensively in recent years
and have application in various areas of engineering,
physical and mathematical sciences such as medical
image reconstruction and remote sensing. For the
applications, numerical methods and other aspects of the
split feasibility problem (1), see [1,2,3,4,5,6,21,26,27,
28,29,30] and the references therein.
It is well known that the split feasibility problem is
equivalent to the fixed point problem of findingu ∈ K
such that

u= PK [u−ρA∗(1−PC)Au], (3)

where PK is the projection ofH1 onto the closed and
convex setK and PC is the projection ofH2 onto the
closed and convex setC respectively. HereA∗ is the
adjoint of operatorA. The equivalence between problems
(2) and (3) have been used to develop several numerical
methods for solving the split feasibility problems (2). See,
for example, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30].
Using Lemma 1, one can show that the fixed point
problem (3) is equivalent to finding such that

〈A∗(I −PC)Au,v−u〉 ≥ 0, ∀c∈ K, (4)

which is called the variational inequalities. It is worth
mention that the variational inequalities were introduced
and studied by Stampacchia [27] in 1964. For the recent
applications, formulation, numerical results and
generalizations, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
and the references therein.

3 Main Results

In this section, we first show that the quasi split feasibility
problem (1) can be viewed as a minimization problem.
We also establish the equivalence between the quasi split
feasibility problem (1) and the fixed point problems.
These equivalent formulation are used to study the
existence of a solution of problem (1).
From (1), it is clear thatu∈ K(u) implies that there exists
w∈C such that

Au−w= Au−PCAu= 0, (5)

where PC is the projection ofH2 onto the closed and
convex setC. This formulation enables us to consider the
minimization problem as:

min
u∈K(u)

I [v] =
1
2
‖Av−PCAv‖2

. (6)

Here the functionalI [v] is differentiable and,

∇I(u) = A∗(I −PC)Au. (7)

It is well known that ∇I is Lipschitz continuous with
constantβ = ‖A‖2, [28] that is

‖∇I(u)−∇I(v)‖ ≤ ‖A‖2‖u−v‖

= β‖u−v‖, ∀u,v∈ H1. (8)

One can easily show that the minimumu ∈ K(u) of the
functionalI [v], defined by (6), is equivalent to findingu∈
K(u) such that

〈A∗(I −PC)Au,v−u〉 ≥ 0, ∀v∈ K(u), (9)

which is called the quasi variational inequality. For the
formulation and numerical results of the quasi variational
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inequalities, see [7,8,9,10,12,13,14,16,19,22,25].
We now show that the quasi split feasibility problem (2) is
equivalent to fixed point problem.
For a constantρ > 0, one can rewrite (5) in the following
equivalent form as:

ρA∗(I −PC)Au= 0. (10)

Sinceu∈ K(u), from (9), it follows that

u= PK(u)[u−ρA∗(I −PC)Au], (11)

which is fixed point formulation of the quasi split
feasibility problem (1).
Using Lemma 2.1, one can show that the problem (10)
and (11) are equivalent. For the sake of completeness, we
state it as.

Lemma 2. The element u∈ K(u) : Au∈ C is a solution
of (8), if and only if u∈ K(u) : Au∈C is a solution of fixed
point problem (11).

Lemma 2 implies that problems (1), (11) and (9) are
equivalent. These equivalent formulations of the quasi
split feasibility problems (1) play an important and
fundamental part in the study of the existence of a
solution of (1) and in the development of the iterative
methods. In this paper, we use the fixed point formulation
to investigate the existence of a solution of the quasi split
feasibility problem. This is one of the main motivation of
this paper.
Using (10), we define the mappingF(u) as

F(u) = PK(u)[u−ρA∗(I −PC)Au]. (12)

To prove the existence of a solution of (1), it is enough to
show that the mappingF(u) defined by (12) has a fixed
point satisfying (1). In passing, we remark that the
projection operatorPK(u) is not nonexpensive operator.
However, it is well known that the projection operator
PK(u) satisfies the Lipschitz type continuity condition.
In this direction, we have the following assumption.
Assumption 1.The projection operatorPK(u) satisfies the
condition
‖PK(u)w−PK(v)w|‖ ≤ µ‖u−v||, ∀u,v,w∈ H,

whereµ > 0 is a constant.
This assumption has been used in the study of the existence
of a solution of the quasi variational inequalities. For the
application of Assumption 1, see [13,14,16,19,25].

Lemma 3. For any operator A, we have

〈A∗(I −PC)Au−A∗(I −PC)Av,u−v〉 ≥ 0,

∀u,v∈ H1.

Proof. ∀u 6= v∈ H1, consider

〈A∗(I −PC)Au−A∗(I −PC)Av,u−v〉

= 〈Au−PCAu− (A∗v−PCAv),Au−Av〉

= ‖Au−Av‖2−〈PCAu−PCAv,Au−Av〉

≥ ‖Au−Av‖2−‖Au−Av‖2

≥ 0.

We now prove the existence of solution of the quasi split
feasibility problem (1) under some suitable conditions and
this is the main motivation of our next result.

Theorem 1. Let A be the bounded linear operator and
let Assumption 1 hold. If there exists a constantρ > 0 such
that
∥

∥

∥

∥

ρ −
1

β 2

∥

∥

∥

∥

<

√

µ(2−µ)
β 2 ,µ < 1, (13)

then there exists a solution of the quasi split feasibility
problem (1).

Proof. Let u ∈ K(u) : Au∈ C. Then, from Lemma 2, it
follows that the problem (1) is equivalent to fixed point
problem (12). In order to prove the existence of a solution
of (1), it is enough to show that the mappingF(u) defined
by (12) has a fixed point satisfying (1).
Consider

‖F(u2)−F(u2)‖

= ‖PK(u1)[u1−ρA∗(I −PC)Au1]

− PK(u2)[u2−ρA∗(I −PC)Au2]‖

≤ ‖PK(u1)[u1−ρA∗(I −PC)Au1]

− PK(u2)[u1−ρA∗(I −PC)Au1]‖

+ ‖PK(u2)[u1−ρA∗(I −PC)Au1]

− PK(u2)[u2−ρA∗(I −PC)Au2]‖

≤ µ‖u1−u2‖+‖u1−u2−ρ(A∗(I −PC)Au1)

− A∗(I −PC)Au2‖, (14)

where we have used Assumption 1.

Now, from Lemma 3 and (8), we have

‖u1−u2−ρ(A∗(I −PC))Au1−A∗(I −PC)Au2‖
2

≤ ‖u1−u2‖
2

− 2ρ〈A∗(I −PC)Au1

− A∗(I −PC)Au2,u1−u2〉

+ ρ2‖A∗(I −PC)Au1−A∗(I −PC)Au2‖
2

≤ ‖u1−u2‖
2+ρ2β 2‖u1−u2‖

2

= (1+ρ2β 2)‖u1−u2‖
2
. (15)

From (14) and (15), we obtain

‖F(u1)−F(u2)‖

≤ (u+
√

1+ρ2β 2)‖u1−u2‖

= θ‖u1−u2‖,

where

θ = µ +
√

1+ρ2β 2. (16)

From (13), it follows thatθ < 1. This implies that the
mapping F(u) defined by (12) is a contraction and
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consequently, it has unique fixed pointF(u) = u ∈ K(u)
satisfying the problem (1), the required result.

Remark. In many applications, the convex-valued set
K(u) has the following form:

K(u) = m(u)+K, (17)

wherem is a point-to-point andK is a closed convex set.
Consequently, quasi split feasibility problem (1) becomes:
Find

u∈ m(u)+K : Au∈C, (18)

which is called the implicit split feasibility problem.
One can easily show that problem (18) is equivalent to the
fixed point problem of type:

u= m(u)+PK [u−m(u)−ρA∗(I −PC)Au],

which is equivalent to findingu∈ m(u)+K such that

〈A∗(I −PC)Au,v−u〉 ≥ 0, ∀v∈ m(u)+K. (19)

Problem (19) is called the implicit variational inequality.
Consequently, one can associate the mappingF1(u) with
problem (18) as

F1(u) = m(u)+PK [u−m(u)−ρA∗(I −PC)Au],

Using the technique of Theorem 1, one can prove the
existence of a solution of the implicit split feasibility
problems (18).

We now use the fixed point formulation (11) to suggest
the following iterative methods for solving (1).

Algorithm 1. For a given u0, find the approximate
solutionun+1 by the iterative scheme

un+1 = PK(un)[un−ρA∗(I −PC)Aun], n= 0,1,2, . . .

Algorithm 1 is called the explicit iterative method.

Algorithm 2. For a given u0, find the approximate
solutionun+1 by the iterative scheme

un+1 = PK(un)[un−ρA∗(I −PC)Aun+1], n= 0,1,2, . . .

Algorithm 2 is an implicit iterative method.
To implement this method, we use the predictor-corrector
technique. We use Algorithm 1 as the predictor and
Algorithm 2 as the corrector. Thus, we have the following
two-step iterative method.

Algorithm 3. For a given u0, find the approximate
solutionun+1 by the iterative scheme

yn = PK(un)[un−ρA∗(I −PC)Aun],

un+1 = PK(un)[un−ρA∗(I −PC)Ayn], n= 0,1,2, . . .

Algorithm 3 is an extragradient type method. Such type of
methods are due to Kopelevich [11].

4 Conclusions

In this paper, we have introduced and studied a new class
of split feasibility problems, which is called the quasi split
feasibility problem. It is shown that quasi split feasibility
problems are equivalent to fixed point problems, quasi
variational inequality and optimization problems. We
have studied the existence of a solution of the quasi split
feasibility problem under some suitable conditions. Some
special cases are also discussed. Results and ideas of this
paper will be a starting point for the further research.
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