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Abstract: The rapid expansion of mobile applications has amplified challenges in software testing, with inadequate testing 
responsible for 42% of application failures. Traditional testing methods are often time-consuming, resource-intensive, and 
hindered by issues such as GUI element identification and cross-device compatibility. This paper introduces MACT 
(Mobile Application Classification and Testing), a novel framework for automated mobile application testing that 
integrates machine learning-based activity classification with predefined, reusable test case execution. The framework 
automatically identifies and categorizes Android application screens (e.g., login, settings) and applies tailored test cases for 
each screen type, eliminating the need for custom test scripts and reducing maintenance overhead. Leveraging the MASC 
dataset, developed in our previous work, which comprises 7,065 screens from over 3,400 apps, the framework employs the 
Gradient Boosting model in activity classification that achieves 93.48% accuracy. Empirical evaluations demonstrate that 
MACT detects all planted bugs with 100% accuracy, significantly outperforming traditional tools like the Android 
Application Monkey. The framework reduces test script size by 87% and testing duration by 89% compared to manual 
methods like Android Espresso, providing a scalable, efficient, and resilient approach to mobile application testing. The 
modular design of MACT ensures seamless adaptation to various applications, addressing key limitations in GUI modeling 
and automated testing. This research makes a significant contribution to mobile application testing by reducing manual 
effort, increasing test coverage, and boosting reliability and efficiency.  

Keywords: Automated Testing; Mobile applications; MACT; Android applications testing; Machine Learning Algorithms. 
 
1 Introduction  

The continuous expansion of mobile applications has 
revolutionized how users engage with digital platforms, 
such as Android hosting over 2.3 million applications  [1]. 
This expansion has intensified application testing 
challenges, as studies indicate that inadequate testing 
accounts for approximately 42% of application failures 
[2]. Moreover, software testing consumes nearly 50% of 
development costs, a percentage potentially higher for 
mobile applications due to their inherent complexities [3]. 

Automation allows developers to easily conduct extensive 
test suites, saving time and resources compared to manual 
approaches [4]. Current frameworks allow developers to 
record predetermined actions, run test scenarios, and 
compare the results to expected behaviors [5]. Reusable 
test cases allow developers to validate functionality across 
different device setups and scenarios, which would 
otherwise take a lot of time with manual testing [6]. 
Despite these benefits, mobile application testing presents 
significant challenges. According to studies, 32% of 
testing efforts are dedicated to maintaining and upgrading 
test suites in response to frequent application changes [7]. 
Additional challenges include GUI element identification 
(31.2%), test environment setup (27.8%), and cross-device 
compatibility (24.5%)  [8] . The results of empirical 

research on 1,000 Android apps showed that traditional 
testing methods require substantial manual effort, with 
teams dedicating an average of 41 hours per month to test 
script maintenance [9]. Moreover, only 41% of mobile 
development teams effectively adopt automation practices 
due to technical difficulties, such as managing activity 
states, dynamic content, and asynchronous events [3]. 

To solve these difficulties, we propose an innovative 
Mobile Application Classification and Testing (MACT) 
framework that combines machine learning-driven 
activity classification with predefined test case execution. 
This framework automatically identifies and categorizes 
Android application screens such as login, settings, and 
list views activities and applies reusable test cases tailored 
to each screen type, significantly reducing the need for 
custom scripts. 

This approach has several advantages over traditional 
testing methods, which include eliminating the need to 
write custom test scripts for common UI patterns, 
lowering maintenance overhead, and ensuring consistent 
testing across similar screens in different applications. 
Furthermore, the framework includes a repository of 
predefined test scripts that can be reused for similar 
activities. These scripts use dynamic widget detection 
technique to ensure robust test case execution across 
multiple application contexts. This approach reduces the 
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effort needed to maintain tests while also ensuring 
consistent testing across similar app components. The 
proposed approach provides several important 
contributions: 

1. A framework for automatically classifying activities 
based on Machine Learning (ML). 

2. A library of reusable test cases for common Android UI 
activities. 

3. An integrated framework linking activity classification 
with automated testing. 

This research aims to reduce the cost and effort of mobile 
app testing while enhancing test coverage and reliability. 
By making automated testing more accessible and 
maintainable, it encourages adoption among mobile 
development teams, leading to better software quality and 
shorter development time. 

The remainder of this paper is organized as follows: 
Section 2 reviews related work in mobile app testing 
automation. Section 3 describes the proposed mobile 
testing methodology and framework architecture. Section 
4 presents implementation specifics. Section 5 presents a 
case study to illustrate the working of MACT. Section 6 
provides empirical evaluation results. Section 7 discusses 
findings and limitations, and Section 8 provides the 
research conclusion and future directions. 

2. Related work 

Testing mobile applications has been the focus of several 
studies, with researchers exploring various methods and 
tools. Linares-Vasquez et al. [10] classified Android 
testing tools and methodologies into three main 
categories, laying the groundwork for further exploration. 
These categories are: 

• Random Exploration Strategy: This approach 
involves generating random, independent UI events to 
test applications. It is especially useful for stress 
testing because it can create many test sequences with 
minimal effort. However, it lacks precision in 
delivering specific inputs, doesn’t consider coverage 
levels, and often results in repetitive or redundant 
sequences. Tools such as Monkey [11], and 
Dynodroid [12] employ this strategy. 

• Systematic Exploration Strategy: This strategy uses 
advanced techniques, such as genetic algorithms, to 
guide testing toward untested sections of code. Its 
goal is to identify hidden faults, enhance coverage, 
and focus on areas more likely to contain defects. 
While effective, it faces challenges in scaling up. 

Tools like CrashScope [13], and EvoDroid [14] 
implement this strategy. 

• Model-Based Exploration Strategy: This strategy 
involves creating a symbolic model of the application, 
which is treated as a finite-state machine. In this 
model, each state represents a specific screen, and 
transitions between states are based on user 
interactions. The exploration process dynamically 
generates new states and transitions until all possible 
paths loop back to previously explored states. 
Although this method ensures thorough and non-
redundant GUI coverage, it might not detect internal 
changes that don’t visibly impact the graphical 
interface. Tools such as MobiGUItar [15], and 
GuiRipper [16] implement this strategy. 

While previous studies emphasize the importance of GUI 
modeling and classification, they lack comprehensive 
frameworks that integrate all facets of these aspects. For 
instance, Yang et al. [17] proposed LACTA, which 
classifies Android applications using domain-specific 
knowledge and topic extraction via LDA. Despite its 
promising results, LACTA relies heavily on Android 
expertise and a limited dataset of 42 applications. 

 Li et al. [18] introduced ClassifyDroid, an approach that 
analyzes API usage frequencies from decompiled app 
code and applies a semi-supervised Multinomial Naive 
Bayes classifier. This method is particularly effective with 
limited labeled data. Similarly, Hamedani et al. [19] 
developed AndroClass, which extracts and refines features 
like APIs and intents for application classification using 
machine learning techniques. AndroClass achieved high 
accuracy with curated datasets but lacks focus on 
automated testing.  

Rosenfeld et al. [20], proposed a ML-based approach that 
reuses popular test scenarios to automate testing. While 
effective, this method relies on pre-existing scripts, 
limiting its adaptability to specialized applications. Hu et 
al. [21]  introduced AppFlow, which uses ML to identify 
common screens and widgets, enabling reusable UI test 
synthesis. Despite reducing testing effort by up to 90%, its 
dependence on predefined libraries restricts its flexibility. 
Ardito et al.  ]22[ presented a framework for Android app 
testing that automates script generation. This modular 
framework combines GUI modeling, app classification, 
and activity classification, enabling tailored test scripts. 
Empirical results demonstrated its adaptability and 
efficiency, outperforming existing approaches. To better 
illustrate the specific limitations in prior work, Table 1 
summarizes the key approaches and their respective 
constraints, highlighting the gaps that our proposed 
framework aims to address. 
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Table 1: Summary of limitations in existing approaches 
Study Proposed Approach Limitations 

Yang et al. 
[17] 

LACTA: Classifies apps using domain-
specific knowledge and topic extraction via 
LDA. 

- Heavily relies on Android expertise. 
- Limited dataset with only 42 applications. 

Li et al. [18] 

ClassifyDroid: Analyzes API usage 
frequencies using decompiled app code with 
a semi-supervised Multinomial Naive Bayes 
classifier. 

- Effective with limited labeled data but may 
struggle with large, unstructured datasets. 
- Lacks focus on automated testing. 

Hamedani et 
al. [19] 

AndroClass: Extracts and refined features 
like APIs and intents for app classification 
using ML techniques. 

- High accuracy only with curated datasets. 
- Does not focus on automated testing. 

Rosenfeld et 
al. [20] 

ML-based approach that reuses popular test 
scenarios for automation. 

- Relies on pre-existing test scripts, limiting 
adaptability to 2 specialized applications. 
- Limited dataset with only 80 activity samples. 

Hu et al. [21] 
AppFlow: Uses ML to identify common 
screens and widgets, enabling reusable UI 
test synthesis. 

- Depends on predefined libraries, limiting 
flexibility. 
- Reduces testing effort by up to 90% but 
struggles with unique interfaces. 

Ardito et al.  
]22[  

A framework combining GUI modeling, app 
classification, and activity classification to 
generate tailored test scripts. 

- Highly efficient but relies on APK files instead 
of source code. 
- Limiting deeper analysis of structure and 
behavior. 
- Limited dataset with only 100 activity samples. 

Compared to prior work, the proposed framework 
introduces a more advanced solution for automated 
Android app testing. Unlike Rosenfeld et al. [20], who 
focused on reusing predefined test scenarios, and Hu et al. 
[21], who introduced modular test generation, our approach 
leverages ML in activity classification to create pre-defined 
test cases tailored to each activity category. These test cases 
are dynamically applied based on the recognized category, 
ensuring efficient and adaptive testing. 

The proposed framework also builds upon the 
advancements presented by Ardito et al. ]22[ , who 
developed a modular framework combining GUI modeling, 
app classification, and activity classification to generate 
tailored test scripts. While their framework demonstrated 
adaptability and efficiency, our approach extends this by 
integrating ML for more accurate activity classification and 
leveraging the application source code instead of APK files. 
This enables a deeper analysis of application structure and 
behavior. Additionally, we employ a larger and more 
diverse dataset compared to previous studies, further 
enhancing classification and testing accuracy. This 
combination of techniques results in a more robust, 
scalable, and effective testing framework that addresses 
limitations in existing methodologies and significantly 
improves Android apps performance. 

3. The Proposed Testing Framework 

The proposed framework, referred to as MACT (Mobile 
Application Classification and Testing), implements a 
comprehensive automated testing approach for mobile 
applications, building upon the ML-based screen 

classification system. Figure 1 illustrates the testing process 
as structured within the MACT framework. It consists of 
the following modules:   

• Application Analyzer: This module analyzes the 
mobile application's source code to extract all activities 
and their associated components. Key elements such as 
buttons, text fields, images, and layouts are identified 
to gather relevant features. These features are then 
processed and transformed into normalized vector 
representations, ensuring seamless compatibility with 
the employed ML model for activity classification. 

• Activity Classification: The activity classification 
process is triggered for each identified activity 
extracted from the source code. Using the ML model 
trained on our MASC dataset, which comprises 7,065 
screens from over 3,400 apps, the features of each 
activity are analyzed to determine its category. This 
classification step ensures that the activity type is 
accurately identified, enabling the framework to map it 
to the appropriate test cases and execute relevant tests 
effectively. 

• Test Case Management : This module incorporates a 
repository of generic test scripts broadly applicable 
across various application types and activity categories, 
such as Login, Settings, and Profile. During the testing 
process, the module dynamically selects and executes 
the appropriate test scripts based on the classified 
activity, ensuring that only relevant tests are applied to 
enhance activity testing precision and effectiveness. 
Leveraging Android Espresso [23], a robust tool for UI 
automation, the module validates the application's 
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behavior and functionality with a high degree of 
automation. The module is designed to adapt 
dynamically to the unique attributes and requirements 
of each identified activity, ensuring full and context-
specific test coverage. Additionally, the module 
collects detailed execution results, including pass/fail 
status, execution time, and error logs, and generates 
comprehensive test reports summarizing the testing 
outcomes.  

Detailed description of each module of MACT and its 
implementation will be provided in the subsequent section. 

 
Fig. 1: Workflow of the complete testing process. 

4. The MACT Framework Implementation 

4.1 Application Analysis 

The first module of the proposed framework is the 
Application Analyzer, which focuses on application source 
code analysis. This module extracts all activities and their 
associated features from the mobile application's source 
code, instead of using an APK file. For each activity, the 
module extracts the associated layout files and relevant 
metadata. Following this, key UI components such as 
buttons, text fields, images, and layouts are identified, and 
their specific attributes are captured. 

4.2 Activity Classification 

The second module of the proposed framework is the 
Activity Classifier. This module categorizes each identified 
activity within a given Android application by using the 
Gradient Boosting algorithm. This classification is 
grounded on the observation that numerous activities, even 
across different applications, exhibit shared characteristics 
due to their adherence to common structural and design 
patterns. These recurring patterns can be leveraged for 
functional testing purposes. For example, many 
applications include a Setting activity, which typically 
follows a consistent design structure, often incorporating a 
ListView element containing clickable items and toggle 
switches. This structural similarity suggests that such 
activities may require similar test cases. As illustrated in 
Figure 2, the workflow of the activity classification process 
involves identifying these patterns. By categorizing 
activities based on their shared characteristics, the 

framework enhances both efficiency and consistency in the 
testing process. This approach aligns with established 
practices in automated testing, where commonalities in 
application design are utilized to streamline test case 
development and execution. 

 
Fig. 2: Workflow of the Activity Classification Process. 

Building The Dataset 

In our previous research (currently under publication [24]) 
we introduced a novel dataset called MASC (Mobile App 
Screens Classification) to facilitate the application of ML in 
mobile UI classification.  It was created by collecting 
30,000 mobile UI screenshots from three open-source 
datasets: Rico [25], Screen2Words [26], and Enrico [27]. 
Following a rigorous selection process and manual 
classification by three annotators, only those with 
agreement from at least two annotators were included to 
ensure consistency and accuracy. This rigorous process is 
aimed at building a high-quality dataset suitable for ML 
applications in mobile UI classification. Of over 3,400 
apps, 7,065 screenshots were retained. These screens were 
categorized into ten distinct design classes. Table 2 presents 
the number of UI designs belonging to each class along 
with a brief description. 

Table 2: Composition of the MASC Dataset. 

Class No. of labeled  
Screens Description 

Chat 329 Chat communication 
Home 866 App navigation 

List 960 Data visualization in a 
column 

Login 889 User authentication 
Map 500 Geographic display 
Menu 557 Item selection 
Profile 526 User profile information 
Search 725 Content discovery 
Setting 629 App configuration 
Welcome 1084 First-run experience 

4.2.2 Feature Extraction 

Careful selection of feature improves classification 
accuracy and reduced model training time. The feature 
extraction process focused on identifying the most 
informative aspects of each activity screen, which vary 
according to the activity type. Drawing from Wang et al.'s 
findings [26], it was assumed that interactive elements, 
such as buttons and text boxes, along with their spatial 
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distribution, effectively represented the activity. Each 
screen was divided into three parts—top (15%), middle 
(70%), and bottom (15%)—based on Android Studio's 
activity design guidelines. This division helped capture the 
spatial distribution of UI elements, which was crucial for 
distinguishing between different screen types. The feature 
selection process was guided by common UI design 
patterns, quantifying clickable elements, text fields, and 
swipeable components to capture screen interactivity. 
Login screens typically contained more text fields, while 
list screens had more vertically swipeable elements. 
Keyword analysis further refined classification by 
identifying frequent words for each screen type, such as 
'username' and 'password' for login screens and 'settings' 
and 'preferences' for settings screens. The final feature set 
included 11 features, grouped into three categories. The 
first set comprised six features, representing the number of 
clickable and text field elements in each of the three screen 
sections. The second set included four features: the total 
number of elements on the screen, the presence of a 
navigation drawer, and the number of horizontal and 
vertical swipeable elements in the center. The final feature 
was based on keywords found in the screen's text. These 11 
features formed the feature vector for each screen, as 
illustrated in Figure3, enabling the model to effectively 
classify mobile app screens. 

 
Fig. 3: The feature vector structure for any activity screen. 

ML Model 

In our previous study, we evaluated ten machine learning 
algorithms for mobile app screen classification, including 
Gradient Boosting, XGBoost, Random Forest, and SVM. 
Performance was assessed using accuracy, precision, recall, 
ROC-AUC, and F1-score. Gradient Boosting achieved the 
highest accuracy (93.48%), proving its effectiveness in 
handling non-linear data and resisting overfitting. Based on 
these results, it was selected as the most suitable algorithm 
for this task in the proposed framework.  

4.3 Test Case Management 

The third module of the MACT framework is Test Case 
Management, which is responsible for automating the 
execution of test cases based on the classified UI 
categories. It ensures that the test cases are dynamically 
adapted to the application's context and executed 
efficiently. Below is a detailed explanation the components 
of this module. 

4.3.1 Test Case Repository 

The Test Case Repository serves as the backbone of the 
framework, housing a collection of pre-defined test cases 

tailored to specific UI categories. Each test case is 
encapsulated in a TestCase object, which includes metadata 
such as the test name, description, inputs, expected outputs, 
and execution steps. Figure 4 shows the structure of a 
sample test suite metadata, highlighting key fields such as 
test name, description, and execution steps. This repository 
ensures that the framework can handle a wide range of 
scenarios, from simple login validations to complex 
payment workflows. By organizing test cases into 
categories, the framework can quickly retrieve and execute 
relevant tests based on the classified UI 

 
Fig. 4: A sample test suite metadata. 

4.3.2 Test Case Execution 

The Test Case Execution component is responsible for 
automating the interaction with the application's UI and 
verifying the expected outcomes. It consists of three main 
sub-components, each playing a vital role in ensuring the 
accuracy and efficiency of the testing process. The module 
was developed using Kotlin [28], a statically-typed 
language preferred for Android development, due to its 
concise syntax, Java interoperability, and features like null 
safety and coroutines. Combined with the Android Espresso 
framework [23], it enables efficient UI testing and reduces 
boilerplate code, making it ideal for scalable and 
maintainable frameworks. Below is a detailed explanation 
of each sub-component:  

4.3.2.1 UI Element identifier 

The UI Element Identifier is responsible for locating and 
interacting with the actual UI elements during test 
execution. This step ensures that the test cases can adapt to 
dynamic changes in the application's UI, such as variations 
in element IDs or layouts. The identification process 
involves parsing the complete GUI structure of the screen, 
considering three key factors: 

• Textual Hints: Textual information, such as text 
content, content descriptions, and resource IDs, is used 
to determine the compatibility of a widget with specific 
interactions.  

• Class Type: The class type of a widget determines its 
compatibility with specific interactions. For instance, 
toggle action is compatible with spinners but not with 
buttons. ensuring that only suitable elements are 
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selected for operations, thereby reducing errors during 
test execution. 

• Attribute Values: Attribute values help verify a 
widget's compatibility with interactions. For instance, 
the isChecked attribute determines a Switch’s state 
(on/off), while attributes like clickable or isDisplayed 
ensure the widget is ready for interaction. 

We used the heuristic of selecting the widget with the most 
compatible factors. We use each detected widget's unique 
ID to communicate with it within the Kotlin test case. After 
identifying the UI elements, the framework proceeds to 
execute the test cases using the Test Executor module. 

4.3.2.2 Test Executor 

The Test Executor is responsible for performing the actual 
execution of test cases. Once the current screen category is 
identified, the module retrieves the relevant test cases from 
the repository and executes the current screen with them. 
Actions such as typing text, clicking buttons, and verifying 
results are performed programmatically using Android 
Espresso, ensuring accurate and efficient UI testing across 
the application. Figure 5 shows, a sample test case script 
demonstrating how the framework automates interactions 
and validations, ensuring consistency in UI testing. 

 
Fig. 5: A sample test case script 

4.3.2.3 Test Watcher  

The Test Watcher is a monitoring module designed to track 
the status and performance of each test case. It records 
whether a test case passed or failed, measures the execution 
time for each test, captures error messages and logs for 
failed cases, and, at the end of each test case, generates a 
detailed report summarizing the results, as shown in Figure 
6. This test report includes pass/fail status, execution time, 
and error details, providing developers with actionable 
insights for debugging and optimization. At the end of a 
test case execution, the results are assessed to determine the 
success or failure of the test. Following this, the application 
is reset to its initial state to ensure a consistent environment 
for subsequent tests. If additional test cases are associated 
with the current activity type, they are executed 
sequentially. Otherwise, the exploration advances to the 
next application state, continuing the systematic testing 
process. 

 
Fig. 6: A sample test case result report 

5. Case Study 

To illustrate the working of MACT, we have applied it to 
an example app, called ProfileTrackingAPP  [29], which 
includes three activities, activity_main, activity_profile2, 
and activity_settings, as shown in Figure 7 

 
    (a) UI of activity_main         (b) UI of activity_Settings  

 
(c) UI of activity_profile2 

Fig. 7: The three activities of the example app 
ProfileTrackingAPP 
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In the first step, MACT analyzes the target mobile 
application to identify its structural components and extract 
relevant features from its UIs. As shown in Figure 8, this 
step begins with selecting the application to be tested 
through the "Browse" button. Then, upon clicking the 
"Analyze" button, MACT accesses and scans the 
application's XML layout files to detect and list all 
activities within the app. In this case, MACT identified 
three primary activities: activity_main.xml, 
activity_profile2.xml, and activity_settings.xml, which 
are listed in the section “All activities”, as shown in Figure 
8. Following activity identification, MACT extracted key 
UI components and their associated textual content, which 
are listed in the section “Extracted features for each 
activity” in Figure 8.  

In the second step, upon clicking the "Next Step" button, 
MACT classifies the extracted activities based on their 
functional characteristics and identified key UI 
components. The input to this step consists of the extracted 
activities and their associated features, which were 
identified in the first step. Based on these features, MACT 
classifies each activity into one of the predefined types. For 
instance, activity_main is classified as a Login screen as it 
includes username and password fields, activity_profile2 is 
classified as a Profile screen as it includes user profile 
attributes such as email, name, and age, and 
activity_settings is classified as a Setting screen as it 
includes configuration options like dark mode and font 
settings. Figure 9. displays the classification results in an 
ordered list. Upon completing this step, the user proceeds to 
the next step, where the extracted data is used to select and 
execute automated test scripts. 

In the third step, upon clicking the "Next Step" button, 
MACT executes the predefined test cases on the target 
application using an emulator. Figure 10 shows the test 
execution process, which begins by loading the JSON file 
extracted in the second step. This file contains the classified 
activities and their corresponding test cases. An emulator, 
such as Pixel 2 API 30, is selected from the available 
options, and its status is verified. If the emulator is not 
running, it is manually launched. Upon clicking the "Run 
Test" button, MACT automatically executes the test cases 
for each activity, including GenericLoginActivityTest, 
GenericProfileActivityTest, and GenericSettingsActivityTest. 
The execution details, such as the activities tested, pass/fail 
status, and execution time, are recorded in the Test 
Execution Log. In the case of errors, they are displayed in 
the log to facilitate debugging. For example, the log 
indicates a successful build (BUILD SUCCESSFUL) in 1 
minute and 6 seconds. Detailed test reports are then 
generated, providing developers with actionable insights to 
identify and resolve issues effectively. 

 
Fig. 8: The first step in MACT 

 
Fig. 9: The result of second step in MACT 

 
Fig. 10: The third step in MACT. Part of the test execution 
report, which shows the test case of weak password. 
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In the final step, a test report summarizing the execution 
results of all predefined test cases is produced, as shown in 
Figure 11. The report includes the total number of tests 
executed, successful and failed cases, and the overall 
execution time. As shown in the results, 17 test cases were 
executed, with one failure detected, resulting in a 94% 
success rate. In this report, by clicking the test name of an 
activity in the Class column, a detailed test report for this 
activity is displayed, which shows the number of tests, 
execution duration, success rate, and a list of the test cases 
executed on it. For example, by clicking the test name of 
activity_main in the Class column in Figure 11, a detailed 
test report for this activity is displayed, as shown in Figure 
12. 

Additionally, MACT produces a text file containing a 
detailed test report, as shown in Figure 13. By viewing this 
report, developers can further explore detailed test case 
results for each activity to analyze the performance of the 
app under test and fix any potential issues. 

This final step ensures that the application meets the 
expected quality standards before deployment, providing a 
clear assessment of test effectiveness and system stability. 

 
Fig. 11: Report on all test cases 

 
Fig. 12: Report on test cases of activity_main 

 
Fig. 13: Part of the report text file for activity_main 

6. The MACT Framework Evaluation 

To evaluate the proposed MACT framework, we focused 
on five critical research questions: 

• RQ1: Can the framework accurately identify UI 
elements, and how does it achieve this? 

• RQ2: Can machine learning models accurately classify 
Android activities using UI features? 

• RQ3: Do auto-generated test cases reliably detect bugs 
in real-world applications?  

• RQ4: How much time and effort does the framework 
save compared to traditional methods?  

RQ1: Accurate Identification of UI Elements 

The motivation behind RQ1 is to determine whether textual 
hints (e.g., labels, resource IDs) and layout attributes (e.g., 
clickability, bounds) are sufficient to robustly identify UI 
elements across diverse applications and contexts. This is 
critical for ensuring that test scripts remain adaptable to 
varying app implementations and UI designs.  To answer 
this question, the framework was applied to 10 different 
applications [29], Successfully identifying and extracting 
elements from 93 different UI screens with an accuracy 
exceeding 90%. This high success rate is attributed to the 

activity_main_Test Report 
======================== 
Test: testInvalidLogin 
Description: User should not be able to log in with incorrect 
credentials 
Steps: 

entering a valid username with an invalid password, 
clicking the login button, verifying the error message, 
clearing the fields, then entering an invalid username with 
a valid password, clicking the login button again, verifying 
the error message, and ensuring the second activity is not 
launched. 

Outcome: Passed 
Execution Time: 5326 ms 
Expected Output: Invalid credentials. 
Actual Output: Invalid credentials. 
------------------------ 
Test: testWeakNewPassword 
Description: System should reject passwords shorter than 6 
characters 
Steps: 

entering a valid username and a short password (less 
than 6 characters), clicking the login button, and 
verifying the error message about the password 
length requirement. 

Outcome: Failed 
Execution Time: 3223 ms 
Expected Output: Password must be at least 6 characters long 
Actual Output: Failed to testWeakNewPassword: No views in 
hierarchy found matching: an instance of android widget 
TextView and view.getText() with or without transformation 
to match: a string containing "Password must be at least" 
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framework's ability to work directly with XML layout files, 
which provide precise and detailed UI metadata. Unlike 
approaches that rely on post-publication APKs, working 
with source code ensures accurate parsing of UI elements, 
avoiding errors caused by dynamic content in compiled 
applications. The framework achieves high accuracy by 
utilizing three key factors: Textual Hints (e.g., text 
content, resource IDs, and descriptions) to locate elements 
relevant to specific interactions, Class Types (e.g., buttons, 
spinners) to verify widget compatibility, and Attribute 
Values (e.g., isChecked, clickable, isDisplayed) to confirm 
element state and readiness. By combining these factors 
and processing the raw XML files, the framework 
effectively handles dynamic changes in UI structure, 
providing reliable and consistent identification of elements 
across different applications. 

RQ2: Classification of Android Activities 

The UI classification module was rigorously tested using 
the MASC dataset  that includes a collection of 7,065 
screens across 10 activity types. We have chosen Gradient 
Boosting as the most suitable algorithm for mobile app 
screen classification among the algorithms we have tested, 
as shown in Table 3 and Figure 14. It has the highest scores 
in accuracy. 

A comparison with other research projects demonstrates 
that our classifier outperforms existing baselines in this 
domain. For instance, previous studies, such as Rosenfeld 
et al.[20] achieved 86.25% accuracy using 80  

training samples, while our framework, with a larger 
dataset, achieved 93.48% accuracy. Additionally, we 
compare our results with the work of Hu et al.[21], who 
classified Android activities by extracting text from 
screenshots using Optical Character Recognition (OCR). 
Their best accuracy of 87.3% is achieved for a binary 
classification task, which is less complex compared to our 
multi-category classification. Furthermore, Ardito et al. 
[22]  classified 100 samples into 8 categories, achieving a 
top accuracy of 91%. Although their results are noteworthy, 
our classifier excels in handling more complex and diverse 
activity categories. These comparisons underscore the 
robustness and scalability of our approach, as it not only 
achieves higher accuracy but also operates effectively with 
a significantly larger dataset. 

Table 3: Comparison of ML algorithms for activity 
classification and other research studies. 

 Accuracy Dataset size 
Gradient 
Boosting 93.48 % 

7,065 UI is classified into 
ten categories. XGBoost 93.20 % 

SVM Linear 
Kernel 93.20 % 

Ardito et al.  
[22] 91.01 % 100 UI is classified into 

eight categories. 
Rosenfeld et al. 
[20]  86.25 % 80 UI is classified into 

seven categories. 

AppFlow [21] 87.30 % 1785 UI is classified into 
two categories. 

 

 
Fig. 14: Comparison of ML algorithms for activity classification, including results from other research studies. 

RQ3: Effectiveness of Auto-Generated Test Cases 

To address RQ3, we have conducted some experiments to 
evaluate the effectiveness of auto-generated test cases in 
detecting bugs in real-world applications. In these 
experiments, we have used four open-source Android 
applications [29]. Since applications typically undergo 
extensive testing before being released on app stores, we 
have introduced a variety of realistic logical bugs into these 

applications by modifying their source code, in addition to 
any pre-existing issues.  

We have defined 14 test scenarios to test the core 
functionalities of different activity categories. To simulate 
diverse testing conditions, some scenarios were deliberately 
set to fail by inserting incorrect explicit assertions, in 
addition to fault injection into the applications. Table 4 
provides detailed information about the test scenarios, 
including the applications tested, descriptions of test cases, 
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expected and actual outcomes. The comparison of expected 
and actual outcomes allows us to assess the effectiveness of 

the auto-generated test cases in detecting bugs. 

Table 4: Quality Evaluation of the 14 test cases of the selected four applications 
Activity 
Name App name Script Test Description Expected 

Outcome 
Actual 

Outcome 

Setting 
 

MyPortal 
App 

Script1 write large font size   Fail Fail 
Script2 Switch to Dark Mode  Pass Pass 
Script3 Click on Logout to return to the Main Activity Fail Fail 
Script4 Set the Notification Switch state to ON Pass  Pass 

Login Smart App 

Script5 Login without username and password  Pass Pass 
Script6 Login with wrong username and password Pass Pass 
Script7 Login with valid username and password  Pass Pass 
Script8 Login with valid username and week password Fail Fail 

Profile 
Profile 

Tracking 
App 

Script9 Change the password with valid and matching inputs Pass Pass 
Script10 Change the password with mismatched new and confirm passwords Pass Pass 
Script11 Setting a new password that matches the old password Fail Fail 
Script12 Change the password using an incorrect old password Pass Pass 

Map Maps App 
Script13 Search for a valid city, and then enter  Pass Pass 
Script14 Search for an invalid city, and then enter Pass Fail 

The scripts successfully identified failures when incorrect 
assertions were added or when bugs were injected into the 
tested applications. For example, scripts 1 and 11 failed as 
expected due to bugs being injected into the respective 
applications (MyPortal and Profile Tracking). Script 1 
failed because it could not apply the typed font size, while 
Script 11 failed due to a mismatch between the old and new 
passwords. However, one script (Script 14 for Maps App) 
produced an unexpected result caused by the application's 
unusual behavior when entering a city name containing 

symbols like "@." 

 In order to highlight the limitations of existing tools and to 
demonstrate how our approach can overcome these 
limitations, we have compared its performance with the 
Android Application Monkey tool. This tool was selected 
as a representative of current random-testing tools due to its 
widespread use and its integration into the Android 
developer toolkit. Table 5 summarizes the differences in 
identifying logical bugs, execution efficiency, and overall 
reliability. 

Table 5: A comparison between bugs detection ability of MACT and Android Application Monkey 
Test 

Scenario 
Activity 

Type Tool 
No. of 
Bugs 

Planted 

No. of  
Real-Time Crashes   

Detected 
Logical Bugs Detected Detection 

Rate (%) 

Original 

Settings 
Activity 

 

MACT 0  0   0   N/A 
Monkey 0 0   0   N/A 

Faulted MACT 3  
1– (null cannot be cast to 

non-null type 
android.widget.Switch) 

 2 Bugs: 
• Select font type from the list -failed 
• Change the font size -failed 

 

100% 

Monkey 3  1  crash 0   33% 

Original 

Login 
Activity 

MACT 0  0   0   N/A 
Monkey 0  0   0   N/A 

Faulted MACT 4  0 

 4 bugs have been found: 
• Login without username and password - 

Failed 
• Login with wrong username and 

password - Failed 
• Login with valid username and 

password – Failed 
• Login with valid username and week 

password – Failed 

100% 

Monkey 4  0   0   0% 

Original Profile 
Activity 

 

MACT 0  0   0   N/A 
Monkey 0  0   0   N/A 

Faulted MACT 3  0    3 bugs have been found: 
• Change the password with mismatched 100% 

https://github.com/Esri/maps-app-android
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Test 
Scenario 

Activity 
Type Tool 

No. of 
Bugs 

Planted 

No. of  
Real-Time Crashes   

Detected 
Logical Bugs Detected Detection 

Rate (%) 

new and confirm passwords - Failed 
• Setting a new password that matches 

the old password  – Failed 
• Change the password using an incorrect 

old password – Failed 
Monkey 3  0   0   0% 

The results of the experiment highlight the performance of 
the MACT framework compared to the Android 
Application Monkey tool in detecting bugs. As shown in 
Table 5, the MACT framework detected all injected bugs 
with 100% accuracy, outperforming the Monkey tool, 
which failed to identify any logical bugs. 

RQ4: Time and Effort Savings 

To answer RQ4, we have evaluated the ability of MACT to 
save time and effort compared to traditional manual testing 
methods. This evaluation showed that, in MACT, 11 test 
scripts, totaling 159 lines of code, were written only and 
executed across 8 different applications without 
modification, taking only 2.5 hours for both script writing 
and execution. In contrast, the manual method using tools 
like Espresso would require 159 lines of code per app, 
leading to a total of 1,272 lines of code for the 8 
applications. Additionally, manual testing would take 
approximately 3 hours per app, totaling 24 hours for the 8 
applications. This results in 87% reduction in code size and 
89% saving on time with MACT. Moreover, the MACT 
framework's ability to reuse scripts across different 
applications eliminates the need to rewrite test scripts for 
each app, further improving efficiency. For instance, a 
Login script (15 lines) can be executed on 8 apps with a 
"Login" screen without rewriting, whereas the manual 
method would require 120 lines for the same task. This 
demonstrates that MACT is eight times more efficient than 
traditional methods, significantly reducing both the 
development and maintenance efforts involved in mobile 
app testing.  Table 6 shows the results of this experiment. 

Table 6: Efficiency comparison between MACT and 
manual testing 

Criterion 
Proposed 

Framework 
(MACT) 

Manual 
Approach 
(Espresso) 

Relative 
Savings 

Total Lines of 
Code (LOC) 159 1272 87% 

Total Time 
(Hours) 2.5 24 89% 

Maintenance Modify one 
script 

Modify eight 
scripts 87% 

7. Discussion  

The results, as detailed in Section 6, reveal the superiority 
of the MACT framework in bugs detection. While the 
Android Application Monkey failed to detect any logical  

 

bugs, MACT successfully identified all the injected bugs in 
the applications’ source code. This success can be 
attributed to our activity classification approach, which 
empowers the framework to generate activity-based tests 
tailored to the expected behavior of each activity. These 
tests were executed in the appropriate context, enabled by 
the proposed ML model.  

Our experiment highlights a key principle: treating each 
activity as an independent entity, rather than the 
application, enables a more granular and targeted testing 
process. This approach transforms the test suite into a 
collection of scenario-based tests tailored to individual 
activities, improving both efficiency and accuracy. 

It is worth noting that our work is not the first to explore 
the use of ML in testing mobile applications. As shown in 
Table 3, previous studies such as Ardito et al. [22], 
Rosenfeld et al. [20], and AppFlow [21] have also 
investigated activity classification and testing. However, 
our approach outperforms these existing methods in terms 
of accuracy, particularly when handling a larger and more 
diverse dataset. For instance, while Ardito et al. achieved 
an accuracy of 91.01% with 100 UI samples classified into 
eight categories, our framework achieved an accuracy of 
93.48% with 7,065 UI samples classified into ten 
categories. Similarly, Rosenfeld et al. and AppFlow 
achieved lower accuracy rates of 86.25% and 87.30%, 
respectively, with smaller datasets and fewer activity 
categories. These results demonstrate the superiority of our 
approach while highlighting its robustness, scalability, and 
suitability for diverse and dynamic UI applications. 

In addition to comparing our framework with prior 
research, we have evaluated its efficiency against widely 
used traditional testing tools such as Espresso. As shown in 
Table 4, our framework significantly reduces the time and 
effort required for testing compared to manual approaches 
using Espresso. The framework significantly reduces 
development and maintenance efforts by reusing scripts 
across multiple applications. For instance, a 15-line Login 
script can be executed on 8 different applications without 
modification, compared to 120 lines required manually. 
This results in an 87% reduction in code and 89% time 
saving, making the framework eight times more efficient 
than traditional methods. 

8. Conclusion and Future Work  
This paper introduced a ML-based framework, called 
MACT (Mobile Application Classification and Testing), 

http://www.naturalspublishing.com/Journals.asp
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that automates mobile application testing by classifying 
Android application activities and executing predefined, 
reusable test cases. MACT framework addresses major 
challenges in mobile app testing, such as GUI element 
identification, cross-device compatibility, and the resource-
intensive nature of traditional testing methods. By 
leveraging the MASC dataset, developed in our previous 
work, which contains 7,065 screens from over 3,400 
applications, MACT utilizes a Gradient Boosting classifier 
achieving 93.48% accuracy in activity classification. 
Empirical evaluations demonstrated that MACT detects all 
injected bugs with 100% accuracy, significantly reducing 
code size by 87% and testing time by 89% compared to 
traditional tools like Android Espresso and Android 
Application Monkey. These results highlight the MACT‘s 
efficiency, scalability, and robustness in automated testing. 

MACT’s high-level approach to testing, which abstracts the 
testing process from specific implementation details, 
reduces maintenance overhead and facilitates the creation 
of generalizable, low-weight test scripts. By associating 
predefined test cases with activity types rather than 
individual widgets, MACT enables reusability of test cases 
across multiple applications with minimal adjustments. 

Despite its contributions, MACT has several limitations. It 
currently supports only predefined activity types and lacks 
the ability to handle highly dynamic or unpredictable 
application behaviors. The 10 activity types identified in 
this work were selected as a proof of concept, and the full 
implementation of the framework will include a broader 
range of activity types and tests. Additionally, the reliance 
on textual attributes and predefined activity layouts limits 
its adaptability to more complex UI scenarios or 
applications with custom widgets.   

Additionally, it is important to consider the scope of our 
experiment, which involved testing 12 open-source 
Android applications with pre- injected bugs. While this 
setup provided a controlled environment for evaluation, 
real-world applications may present more complex and 
unpredictable scenarios. Future work will focus on 
expanding the framework's capabilities to handle a wider 
variety of activity types and testing conditions, as well as 
evaluating its performance on a larger and more diverse set 
of applications.   

In conclusion, our framework demonstrates significant 
potential in improving the efficiency and accuracy of 
mobile app testing by leveraging machine learning for 
activity classification and automated test generation. While 
there are limitations to address, the results highlight the 
advantages of treating activities as independent entities and 
the value of integrating machine learning into the testing 
process. The comparisons with prior studies and traditional 
tools like Espresso show the significant contribution that 
our approach makes to the field of mobile application 
testing. 

Building on these findings, we aim to enhance MACT 

through several key research directions: 

• Expanding Activity Classification: Expand MACT to 
classify more specialized activity types, such as 
dashboards or to-do list, by incorporating more diverse 
datasets and advanced feature extraction techniques. 

• Integration of Visual Features: Utilizing CNN-based 
image analysis to improve classification accuracy for 
visually similar or highly dynamic screens, enhancing 
the robustness of the classifier. 

• Cross-Platform Support: We will expand MACT to 
include iOS applications, enabling comprehensive 
testing across multiple platforms. 

• Dynamic Content and State Transitions: Improving 
MACT’s ability to handle dynamic content, state 
transitions, and interactive components, ensuring 
broader applicability across real-world applications. 

Empirical Evaluation and Dataset Expansion: 
Conducting large-scale empirical studies on a diverse set of 
applications to validate the framework’s scalability, fault 
detection capabilities, and GUI coverage. Additionally, 
expanding the MASC dataset to include more labeled 
examples and varied activity types will strengthen MACT’s 
adaptability and accuracy. 

• Finally, we envision integrating conversational AI to 
assist testers by identifying flaws in test procedures, 
recommending corrections, and facilitating a 
collaborative testing environment. 
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