
*Corresponding author e-mail: ali.ahmed@mu.edu.eg
© 2025 NSP
Natural Sciences Publishing Cor.

 Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025) 1079

 Applied Mathematics & Information Sciences
An International Journal

 http://dx.doi.org/10.18576/amis/190509

MACT: A Novel Framework for Automated Mobile Application
Testing Using Machine Learning
Moheb R. Girgis, Alaa M. Zaki, Enas Elgeldawi, Mohamed M. Abdallah, and Ali A. Ahmed*

Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
Received: 22 Feb. 2025, Revised: 12 May 2025, Accepted: 27 Jun. 2025.
Published online: 1 Sep. 2025

Abstract: The rapid expansion of mobile applications has amplified challenges in software testing, with inadequate testing
responsible for 42% of application failures. Traditional testing methods are often time-consuming, resource-intensive, and
hindered by issues such as GUI element identification and cross-device compatibility. This paper introduces MACT
(Mobile Application Classification and Testing), a novel framework for automated mobile application testing that
integrates machine learning-based activity classification with predefined, reusable test case execution. The framework
automatically identifies and categorizes Android application screens (e.g., login, settings) and applies tailored test cases for
each screen type, eliminating the need for custom test scripts and reducing maintenance overhead. Leveraging the MASC
dataset, developed in our previous work, which comprises 7,065 screens from over 3,400 apps, the framework employs the
Gradient Boosting model in activity classification that achieves 93.48% accuracy. Empirical evaluations demonstrate that
MACT detects all planted bugs with 100% accuracy, significantly outperforming traditional tools like the Android
Application Monkey. The framework reduces test script size by 87% and testing duration by 89% compared to manual
methods like Android Espresso, providing a scalable, efficient, and resilient approach to mobile application testing. The
modular design of MACT ensures seamless adaptation to various applications, addressing key limitations in GUI modeling
and automated testing. This research makes a significant contribution to mobile application testing by reducing manual
effort, increasing test coverage, and boosting reliability and efficiency.

Keywords: Automated Testing; Mobile applications; MACT; Android applications testing; Machine Learning Algorithms.

1 Introduction

The continuous expansion of mobile applications has
revolutionized how users engage with digital platforms,
such as Android hosting over 2.3 million applications [1].
This expansion has intensified application testing
challenges, as studies indicate that inadequate testing
accounts for approximately 42% of application failures
[2]. Moreover, software testing consumes nearly 50% of
development costs, a percentage potentially higher for
mobile applications due to their inherent complexities [3].

Automation allows developers to easily conduct extensive
test suites, saving time and resources compared to manual
approaches [4]. Current frameworks allow developers to
record predetermined actions, run test scenarios, and
compare the results to expected behaviors [5]. Reusable
test cases allow developers to validate functionality across
different device setups and scenarios, which would
otherwise take a lot of time with manual testing [6].
Despite these benefits, mobile application testing presents
significant challenges. According to studies, 32% of
testing efforts are dedicated to maintaining and upgrading
test suites in response to frequent application changes [7].
Additional challenges include GUI element identification
(31.2%), test environment setup (27.8%), and cross-device
compatibility (24.5%) [8] . The results of empirical

research on 1,000 Android apps showed that traditional
testing methods require substantial manual effort, with
teams dedicating an average of 41 hours per month to test
script maintenance [9]. Moreover, only 41% of mobile
development teams effectively adopt automation practices
due to technical difficulties, such as managing activity
states, dynamic content, and asynchronous events [3].

To solve these difficulties, we propose an innovative
Mobile Application Classification and Testing (MACT)
framework that combines machine learning-driven
activity classification with predefined test case execution.
This framework automatically identifies and categorizes
Android application screens such as login, settings, and
list views activities and applies reusable test cases tailored
to each screen type, significantly reducing the need for
custom scripts.

This approach has several advantages over traditional
testing methods, which include eliminating the need to
write custom test scripts for common UI patterns,
lowering maintenance overhead, and ensuring consistent
testing across similar screens in different applications.
Furthermore, the framework includes a repository of
predefined test scripts that can be reused for similar
activities. These scripts use dynamic widget detection
technique to ensure robust test case execution across
multiple application contexts. This approach reduces the

mailto:ali.ahmed@mu.edu.eg
http://dx.doi.org/10.18576/amis/190509

 1080 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

effort needed to maintain tests while also ensuring
consistent testing across similar app components. The
proposed approach provides several important
contributions:

1. A framework for automatically classifying activities
based on Machine Learning (ML).

2. A library of reusable test cases for common Android UI
activities.

3. An integrated framework linking activity classification
with automated testing.

This research aims to reduce the cost and effort of mobile
app testing while enhancing test coverage and reliability.
By making automated testing more accessible and
maintainable, it encourages adoption among mobile
development teams, leading to better software quality and
shorter development time.

The remainder of this paper is organized as follows:
Section 2 reviews related work in mobile app testing
automation. Section 3 describes the proposed mobile
testing methodology and framework architecture. Section
4 presents implementation specifics. Section 5 presents a
case study to illustrate the working of MACT. Section 6
provides empirical evaluation results. Section 7 discusses
findings and limitations, and Section 8 provides the
research conclusion and future directions.

2. Related work

Testing mobile applications has been the focus of several
studies, with researchers exploring various methods and
tools. Linares-Vasquez et al. [10] classified Android
testing tools and methodologies into three main
categories, laying the groundwork for further exploration.
These categories are:

• Random Exploration Strategy: This approach
involves generating random, independent UI events to
test applications. It is especially useful for stress
testing because it can create many test sequences with
minimal effort. However, it lacks precision in
delivering specific inputs, doesn’t consider coverage
levels, and often results in repetitive or redundant
sequences. Tools such as Monkey [11], and
Dynodroid [12] employ this strategy.

• Systematic Exploration Strategy: This strategy uses
advanced techniques, such as genetic algorithms, to
guide testing toward untested sections of code. Its
goal is to identify hidden faults, enhance coverage,
and focus on areas more likely to contain defects.
While effective, it faces challenges in scaling up.

Tools like CrashScope [13], and EvoDroid [14]
implement this strategy.

• Model-Based Exploration Strategy: This strategy
involves creating a symbolic model of the application,
which is treated as a finite-state machine. In this
model, each state represents a specific screen, and
transitions between states are based on user
interactions. The exploration process dynamically
generates new states and transitions until all possible
paths loop back to previously explored states.
Although this method ensures thorough and non-
redundant GUI coverage, it might not detect internal
changes that don’t visibly impact the graphical
interface. Tools such as MobiGUItar [15], and
GuiRipper [16] implement this strategy.

While previous studies emphasize the importance of GUI
modeling and classification, they lack comprehensive
frameworks that integrate all facets of these aspects. For
instance, Yang et al. [17] proposed LACTA, which
classifies Android applications using domain-specific
knowledge and topic extraction via LDA. Despite its
promising results, LACTA relies heavily on Android
expertise and a limited dataset of 42 applications.

 Li et al. [18] introduced ClassifyDroid, an approach that
analyzes API usage frequencies from decompiled app
code and applies a semi-supervised Multinomial Naive
Bayes classifier. This method is particularly effective with
limited labeled data. Similarly, Hamedani et al. [19]
developed AndroClass, which extracts and refines features
like APIs and intents for application classification using
machine learning techniques. AndroClass achieved high
accuracy with curated datasets but lacks focus on
automated testing.

Rosenfeld et al. [20], proposed a ML-based approach that
reuses popular test scenarios to automate testing. While
effective, this method relies on pre-existing scripts,
limiting its adaptability to specialized applications. Hu et
al. [21] introduced AppFlow, which uses ML to identify
common screens and widgets, enabling reusable UI test
synthesis. Despite reducing testing effort by up to 90%, its
dependence on predefined libraries restricts its flexibility.
Ardito et al.]22[presented a framework for Android app
testing that automates script generation. This modular
framework combines GUI modeling, app classification,
and activity classification, enabling tailored test scripts.
Empirical results demonstrated its adaptability and
efficiency, outperforming existing approaches. To better
illustrate the specific limitations in prior work, Table 1
summarizes the key approaches and their respective
constraints, highlighting the gaps that our proposed
framework aims to address.

Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025)/ http://www.naturalspublishing.com/Journals.asp 1081

 © 2025 NSP
 Natural Sciences Publishing Cor.

Table 1: Summary of limitations in existing approaches
Study Proposed Approach Limitations

Yang et al.
[17]

LACTA: Classifies apps using domain-
specific knowledge and topic extraction via
LDA.

- Heavily relies on Android expertise.
- Limited dataset with only 42 applications.

Li et al. [18]

ClassifyDroid: Analyzes API usage
frequencies using decompiled app code with
a semi-supervised Multinomial Naive Bayes
classifier.

- Effective with limited labeled data but may
struggle with large, unstructured datasets.
- Lacks focus on automated testing.

Hamedani et
al. [19]

AndroClass: Extracts and refined features
like APIs and intents for app classification
using ML techniques.

- High accuracy only with curated datasets.
- Does not focus on automated testing.

Rosenfeld et
al. [20]

ML-based approach that reuses popular test
scenarios for automation.

- Relies on pre-existing test scripts, limiting
adaptability to 2 specialized applications.
- Limited dataset with only 80 activity samples.

Hu et al. [21]
AppFlow: Uses ML to identify common
screens and widgets, enabling reusable UI
test synthesis.

- Depends on predefined libraries, limiting
flexibility.
- Reduces testing effort by up to 90% but
struggles with unique interfaces.

Ardito et al.
]22[

A framework combining GUI modeling, app
classification, and activity classification to
generate tailored test scripts.

- Highly efficient but relies on APK files instead
of source code.
- Limiting deeper analysis of structure and
behavior.
- Limited dataset with only 100 activity samples.

Compared to prior work, the proposed framework
introduces a more advanced solution for automated
Android app testing. Unlike Rosenfeld et al. [20], who
focused on reusing predefined test scenarios, and Hu et al.
[21], who introduced modular test generation, our approach
leverages ML in activity classification to create pre-defined
test cases tailored to each activity category. These test cases
are dynamically applied based on the recognized category,
ensuring efficient and adaptive testing.

The proposed framework also builds upon the
advancements presented by Ardito et al.]22[, who
developed a modular framework combining GUI modeling,
app classification, and activity classification to generate
tailored test scripts. While their framework demonstrated
adaptability and efficiency, our approach extends this by
integrating ML for more accurate activity classification and
leveraging the application source code instead of APK files.
This enables a deeper analysis of application structure and
behavior. Additionally, we employ a larger and more
diverse dataset compared to previous studies, further
enhancing classification and testing accuracy. This
combination of techniques results in a more robust,
scalable, and effective testing framework that addresses
limitations in existing methodologies and significantly
improves Android apps performance.

3. The Proposed Testing Framework

The proposed framework, referred to as MACT (Mobile
Application Classification and Testing), implements a
comprehensive automated testing approach for mobile
applications, building upon the ML-based screen

classification system. Figure 1 illustrates the testing process
as structured within the MACT framework. It consists of
the following modules:

• Application Analyzer: This module analyzes the
mobile application's source code to extract all activities
and their associated components. Key elements such as
buttons, text fields, images, and layouts are identified
to gather relevant features. These features are then
processed and transformed into normalized vector
representations, ensuring seamless compatibility with
the employed ML model for activity classification.

• Activity Classification: The activity classification
process is triggered for each identified activity
extracted from the source code. Using the ML model
trained on our MASC dataset, which comprises 7,065
screens from over 3,400 apps, the features of each
activity are analyzed to determine its category. This
classification step ensures that the activity type is
accurately identified, enabling the framework to map it
to the appropriate test cases and execute relevant tests
effectively.

• Test Case Management : This module incorporates a
repository of generic test scripts broadly applicable
across various application types and activity categories,
such as Login, Settings, and Profile. During the testing
process, the module dynamically selects and executes
the appropriate test scripts based on the classified
activity, ensuring that only relevant tests are applied to
enhance activity testing precision and effectiveness.
Leveraging Android Espresso [23], a robust tool for UI
automation, the module validates the application's

http://www.naturalspublishing.com/Journals.asp

 1082 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

behavior and functionality with a high degree of
automation. The module is designed to adapt
dynamically to the unique attributes and requirements
of each identified activity, ensuring full and context-
specific test coverage. Additionally, the module
collects detailed execution results, including pass/fail
status, execution time, and error logs, and generates
comprehensive test reports summarizing the testing
outcomes.

Detailed description of each module of MACT and its
implementation will be provided in the subsequent section.

Fig. 1: Workflow of the complete testing process.

4. The MACT Framework Implementation

4.1 Application Analysis

The first module of the proposed framework is the
Application Analyzer, which focuses on application source
code analysis. This module extracts all activities and their
associated features from the mobile application's source
code, instead of using an APK file. For each activity, the
module extracts the associated layout files and relevant
metadata. Following this, key UI components such as
buttons, text fields, images, and layouts are identified, and
their specific attributes are captured.

4.2 Activity Classification

The second module of the proposed framework is the
Activity Classifier. This module categorizes each identified
activity within a given Android application by using the
Gradient Boosting algorithm. This classification is
grounded on the observation that numerous activities, even
across different applications, exhibit shared characteristics
due to their adherence to common structural and design
patterns. These recurring patterns can be leveraged for
functional testing purposes. For example, many
applications include a Setting activity, which typically
follows a consistent design structure, often incorporating a
ListView element containing clickable items and toggle
switches. This structural similarity suggests that such
activities may require similar test cases. As illustrated in
Figure 2, the workflow of the activity classification process
involves identifying these patterns. By categorizing
activities based on their shared characteristics, the

framework enhances both efficiency and consistency in the
testing process. This approach aligns with established
practices in automated testing, where commonalities in
application design are utilized to streamline test case
development and execution.

Fig. 2: Workflow of the Activity Classification Process.

Building The Dataset

In our previous research (currently under publication [24])
we introduced a novel dataset called MASC (Mobile App
Screens Classification) to facilitate the application of ML in
mobile UI classification. It was created by collecting
30,000 mobile UI screenshots from three open-source
datasets: Rico [25], Screen2Words [26], and Enrico [27].
Following a rigorous selection process and manual
classification by three annotators, only those with
agreement from at least two annotators were included to
ensure consistency and accuracy. This rigorous process is
aimed at building a high-quality dataset suitable for ML
applications in mobile UI classification. Of over 3,400
apps, 7,065 screenshots were retained. These screens were
categorized into ten distinct design classes. Table 2 presents
the number of UI designs belonging to each class along
with a brief description.

Table 2: Composition of the MASC Dataset.

Class No. of labeled
Screens Description

Chat 329 Chat communication
Home 866 App navigation

List 960 Data visualization in a
column

Login 889 User authentication
Map 500 Geographic display
Menu 557 Item selection
Profile 526 User profile information
Search 725 Content discovery
Setting 629 App configuration
Welcome 1084 First-run experience

4.2.2 Feature Extraction

Careful selection of feature improves classification
accuracy and reduced model training time. The feature
extraction process focused on identifying the most
informative aspects of each activity screen, which vary
according to the activity type. Drawing from Wang et al.'s
findings [26], it was assumed that interactive elements,
such as buttons and text boxes, along with their spatial

Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025)/ http://www.naturalspublishing.com/Journals.asp 1083

 © 2025 NSP
 Natural Sciences Publishing Cor.

distribution, effectively represented the activity. Each
screen was divided into three parts—top (15%), middle
(70%), and bottom (15%)—based on Android Studio's
activity design guidelines. This division helped capture the
spatial distribution of UI elements, which was crucial for
distinguishing between different screen types. The feature
selection process was guided by common UI design
patterns, quantifying clickable elements, text fields, and
swipeable components to capture screen interactivity.
Login screens typically contained more text fields, while
list screens had more vertically swipeable elements.
Keyword analysis further refined classification by
identifying frequent words for each screen type, such as
'username' and 'password' for login screens and 'settings'
and 'preferences' for settings screens. The final feature set
included 11 features, grouped into three categories. The
first set comprised six features, representing the number of
clickable and text field elements in each of the three screen
sections. The second set included four features: the total
number of elements on the screen, the presence of a
navigation drawer, and the number of horizontal and
vertical swipeable elements in the center. The final feature
was based on keywords found in the screen's text. These 11
features formed the feature vector for each screen, as
illustrated in Figure3, enabling the model to effectively
classify mobile app screens.

Fig. 3: The feature vector structure for any activity screen.

ML Model

In our previous study, we evaluated ten machine learning
algorithms for mobile app screen classification, including
Gradient Boosting, XGBoost, Random Forest, and SVM.
Performance was assessed using accuracy, precision, recall,
ROC-AUC, and F1-score. Gradient Boosting achieved the
highest accuracy (93.48%), proving its effectiveness in
handling non-linear data and resisting overfitting. Based on
these results, it was selected as the most suitable algorithm
for this task in the proposed framework.

4.3 Test Case Management

The third module of the MACT framework is Test Case
Management, which is responsible for automating the
execution of test cases based on the classified UI
categories. It ensures that the test cases are dynamically
adapted to the application's context and executed
efficiently. Below is a detailed explanation the components
of this module.

4.3.1 Test Case Repository

The Test Case Repository serves as the backbone of the
framework, housing a collection of pre-defined test cases

tailored to specific UI categories. Each test case is
encapsulated in a TestCase object, which includes metadata
such as the test name, description, inputs, expected outputs,
and execution steps. Figure 4 shows the structure of a
sample test suite metadata, highlighting key fields such as
test name, description, and execution steps. This repository
ensures that the framework can handle a wide range of
scenarios, from simple login validations to complex
payment workflows. By organizing test cases into
categories, the framework can quickly retrieve and execute
relevant tests based on the classified UI

Fig. 4: A sample test suite metadata.

4.3.2 Test Case Execution

The Test Case Execution component is responsible for
automating the interaction with the application's UI and
verifying the expected outcomes. It consists of three main
sub-components, each playing a vital role in ensuring the
accuracy and efficiency of the testing process. The module
was developed using Kotlin [28], a statically-typed
language preferred for Android development, due to its
concise syntax, Java interoperability, and features like null
safety and coroutines. Combined with the Android Espresso
framework [23], it enables efficient UI testing and reduces
boilerplate code, making it ideal for scalable and
maintainable frameworks. Below is a detailed explanation
of each sub-component:

4.3.2.1 UI Element identifier

The UI Element Identifier is responsible for locating and
interacting with the actual UI elements during test
execution. This step ensures that the test cases can adapt to
dynamic changes in the application's UI, such as variations
in element IDs or layouts. The identification process
involves parsing the complete GUI structure of the screen,
considering three key factors:

• Textual Hints: Textual information, such as text
content, content descriptions, and resource IDs, is used
to determine the compatibility of a widget with specific
interactions.

• Class Type: The class type of a widget determines its
compatibility with specific interactions. For instance,
toggle action is compatible with spinners but not with
buttons. ensuring that only suitable elements are

http://www.naturalspublishing.com/Journals.asp

 1084 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

selected for operations, thereby reducing errors during
test execution.

• Attribute Values: Attribute values help verify a
widget's compatibility with interactions. For instance,
the isChecked attribute determines a Switch’s state
(on/off), while attributes like clickable or isDisplayed
ensure the widget is ready for interaction.

We used the heuristic of selecting the widget with the most
compatible factors. We use each detected widget's unique
ID to communicate with it within the Kotlin test case. After
identifying the UI elements, the framework proceeds to
execute the test cases using the Test Executor module.

4.3.2.2 Test Executor

The Test Executor is responsible for performing the actual
execution of test cases. Once the current screen category is
identified, the module retrieves the relevant test cases from
the repository and executes the current screen with them.
Actions such as typing text, clicking buttons, and verifying
results are performed programmatically using Android
Espresso, ensuring accurate and efficient UI testing across
the application. Figure 5 shows, a sample test case script
demonstrating how the framework automates interactions
and validations, ensuring consistency in UI testing.

Fig. 5: A sample test case script

4.3.2.3 Test Watcher

The Test Watcher is a monitoring module designed to track
the status and performance of each test case. It records
whether a test case passed or failed, measures the execution
time for each test, captures error messages and logs for
failed cases, and, at the end of each test case, generates a
detailed report summarizing the results, as shown in Figure
6. This test report includes pass/fail status, execution time,
and error details, providing developers with actionable
insights for debugging and optimization. At the end of a
test case execution, the results are assessed to determine the
success or failure of the test. Following this, the application
is reset to its initial state to ensure a consistent environment
for subsequent tests. If additional test cases are associated
with the current activity type, they are executed
sequentially. Otherwise, the exploration advances to the
next application state, continuing the systematic testing
process.

Fig. 6: A sample test case result report

5. Case Study

To illustrate the working of MACT, we have applied it to
an example app, called ProfileTrackingAPP [29], which
includes three activities, activity_main, activity_profile2,
and activity_settings, as shown in Figure 7

 (a) UI of activity_main (b) UI of activity_Settings

(c) UI of activity_profile2

Fig. 7: The three activities of the example app
ProfileTrackingAPP

Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025)/ http://www.naturalspublishing.com/Journals.asp 1085

 © 2025 NSP
 Natural Sciences Publishing Cor.

In the first step, MACT analyzes the target mobile
application to identify its structural components and extract
relevant features from its UIs. As shown in Figure 8, this
step begins with selecting the application to be tested
through the "Browse" button. Then, upon clicking the
"Analyze" button, MACT accesses and scans the
application's XML layout files to detect and list all
activities within the app. In this case, MACT identified
three primary activities: activity_main.xml,
activity_profile2.xml, and activity_settings.xml, which
are listed in the section “All activities”, as shown in Figure
8. Following activity identification, MACT extracted key
UI components and their associated textual content, which
are listed in the section “Extracted features for each
activity” in Figure 8.

In the second step, upon clicking the "Next Step" button,
MACT classifies the extracted activities based on their
functional characteristics and identified key UI
components. The input to this step consists of the extracted
activities and their associated features, which were
identified in the first step. Based on these features, MACT
classifies each activity into one of the predefined types. For
instance, activity_main is classified as a Login screen as it
includes username and password fields, activity_profile2 is
classified as a Profile screen as it includes user profile
attributes such as email, name, and age, and
activity_settings is classified as a Setting screen as it
includes configuration options like dark mode and font
settings. Figure 9. displays the classification results in an
ordered list. Upon completing this step, the user proceeds to
the next step, where the extracted data is used to select and
execute automated test scripts.

In the third step, upon clicking the "Next Step" button,
MACT executes the predefined test cases on the target
application using an emulator. Figure 10 shows the test
execution process, which begins by loading the JSON file
extracted in the second step. This file contains the classified
activities and their corresponding test cases. An emulator,
such as Pixel 2 API 30, is selected from the available
options, and its status is verified. If the emulator is not
running, it is manually launched. Upon clicking the "Run
Test" button, MACT automatically executes the test cases
for each activity, including GenericLoginActivityTest,
GenericProfileActivityTest, and GenericSettingsActivityTest.
The execution details, such as the activities tested, pass/fail
status, and execution time, are recorded in the Test
Execution Log. In the case of errors, they are displayed in
the log to facilitate debugging. For example, the log
indicates a successful build (BUILD SUCCESSFUL) in 1
minute and 6 seconds. Detailed test reports are then
generated, providing developers with actionable insights to
identify and resolve issues effectively.

Fig. 8: The first step in MACT

Fig. 9: The result of second step in MACT

Fig. 10: The third step in MACT. Part of the test execution
report, which shows the test case of weak password.

http://www.naturalspublishing.com/Journals.asp

 1086 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

In the final step, a test report summarizing the execution
results of all predefined test cases is produced, as shown in
Figure 11. The report includes the total number of tests
executed, successful and failed cases, and the overall
execution time. As shown in the results, 17 test cases were
executed, with one failure detected, resulting in a 94%
success rate. In this report, by clicking the test name of an
activity in the Class column, a detailed test report for this
activity is displayed, which shows the number of tests,
execution duration, success rate, and a list of the test cases
executed on it. For example, by clicking the test name of
activity_main in the Class column in Figure 11, a detailed
test report for this activity is displayed, as shown in Figure
12.

Additionally, MACT produces a text file containing a
detailed test report, as shown in Figure 13. By viewing this
report, developers can further explore detailed test case
results for each activity to analyze the performance of the
app under test and fix any potential issues.

This final step ensures that the application meets the
expected quality standards before deployment, providing a
clear assessment of test effectiveness and system stability.

Fig. 11: Report on all test cases

Fig. 12: Report on test cases of activity_main

Fig. 13: Part of the report text file for activity_main

6. The MACT Framework Evaluation

To evaluate the proposed MACT framework, we focused
on five critical research questions:

• RQ1: Can the framework accurately identify UI
elements, and how does it achieve this?

• RQ2: Can machine learning models accurately classify
Android activities using UI features?

• RQ3: Do auto-generated test cases reliably detect bugs
in real-world applications?

• RQ4: How much time and effort does the framework
save compared to traditional methods?

RQ1: Accurate Identification of UI Elements

The motivation behind RQ1 is to determine whether textual
hints (e.g., labels, resource IDs) and layout attributes (e.g.,
clickability, bounds) are sufficient to robustly identify UI
elements across diverse applications and contexts. This is
critical for ensuring that test scripts remain adaptable to
varying app implementations and UI designs. To answer
this question, the framework was applied to 10 different
applications [29], Successfully identifying and extracting
elements from 93 different UI screens with an accuracy
exceeding 90%. This high success rate is attributed to the

activity_main_Test Report
========================
Test: testInvalidLogin
Description: User should not be able to log in with incorrect
credentials
Steps:

entering a valid username with an invalid password,
clicking the login button, verifying the error message,
clearing the fields, then entering an invalid username with
a valid password, clicking the login button again, verifying
the error message, and ensuring the second activity is not
launched.

Outcome: Passed
Execution Time: 5326 ms
Expected Output: Invalid credentials.
Actual Output: Invalid credentials.

Test: testWeakNewPassword
Description: System should reject passwords shorter than 6
characters
Steps:

entering a valid username and a short password (less
than 6 characters), clicking the login button, and
verifying the error message about the password
length requirement.

Outcome: Failed
Execution Time: 3223 ms
Expected Output: Password must be at least 6 characters long
Actual Output: Failed to testWeakNewPassword: No views in
hierarchy found matching: an instance of android widget
TextView and view.getText() with or without transformation
to match: a string containing "Password must be at least"

Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025)/ http://www.naturalspublishing.com/Journals.asp 1087

 © 2025 NSP
 Natural Sciences Publishing Cor.

framework's ability to work directly with XML layout files,
which provide precise and detailed UI metadata. Unlike
approaches that rely on post-publication APKs, working
with source code ensures accurate parsing of UI elements,
avoiding errors caused by dynamic content in compiled
applications. The framework achieves high accuracy by
utilizing three key factors: Textual Hints (e.g., text
content, resource IDs, and descriptions) to locate elements
relevant to specific interactions, Class Types (e.g., buttons,
spinners) to verify widget compatibility, and Attribute
Values (e.g., isChecked, clickable, isDisplayed) to confirm
element state and readiness. By combining these factors
and processing the raw XML files, the framework
effectively handles dynamic changes in UI structure,
providing reliable and consistent identification of elements
across different applications.

RQ2: Classification of Android Activities

The UI classification module was rigorously tested using
the MASC dataset that includes a collection of 7,065
screens across 10 activity types. We have chosen Gradient
Boosting as the most suitable algorithm for mobile app
screen classification among the algorithms we have tested,
as shown in Table 3 and Figure 14. It has the highest scores
in accuracy.

A comparison with other research projects demonstrates
that our classifier outperforms existing baselines in this
domain. For instance, previous studies, such as Rosenfeld
et al.[20] achieved 86.25% accuracy using 80

training samples, while our framework, with a larger
dataset, achieved 93.48% accuracy. Additionally, we
compare our results with the work of Hu et al.[21], who
classified Android activities by extracting text from
screenshots using Optical Character Recognition (OCR).
Their best accuracy of 87.3% is achieved for a binary
classification task, which is less complex compared to our
multi-category classification. Furthermore, Ardito et al.
[22] classified 100 samples into 8 categories, achieving a
top accuracy of 91%. Although their results are noteworthy,
our classifier excels in handling more complex and diverse
activity categories. These comparisons underscore the
robustness and scalability of our approach, as it not only
achieves higher accuracy but also operates effectively with
a significantly larger dataset.

Table 3: Comparison of ML algorithms for activity
classification and other research studies.

 Accuracy Dataset size
Gradient
Boosting 93.48 %

7,065 UI is classified into
ten categories. XGBoost 93.20 %

SVM Linear
Kernel 93.20 %

Ardito et al.
[22] 91.01 % 100 UI is classified into

eight categories.
Rosenfeld et al.
[20] 86.25 % 80 UI is classified into

seven categories.

AppFlow [21] 87.30 % 1785 UI is classified into
two categories.

Fig. 14: Comparison of ML algorithms for activity classification, including results from other research studies.

RQ3: Effectiveness of Auto-Generated Test Cases

To address RQ3, we have conducted some experiments to
evaluate the effectiveness of auto-generated test cases in
detecting bugs in real-world applications. In these
experiments, we have used four open-source Android
applications [29]. Since applications typically undergo
extensive testing before being released on app stores, we
have introduced a variety of realistic logical bugs into these

applications by modifying their source code, in addition to
any pre-existing issues.

We have defined 14 test scenarios to test the core
functionalities of different activity categories. To simulate
diverse testing conditions, some scenarios were deliberately
set to fail by inserting incorrect explicit assertions, in
addition to fault injection into the applications. Table 4
provides detailed information about the test scenarios,
including the applications tested, descriptions of test cases,

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

Gradient
Boosting

XGBoost SVM Linear
Kernel

Ardito et al.
[22]

Rosenfeld et
al.[20]

AppFlow[21]

Accuracy

http://www.naturalspublishing.com/Journals.asp

 1088 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

expected and actual outcomes. The comparison of expected
and actual outcomes allows us to assess the effectiveness of

the auto-generated test cases in detecting bugs.

Table 4: Quality Evaluation of the 14 test cases of the selected four applications
Activity
Name App name Script Test Description Expected

Outcome
Actual

Outcome

Setting

MyPortal
App

Script1 write large font size Fail Fail
Script2 Switch to Dark Mode Pass Pass
Script3 Click on Logout to return to the Main Activity Fail Fail
Script4 Set the Notification Switch state to ON Pass Pass

Login Smart App

Script5 Login without username and password Pass Pass
Script6 Login with wrong username and password Pass Pass
Script7 Login with valid username and password Pass Pass
Script8 Login with valid username and week password Fail Fail

Profile
Profile

Tracking
App

Script9 Change the password with valid and matching inputs Pass Pass
Script10 Change the password with mismatched new and confirm passwords Pass Pass
Script11 Setting a new password that matches the old password Fail Fail
Script12 Change the password using an incorrect old password Pass Pass

Map Maps App
Script13 Search for a valid city, and then enter Pass Pass
Script14 Search for an invalid city, and then enter Pass Fail

The scripts successfully identified failures when incorrect
assertions were added or when bugs were injected into the
tested applications. For example, scripts 1 and 11 failed as
expected due to bugs being injected into the respective
applications (MyPortal and Profile Tracking). Script 1
failed because it could not apply the typed font size, while
Script 11 failed due to a mismatch between the old and new
passwords. However, one script (Script 14 for Maps App)
produced an unexpected result caused by the application's
unusual behavior when entering a city name containing

symbols like "@."

 In order to highlight the limitations of existing tools and to
demonstrate how our approach can overcome these
limitations, we have compared its performance with the
Android Application Monkey tool. This tool was selected
as a representative of current random-testing tools due to its
widespread use and its integration into the Android
developer toolkit. Table 5 summarizes the differences in
identifying logical bugs, execution efficiency, and overall
reliability.

Table 5: A comparison between bugs detection ability of MACT and Android Application Monkey
Test

Scenario
Activity

Type Tool
No. of
Bugs

Planted

No. of
Real-Time Crashes

Detected
Logical Bugs Detected Detection

Rate (%)

Original

Settings
Activity

MACT 0 0 0 N/A
Monkey 0 0 0 N/A

Faulted MACT 3
1– (null cannot be cast to

non-null type
android.widget.Switch)

 2 Bugs:
• Select font type from the list -failed
• Change the font size -failed

100%

Monkey 3 1 crash 0 33%

Original

Login
Activity

MACT 0 0 0 N/A
Monkey 0 0 0 N/A

Faulted MACT 4 0

 4 bugs have been found:
• Login without username and password -

Failed
• Login with wrong username and

password - Failed
• Login with valid username and

password – Failed
• Login with valid username and week

password – Failed

100%

Monkey 4 0 0 0%

Original Profile
Activity

MACT 0 0 0 N/A
Monkey 0 0 0 N/A

Faulted MACT 3 0 3 bugs have been found:
• Change the password with mismatched 100%

https://github.com/Esri/maps-app-android

Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025)/ http://www.naturalspublishing.com/Journals.asp 1089

 © 2025 NSP
 Natural Sciences Publishing Cor.

Test
Scenario

Activity
Type Tool

No. of
Bugs

Planted

No. of
Real-Time Crashes

Detected
Logical Bugs Detected Detection

Rate (%)

new and confirm passwords - Failed
• Setting a new password that matches

the old password – Failed
• Change the password using an incorrect

old password – Failed
Monkey 3 0 0 0%

The results of the experiment highlight the performance of
the MACT framework compared to the Android
Application Monkey tool in detecting bugs. As shown in
Table 5, the MACT framework detected all injected bugs
with 100% accuracy, outperforming the Monkey tool,
which failed to identify any logical bugs.

RQ4: Time and Effort Savings

To answer RQ4, we have evaluated the ability of MACT to
save time and effort compared to traditional manual testing
methods. This evaluation showed that, in MACT, 11 test
scripts, totaling 159 lines of code, were written only and
executed across 8 different applications without
modification, taking only 2.5 hours for both script writing
and execution. In contrast, the manual method using tools
like Espresso would require 159 lines of code per app,
leading to a total of 1,272 lines of code for the 8
applications. Additionally, manual testing would take
approximately 3 hours per app, totaling 24 hours for the 8
applications. This results in 87% reduction in code size and
89% saving on time with MACT. Moreover, the MACT
framework's ability to reuse scripts across different
applications eliminates the need to rewrite test scripts for
each app, further improving efficiency. For instance, a
Login script (15 lines) can be executed on 8 apps with a
"Login" screen without rewriting, whereas the manual
method would require 120 lines for the same task. This
demonstrates that MACT is eight times more efficient than
traditional methods, significantly reducing both the
development and maintenance efforts involved in mobile
app testing. Table 6 shows the results of this experiment.

Table 6: Efficiency comparison between MACT and
manual testing

Criterion
Proposed

Framework
(MACT)

Manual
Approach
(Espresso)

Relative
Savings

Total Lines of
Code (LOC) 159 1272 87%

Total Time
(Hours) 2.5 24 89%

Maintenance Modify one
script

Modify eight
scripts 87%

7. Discussion

The results, as detailed in Section 6, reveal the superiority
of the MACT framework in bugs detection. While the
Android Application Monkey failed to detect any logical

bugs, MACT successfully identified all the injected bugs in
the applications’ source code. This success can be
attributed to our activity classification approach, which
empowers the framework to generate activity-based tests
tailored to the expected behavior of each activity. These
tests were executed in the appropriate context, enabled by
the proposed ML model.

Our experiment highlights a key principle: treating each
activity as an independent entity, rather than the
application, enables a more granular and targeted testing
process. This approach transforms the test suite into a
collection of scenario-based tests tailored to individual
activities, improving both efficiency and accuracy.

It is worth noting that our work is not the first to explore
the use of ML in testing mobile applications. As shown in
Table 3, previous studies such as Ardito et al. [22],
Rosenfeld et al. [20], and AppFlow [21] have also
investigated activity classification and testing. However,
our approach outperforms these existing methods in terms
of accuracy, particularly when handling a larger and more
diverse dataset. For instance, while Ardito et al. achieved
an accuracy of 91.01% with 100 UI samples classified into
eight categories, our framework achieved an accuracy of
93.48% with 7,065 UI samples classified into ten
categories. Similarly, Rosenfeld et al. and AppFlow
achieved lower accuracy rates of 86.25% and 87.30%,
respectively, with smaller datasets and fewer activity
categories. These results demonstrate the superiority of our
approach while highlighting its robustness, scalability, and
suitability for diverse and dynamic UI applications.

In addition to comparing our framework with prior
research, we have evaluated its efficiency against widely
used traditional testing tools such as Espresso. As shown in
Table 4, our framework significantly reduces the time and
effort required for testing compared to manual approaches
using Espresso. The framework significantly reduces
development and maintenance efforts by reusing scripts
across multiple applications. For instance, a 15-line Login
script can be executed on 8 different applications without
modification, compared to 120 lines required manually.
This results in an 87% reduction in code and 89% time
saving, making the framework eight times more efficient
than traditional methods.

8. Conclusion and Future Work
This paper introduced a ML-based framework, called
MACT (Mobile Application Classification and Testing),

http://www.naturalspublishing.com/Journals.asp

 1090 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

that automates mobile application testing by classifying
Android application activities and executing predefined,
reusable test cases. MACT framework addresses major
challenges in mobile app testing, such as GUI element
identification, cross-device compatibility, and the resource-
intensive nature of traditional testing methods. By
leveraging the MASC dataset, developed in our previous
work, which contains 7,065 screens from over 3,400
applications, MACT utilizes a Gradient Boosting classifier
achieving 93.48% accuracy in activity classification.
Empirical evaluations demonstrated that MACT detects all
injected bugs with 100% accuracy, significantly reducing
code size by 87% and testing time by 89% compared to
traditional tools like Android Espresso and Android
Application Monkey. These results highlight the MACT‘s
efficiency, scalability, and robustness in automated testing.

MACT’s high-level approach to testing, which abstracts the
testing process from specific implementation details,
reduces maintenance overhead and facilitates the creation
of generalizable, low-weight test scripts. By associating
predefined test cases with activity types rather than
individual widgets, MACT enables reusability of test cases
across multiple applications with minimal adjustments.

Despite its contributions, MACT has several limitations. It
currently supports only predefined activity types and lacks
the ability to handle highly dynamic or unpredictable
application behaviors. The 10 activity types identified in
this work were selected as a proof of concept, and the full
implementation of the framework will include a broader
range of activity types and tests. Additionally, the reliance
on textual attributes and predefined activity layouts limits
its adaptability to more complex UI scenarios or
applications with custom widgets.

Additionally, it is important to consider the scope of our
experiment, which involved testing 12 open-source
Android applications with pre- injected bugs. While this
setup provided a controlled environment for evaluation,
real-world applications may present more complex and
unpredictable scenarios. Future work will focus on
expanding the framework's capabilities to handle a wider
variety of activity types and testing conditions, as well as
evaluating its performance on a larger and more diverse set
of applications.

In conclusion, our framework demonstrates significant
potential in improving the efficiency and accuracy of
mobile app testing by leveraging machine learning for
activity classification and automated test generation. While
there are limitations to address, the results highlight the
advantages of treating activities as independent entities and
the value of integrating machine learning into the testing
process. The comparisons with prior studies and traditional
tools like Espresso show the significant contribution that
our approach makes to the field of mobile application
testing.

Building on these findings, we aim to enhance MACT

through several key research directions:

• Expanding Activity Classification: Expand MACT to
classify more specialized activity types, such as
dashboards or to-do list, by incorporating more diverse
datasets and advanced feature extraction techniques.

• Integration of Visual Features: Utilizing CNN-based
image analysis to improve classification accuracy for
visually similar or highly dynamic screens, enhancing
the robustness of the classifier.

• Cross-Platform Support: We will expand MACT to
include iOS applications, enabling comprehensive
testing across multiple platforms.

• Dynamic Content and State Transitions: Improving
MACT’s ability to handle dynamic content, state
transitions, and interactive components, ensuring
broader applicability across real-world applications.

Empirical Evaluation and Dataset Expansion:
Conducting large-scale empirical studies on a diverse set of
applications to validate the framework’s scalability, fault
detection capabilities, and GUI coverage. Additionally,
expanding the MASC dataset to include more labeled
examples and varied activity types will strengthen MACT’s
adaptability and accuracy.

• Finally, we envision integrating conversational AI to
assist testers by identifying flaws in test procedures,
recommending corrections, and facilitating a
collaborative testing environment.

Acknowledgments
Authors sincerely acknowledge the Computer Science
Department in Faculty of Science, Minia University for the
facilities and support.

Authors' Contributions

This study was conducted through the collaborative efforts
of all authors. Author A.A designed the study, conducted
the statistical analysis, and developed the research protocol.
Authors A.Z, E.E, M.A, and M.G contributed data analysis,
managed literature reviews, and drafted the initial version
of the manuscript. All authors reviewed and approved the
final manuscript.

Disclosure of potential Conflict of Interest:

The authors declare no conflicts of interest.

Ethical Statement:

The study utilized publicly available datasets and did not
involve direct human participation or experimentation.

Data availability:

The data that support the findings of this study are publicly
available. The MASC dataset can be accessed at
https://doi.org/10.5281/zenodo.14783065 , and the
complete source code is available on
https://github.com/Ali-Aahmed/MASC-Dataset.

https://doi.org/10.5281/zenodo.14783065
https://github.com/Ali-Aahmed/MASC-Dataset

Appl. Math. Inf. Sci. 19, No. 5, 1079-1092 (2025)/ http://www.naturalspublishing.com/Journals.asp 1091

 © 2025 NSP
 Natural Sciences Publishing Cor.

References

[1] Statista. Number of apps available in leading app
stores as of August 2024. 2024; Available from:
https://www.statista.com/statistics/276623/number-of-
apps-available-in-leading-app-stores/.

[2] Ahmad A., Li K., Feng C., Asim S.M., Yousif A., and
Ge S., An Empirical Study of Investigating Mobile
Applications Development Challenges. IEEE Access,
2018. 6: p. 17711-17728.

[3] Choudhary S.R., Gorla A., and Orso A. Automated
Test Input Generation for Android: Are We There Yet?
(E). in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering
(ASE). 2015.

[4] Tramontana P., Amalfitano D., Amatucci N., and
Fasolino A.R., Automated functional testing of mobile
applications: a systematic mapping study. Software
Quality Journal, 2019. 27(1): p. 149-201.

[5] Hanna M., El-Haggar N., and Mostafa M.-S., A
Review of Scripting Techniques Used in Automated
Software Testing. International Journal of Advanced
Computer Science and Applications, 2014. 5.

[6] Berihun N., Dongmo C., and Poll J., The Applicability
of Automated Testing Frameworks for Mobile
Application Testing: A Systematic Literature Review.
Computers, 2023. 12: p. 97.

[7] Mustofa K. and Fajar S., Selenium-Based
Multithreading Functional Testing. IJCCS
(Indonesian Journal of Computing and Cybernetics
Systems), 2018. 12: p. 63.

[8] Kong P., Li L., Gao J., Liu K., Bissyandé T.F., and
Klein J., Automated Testing of Android Apps: A
Systematic Literature Review. IEEE Transactions on
Reliability, 2019. 68(1): p. 45-66.

[9] Li L., Bissyand T.F., Papadakis M., Rasthofer S.,
Bartel A., Octeau D., Klein J., and Traon L., Static
analysis of android apps. 2017. 88(C %J Inf. Softw.
Technol.): p. 67–95.

[10] Linares-Vásquez M., Moran K., and Poshyvanyk D.,
Continuous, Evolutionary and Large-Scale: A New
Perspective for Automated Mobile App Testing. 2017.
399-410.

[11] Ui Application Exerciser Monkey. 2025 [cited 2025;
Available from:
https://developer.android.com/studio/test/other-
testing-tools/monkey.

[12] Machiry A., Tahiliani R., and Naik M., Dynodroid: An
input generation system for Android apps. 2013. 224-
234.

[13] Moran K., Linares-Vásquez M., Bernal-Cardenas C.,
Vendome C., and Poshyvanyk D., CrashScope: A
Practical Tool for Automated Testing of Android
Applications. 2018.

[14] Mahmood R., Mirzaei N., and Malek S., Evodroid:
Segmented evolutionary testing of Android apps.
Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2014: p. 599-609.

[15] Amalfitano D., Fasolino A., Tramontana P., Ta B., and
Memon A., MobiGUITAR -- A Tool for Automated
Model-Based Testing of Mobile Apps. IEEE Software,
2014. 32: p. 1-1.

[16] Memon A., Banerjee I., Nguyen B., and Robbins B.,
The first decade of GUI ripping: Extensions,
applications, and broader impacts. 2013. 11-20.

[17] Yang C.-Z. and Tu M.H., LACTA: An Enhanced
Automatic Software Categorization on the Native
Code of Android Applications. Lecture Notes in
Engineering and Computer Science, 2012. 2195: p.
769-773.

[18] Dong F., Guo Y., Li C., Xu G., Wei F.J.t.I.C.o.C.C.,
and Systems I., ClassifyDroid: Large scale Android
applications classification using semi-supervised
Multinomial Naive Bayes. 2016: p. 77-81.

[19] Reyhani Hamedani M., Shin D., Lee M., Cho S.-J.,
and Hwang C., AndroClass: An Effective Method to
ClassifyAndroid Applications by Applying Deep
Neural Networks to Comprehensive Features. 2018.
2018(1): p. 1250359.

[20] Rosenfeld A., Kardashov O., and Zang O.,
Automation of Android applications functional testing
using machine learning activities classification, in
Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems. 2018,
Association for Computing Machinery: Gothenburg,
Sweden. p. 122–132.

[21] Hu G., Zhu L., and Yang J., AppFlow: using machine
learning to synthesize robust, reusable UI tests, in
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering. 2018, Association for Computing
Machinery: Lake Buena Vista, FL, USA. p. 269–282.

[22] Ardito L., Coppola R., Leonardi S., Morisio M., and
Buy U., Automated Test Selection for Android Apps
Based on APK and Activity Classification. IEEE
Access, 2020. 8: p. 187648-187670.

[23] Google. Espresso. 2025 [cited 2025 10-10-2024]; an
open-source framework created by Google for
Android]. Available from: https://developer.
android.com/training/testing/espresso.

http://www.naturalspublishing.com/Journals.asp
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer/

 1092 M. Girgis et al.: MACT: A Novel Framework…

© 2025 NSP
Natural Sciences Publishing Cor.

[24] Ahmed A., Zaki A., Elgeldawi E., and et al., MASC: A
Dataset for the Development and Classification of
Mobile Applications Screens. 2024.

[25] Deka B., Huang Z., Franzen C., Hibschman J.,
Afergan D., Li Y., Nichols J., and Kumar R., Rico: A
Mobile App Dataset for Building Data-Driven Design
Applications, in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and
Technology. 2017, Association for Computing
Machinery: Québec City, QC, Canada. p. 845–854.

[26] Wang B., Li G., Zhou X., Chen Z., Grossman T., and
Li Y., Screen2Words: Automatic Mobile UI
Summarization with Multimodal Learning. 2021. 498-
510.

[27] Leiva L.A., Hota A., and Oulasvirta A., Enrico: A
Dataset for Topic Modeling of Mobile UI Designs, in
22nd International Conference on Human-Computer
Interaction with Mobile Devices and Services. 2021,
Association for Computing Machinery: Oldenburg,
Germany. p. Article 9.

[28] Google. Latest Version kotlin. 22 August 2024 [cited
2025; Available from: https://kotlinlang.org/.

[29] Moheb G. and Ali A. MACT Framework
Classification Evaluation. 2025 [cited 2025;
Available from: https://github.com/Ali-
Aahmed/MACT-
framework/tree/master/Classification%20Evaluation

Biography:

Moheb R. Girgis received his B.Sc.
Degree from Mansoura University,
Egypt, in 1974, M.Sc. degree from
Assiut University, Egypt, in 1980,
and Ph.D. degree from the
University of Liverpool, England, in
1986. He is a professor of computer
science at Minia University, Egypt.
His research interests include

software engineering, software testing, information
retrieval, evolutionary algorithms, image processing,
computer networks, and bioinformatics.

Alaa M. Zaki received his B.Sc.
Degree from Minia University,
Egypt, in 1999, M.Sc. degree from
Mina University, Egypt, in 2009,
and Ph.D. degree from the
University of Minia, Egypt, in
2015. He is a professor of computer
science at Minia University, Egypt.

His research interests include Software Engineering, Data
Mining, evolutionary algorithms, and computer networks.

Enas Elgeldawi received here
B.Sc. Degree from Minia
University, Egypt, in 1999, M.Sc.
degree from Mina University,
Egypt, in 2005, and Ph.D. degree
from the University of Minia,
Egypt, in 2015. she is a professor of
computer science at Minia

University, Egypt. Here research interests include Data
Mining, evolutionary algorithms, computer networks, and
bioinformatics.

Mohamed M. Abdallah received his
B.Sc. Degree from Minia University,
Egypt, in 2003, M.Sc. degree from
Mina University, Egypt, in 2008, and
Ph.D. degree from the University of
Minia, Egypt, in 2015. He is a
professor of computer science at
Minia University, Egypt. His

research interests include information retrieval, Data
Mining, evolutionary algorithms.

Ali A. Ahmed received his B.Sc.
Degree from Minia University,
Egypt, in 2015, M.Sc. degree from
Minia University, Egypt, in 2021.
He is an Assistant lecturer of
computer science at Minia
University, Egypt. His research
interests include Software
Engineering, machine learning,

deep learning, big data analytics, and mobile applications
development testing.

https://kotlinlang.org/

