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Abstract: In this work, a comparison between two numerical techniques for solving the discretized scheme of Helmholtz equation is
conducted: the first technique is the V-cycle multigrid method combined with the Generalized Minimal Residual Method as a smoother
and the second technique is the Biconjugate Gradient Stabilized Method. On the other side, Helmholtz equation will be discretized
using the finite difference method, converting the continuous problem to a linear system of equations. The multigrid method leverages
a hierarchical, multi-level framework to accelerate convergence by addressing errors across various spatial scales, while Biconjugate
Gradient Stabilized Method is an independent iterative technique known for its stability and convergence efficiency. Through this
comparative study, we evaluate the performance of both approaches based on the convergence rate, computational cost, and iteration
count to achieve a specified accuracy. Numerical experiments are conducted across multiple grid sizes to assess effectiveness.

Keywords: Helmholtz equation; Finite difference method; V-Cycle multigrid method; Generalized minimal residual method;
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1 Introduction

One of the important equations in the applied
mathematics is Helmholtz equation, it represents a
significant type of partial differential equations (PDEs)
widely used in modeling time-harmonic phenomena such
as wave propagation, acoustics, electromagnetics, and
elasticity. Applications include seismic wave modeling,
acoustic scattering, electromagnetic wave transmission,
and noise suppression. Numerical solutions often involve
discretization, leading to large, sparse linear systems,
particularly for high-frequency problems with fine grid
resolutions and large wave numbers. While traditional
methods struggle with slow convergence, modern
techniques, though more effective, can be
computationally expensive. These challenges are
especially significant in fields like exploration seismology
and acoustic scattering as in [1].

The three-dimensional Helmholtz equation is defined
as follows:

{
∇2u(x,y,z)+λ 2u(x,y,z) = f (x,y,z), in R,
u(x,y,z) = g(x,y,z), on ∂R,

(1)

where R is a square domain in 2D or a cubic one in 3D,
∂R represents its boundary,λ is the wave number,
f (x,y,z) is the forcing function and g(x,y,z) is the
boundary function,The Laplacian operator in three
dimensions is given by:

∇
2u(x,y,z) =

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 .

The exact solution u(x,y,z), along with the functions
f (x,y,z) and g(x,y,z), is assumed to be continuously
differentiable. In this study, a finite-difference
approximation on uniform grids is employed to
investigate the numerical behavior of equation (1), where
the step sizes are taken to be equal in all directions, i.e.,
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∆x = ∆y = ∆z. For further details on such numerical
schemes, see [2] and the references therein.

Multigrid methods have been widely studied for
solving a linear system derived from an elliptic PDE, see
for example [3,4,5,6,7]. Many traditional iterative
methods significantly reduce the variability of the
approximation error. Although the error itself might not
be small, it becomes smoother. This is referred to as
smoothing, and it represents the fundamental concept of
MG methods. The second principle is coarse grid
correction, which involves representing smooth features
from a fine grid on a coarser grid with high accuracy
using suitable techniques. When applying MG
techniques, especially in the context of finite difference
problems, is determining the minimum number of grid
points per wavelength on the coarsest grid. This
parameter is critical for ensuring solution accuracy and
stability. Classical MG theory has been extensively
discussed in references such as [8,9]. Early studies [10,
11,12,13] demonstrated that standard MG techniques can
effectively solve Helmholtz equation when the wave
number l is relatively small compared to the mesh size.
However, it requires the coarsest grids in the hierarchy to
resolve waves associated with l.

The V-cycle is strategy used in MG methods to
accelerate the solution process by smoothing the error,
particularly for large-scale problems like Helmholtz
equations. This iterative method is refined through a
series of smoothing and correction steps applied across
different grid levels. In the V-cycle, the process begins
with smoothing on the finest grid to reduce
high-frequency errors. Residuals, which represent the
difference between the left- and right-hand sides of the
discretized equations at a given iteration, are subsequently
transferred to successively coarser grids. On the coarser
grids, the problem is approximated, and the solution is
corrected. After the correction step, the solution is
interpolated back to finer grids, where further smoothing
is performed. This iterative process is carried out in a “V”
shape, with steps moving from fine grids down to coarse
grids and back up to the fine grids. Each traversal of the
V-cycle helps reduce errors at different scales,
accelerating convergence discussed in [14,15].

The Biconjugate Gradient Stabilized Method
(Bi-CGSTAB) method is a highly significant and widely
used algorithm for solving linear systems of equations.
Numerous efforts have been made to develop more
efficient methods by re-structuring the original Bi-CG
algorithm as in [16,17]. Among these, one of the most
notable advancements was introduced by van der Vorst in
[18], resulting in the Bi-CGSTAB method, which has
become one of the most successful improvements to the
Bi-CG approach.

The most important step in some of iterative methods
like Generalized minimal residual method (GMRES)
focus on the residual rk = b− Axk, where xk represents
the kth approximation of the solution to equation Ax = b.
These methods aim to reduce the sequence of residual

norms. GMRES, in particular, is a widely used for solving
linear systems of equations [19]. Various implementations
of GMRES have been developed, each designed to
achieve specific goals, with their own strengths and
limitations. In this context, different GMRES variants are
applied to ill-posed linear problems to evaluate their
effectiveness in solving nearly singular systems and to
identify those that are less suitable.

2 Finite Difference Method

PDEs play a crucial role in addressing various scientific
challenges, including Boundary Value Problems (BVPs).
This paper focuses on the numerical solutions for
Helmholtz equations (1). We begin by considering a
square unit domain. Let the grid spacing be h = b−a

n , and
define xi = ih, y j = jh, and zk = kh where
(i, j,k = 1,2, . . . ,n). Equation (1) can be approximated at
the grid point (xi,y j,zk) using the widely adopted
full-sweep finite difference (FD) approximation method,
yielding the corresponding approximation equation [20]:

ui+1, j,k−2ui, j,k +ui−1, j,k

h2 +
ui, j+1,k−2ui, j,k +ui, j−1,k

h2

+
ui, j,k+1−2ui, j,k +ui, j,k−1

h2 + l2ui, j,k = fi, j,k.
(2)

ui, j,k =
1

−6+h2l2

(
h2 fi, j,k−ui+1, j,k−ui−1, j,k−ui, j+1,k−ui, j−1,k

−ui, j,k+1−ui, j,k−1

)
.

(3)
For 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1, and 1 ≤ k ≤ l− 1, the
boundary conditions are introduced by:

u0, j,k = g(a,y j,zk), um, j,k = g(b,y j,zk),

ui,0,k = g(xi,a,zk), ui,n,k = g(xi,b,zk),

ui, j,0 = g(xi,y j,a), ui, j,l = g(xi,y j,b).
(4)

Fig. 1: Uniform mesh grid for a 2D finite grid network
with N = 8.
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The algebraic equations for Problem (3) are derived
using a second-order central finite difference scheme. The
solution domain in two dimensions is uniformly divided in
all directions with a constant mesh size h, defined as:

∆h =
b−a

N
.

When discretizing the Helmholtz equation, we obtain a
linear system of equations of the form:

Ax = b, (5)

where the matrix A is typically sparse and indefinite. The
vector x is the unknown vector whose values are to be
determined, and b is the right-hand side vector,
representing the outcome or constants of the system.

(a)

(b)

Fig. 2: (a) 2D centered finite difference approximation
with 9-point stencil. (b) 3D uniform grid with 7-point
stencil.

The linear system (5) will be solved using two
iterative methods: the V-cycle multigrid method, which
employs the MG with GMRES as smoother
(MG-GMRES), and the BiCGSTAB method. The MG

method is a multi-level strategy designed to accelerate
convergence by addressing errors at different spatial
scales. In contrast, BiCGSTAB is an independent iterative
solver that works directly on the linear system and is
widely used due to its stability and excellent convergence
properties.

Fig. 3: Sparsity pattern of the matrix A.

3 The Multigrid Method (V-cycle)

The results from the second-order finite-difference
scheme can be efficiently solved using MG methods,
particularly in sparse linear systems. To eliminate
high-frequency errors, MG methods employ relaxation
techniques. These methods also utilize coarse grid
corrections to smooth out the errors. A successful
implementation of the MG method for solving the 2D and
3D Helmholtz equation discretized by standard
second-order finite-difference schemes has been
demonstrated in previous studies [21].

In the MG-GMRES is used as the smoother instead of
Gauss-Seidel relaxation. GMRES is an iterative method
that minimizes the residual over the Krylov subspace,
which makes it an effective smoother, especially for
problems with poor conditioning. Bilinear interpolation is
used to transfer corrections from the coarse grid to the
fine grid, and a full-weighting scheme is applied to update
the residuals on the coarse grid.

The MG method is an iterative technique for solving
systems of equations derived from the discretization of
elliptic PDEs. It is founded on two fundamental
principles [22,23,24].The first principle highlights the
strong error-smoothing capability of many traditional
iterative methods, such as Jacobi and Gauss-Seidel. These
methods efficiently eliminate the high-frequency of the
error within small number of iterations, while leaving the
smoother, low-frequency components largely unaffected.
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These classical methods are slow to converge as a result
of their inability to eliminate these smooth error
components quickly. The coarse-grid principle is the
second principle asserts that smooth error components on
a fine grid can be accurately represented on a coarser grid
without significant loss of information. These two
strategies where a coarse grid is employed to address the
smooth error effectively. This process begins by relaxing
the system on the fine grid with the help of a smoother.
After a certain number of iterations, relaxation is applied,
and it slows down, indicating that smooth error
components become more dominant. At this point, the
process transitions to a coarser grid, where the smoother
can more efficiently address these components due to
their increased oscillatory nature. This approach forms
the basis of the coarse-grid correction scheme, which is
applied recursively in the MG method.

Fig. 4: Comparison of the V-cycle and W-cycle in
MG methods, illustrating the transition between fine and
coarse grids. The blue nodes represent relaxation steps,
downward arrows indicate restriction, and upward arrows
denote interpolation.

4 The GMRES Method.

In 1986, the GMRES method was designed for solving
linear systems of equations and was introduced in [25] by
Saad and Schultz. They presented an efficient formulation
known as the “Standard GMRES,” which is based on the
Arnoldi process [26]. Since then, various GMRES
variants have been developed, focusing on simplicity,
stability, or speed, and some of these implementations are
briefly discussed in this section. The GMRES algorithm
typically consists of two primary steps: First, the Arnoldi
process is a numerical method used to generate an
orthogonal basis, and second, a least squares problem is
solved to refine the approximation using the orthogonal
vectors produced. To solve a system like (5), GMRES
starts with initial approximation x0 ∈ Rn and the kth

iteration in GMRES is represented as xk = x0 + zk, where
zk minimizes the residual norm ∥rk∥. This can be

expressed as:

∥rk∥= ∥r0−Azk∥= min
z∈x0+Kk(r0)

∥r0−Az∥. (6)

Where r0 = b−Ax0 and Kk(ν) = span{ν ,Aν , . . . ,Ak−1
ν}

In the first step, GMRES generally uses the Arnoldi
process to construct a set of basis vectors for the Krylov
subspace as Kk+1(r0):

Arnoldi Process – Modified Gram–Schmidt
(Algorithm 1)

Start with a vector ν1 such that ∥ν1∥= 1
For j = 1, . . . ,k:

Compute ν j+1 = Aν j and for i = 1, . . . , j,
hi, j = ⟨ν j+1,ν j⟩, ν j+1 = ν j+1−hi, jν j. End

Set h j+1, j = ∥ν j+1∥; then normalize ν j+1 as ν j+1 =
ν j+1/h j+1, j. End

In short, steps 2a and 2b are represented as

ν j+1 = Π
⊥
j Aν j/∥Aν j∥.

From this process, the following significant relationship is
derived:

AVk =Vk+1H̄k. (7)

The GMRES method relies on the fact that the
columns of Vk+1, namely ν1,ν2, . . . ,νk form an
orthogonal and normalized vectors for the subspace
Kk(r0). The matrix of Hessenberg H̄k = hi, j ∈ R(k+1)×k

represents the matrix form of A in the subspace Kk(ν1).
With respect to Vk. From equations (6) and (7), the
fundamental formula for GMRES is derived as:

min
z∈x0+Kk(r0)

∥r0−Az∥= min
y∈Rk
∥r0−AṼky∥= min

y∈Rk
∥βe1−H̄ky∥.

(8)
Let β = ∥r0∥. It is important to note that the Arnoldi

process fails at step k if and only if hk+1,k = 0, indicating
that A is the singular matrix. If yk minimizes the right side
of the least squares problem in equation (8), then zk =Vkỹ
is the optimal solution on the left side of (8) within the
Krylov subspace Kk(r0).

The GMRES (Algorithm 2):
Start with an initial guess x0, compute r0 = b−Ax0,

and set v1 = r0/∥r0∥.
Construct (k+1) orthogonal vectors ν1,ν2, . . . ,νk+1 to

serve as a basis Kk+1(r0).
Solve the least squares and find ỹ ∈ Rk.
Update xk = x0 +Vkỹ.
If it does not meet the desired criteria, set x0 = xk and

return to step 1.
The GMRES algorithm starts with an initial guess x0.

By orthogonalizing the vector vk+1 with respect to
ν1,ν2, . . . ,νk and by solving a least squares problem, the
subsequent GMRES approximation is determined,
recursively reducing the residual norms.
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5 Multigrid V-Cycle with GMERS Smoother

The MG V-cycle algorithm is an efficient solver for
discretized PDEs. In this variant, the GMERS smoother is
employed for pre- and post-smoothing to effectively
damp high-frequency error components. The algorithm
operates recursively on a hierarchy of grids.

Ah: Matrix on the fine grid Ωh.
bh: Right-hand side vector on the fine grid Ωh.
α1: Pre-smoothing iterations.
α2: Post-smoothing iterations.
µ: Number of recursive V-cycles on coarser grids.
ν0: Initial guess for the solution νh.
νh: Approximate solution on the fine grid Ωh.
Algorithm 3: Multigrid V-Cycle with GMERS

Smoother
Step 1: Pre-smoothing

Relax α1 times on the equation Ahuh = bh, on Ωh using
the GMERS smoother with an arbitrary initial guess ν0,
and compute the updated approximation νh.
Relax: νh← GMERS(Ah,bh,ν0,α1).

Step 2: Coarse-Grid Correction
2.1. Compute the residual:

Calculate the residual rh as:

rh = bh−Ahνh (9)

2.2. Restrict the residual to the coarser grid:
Restrict rh to the coarser grid using the restriction operator
R2h

h :
r2h = R2h

h rh (10)

2.3. Solve the coarse grid residual equation:
Solve the equation A2he2h = r2h:
If Ωh is the coarsest grid, solve directly: e2h = (A2h)

−1r2h.
Otherwise, initialize e2h = 0 and perform recursive calls to
the MG method for µ times:
e2h = MGM(A2h,r2h,α1,α2,µ,e2h).

2.4. Interpolate the error to the fine grid:
Use the interpolation operator P2h

h to transfer the error e2h
back to the fine grid:

eh = P2h
h e2h (11)

2.5. Correct the fine-grid solution:
Update the fine grid solution νh by adding the interpolated
error eh:
νh← νh + eh.

Step 3: Post-Smoothing
Relax α2 times on the equation Ahuh = bh, on Ωh using
the GMER smoother with the updated initial guess νh, and
compute the final solution:
Relax: νh← GMERS(Ah,bh,νh,α2).

6 Biconjugate Gradient Stabilized

The BiCGStab method is an iterative solver designed for
large, sparse, and non-symmetric systems of linear

equations. Such systems often arise in numerical
simulations, particularly when employing discretization
techniques like the FDM. FDM transforms partial
differential equations into algebraic equations, producing
matrices that are typically sparse and large. These
characteristics make direct solvers computationally
prohibitive, prompting the need for efficient iterative
methods like BiCGStab. BiCGStab improves upon the
classical Bi-Conjugate Gradient (BiCG) method by
addressing its erratic convergence behavior and
enhancing numerical stability. BiCGStab stabilizes the
iteration process by minimizing the residual in a
least-squares sense. The algorithm begins with an initial
approximate and iteratively refines the solution by
computing residuals, performing sparse matrix-vector
operations, and applying a stabilization mechanism. Its
effectiveness is further enhanced when coupled with
suitable preconditioning techniques, which improve
convergence by reducing the condition number of the
system. The Bi-CGSTAB method is a highly important
and effective algorithm for solving non-Hermitian linear
systems of equations [27].

Algorithm 4: Biconjugate Gradient Stabilized

–Initialization:
–Choose an initial guess x0 for the solution.
–Compute the initial residual: r0 = b−Ax0.
–Pick an arbitrary vector r̃0 (for example, r̃0 = r0).
–Initialize: v0 = p0 = 0; ρ0 = α1 = ω0 = 1.

–Iteration: For n = 1,2, . . . , until convergence:
–Compute the scalar ρn = ⟨rn−1, r̃0⟩.
–Compute the scalar βn =

(
ρn

ρn−1

)(
αn

ωn−1

)
.

–Update the search direction: pn = rn−1+βn(pn−1−
ωn−1vn−1).

–Compute vn = Aρn.
–Compute the scalar σn = ⟨vn, r̃0⟩.
–Compute αn =

ρn
σn

.
–Update sn = rn−1−αnvn.
–Compute tn = Asn.
–Compute ωn =

⟨sn,tn⟩
⟨tn,tn⟩ .

–Update the residual rn = sn +ωntn.
–Update the solution xn = xn−1 +αn pn +ωnsn.

–Convergence Check:
–Check the norm of the residual ∥r0∥. If it is below
a tolerance threshold, stop the iteration.

7 Numerical Tests

To evaluate the accuracy of the current approach, we
consider three model problems governed by the
Helmholtz equation. The systems of equations derived
from the difference scheme are solved using both the
Bi-CGSTAB and MG-GMRES methods. Furthermore, we
provide plots of the numerical errors and the solutions for
these model problems. There are parameters such as the
number of iterations (Iter.No), computational time in
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seconds (CPU) are taken into account for numerical
comparison. Throughout the simulations, the convergence
test was conducted with a tolerance error of ε = 10−10

applied to various values of the number of grid points N.
We employ the L2 and L∞ error norms to methodically
measure the difference between the numerical and
analytical solutions. This method enables a thorough
evaluation of the numerical solution’s accuracy in
representing the system’s behavior. The definitions of the
L2 and L∞ norms of the solution are as follows:

L2 = ∥Uexact−Un∥2 =

[
N

∑
i=0

∣∣Uexact
i −Un

i
∣∣2]1/2

. (5)

L∞ = ∥Uexact−Un∥∞ = max
i

∣∣Uexact
i −Un

i
∣∣ . (6)

Example 1

Consider the following two-dimensional Helmholtz-type
equation:

∂ 2U
∂x2 +

∂ 2U
∂y2 −U = 0, 0 < x < 1, 0 < y < 1. (7)

The boundary conditions are given by:

U(x,0) = x, U(x,1) = ex + xcosh(1),

U(0,y) = y, U(1,y) = ye1 + cosh(y). (8)

The exact solution for this problem is:

U(x,y) = yex + xcosh(y). (9)

Table 1: Computational results for Example 1.

N Methods Iter. No CPU (s) L∞ L2

32 BiCGSTAB 72 0.084 9.13×10−6 1.52×10−4

MG-GMRES 2 0.011 9.13×10−6 1.53×10−4

64 BiCGSTAB 140 0.126 1.96×10−6 6.22×10−5

MG-GMRES 3 0.068 1.69×10−6 5.46×10−5

128 BiCGSTAB 270 0.386 2.20×10−6 9.79×10−5

MG-GMRES 4 0.278 3.76×10−7 2.38×10−5

256 BiCGSTAB 594 2.807 4.22×10−6 3.95×10−4

MG-GMRES 4 1.921 8.28×10−8 1.07×10−5

512 BiCGSTAB 930 12.80 2.87×10−5 5.48×10−4

MG-GMRES 6 8.470 3.36×10−8 9.18×10−6

(a)

(b)

Fig. 5: (a) Numerical solution using MG-GMRES for N =
512. (b) Corresponding exact solution.

Example 2

Consider the following two-dimensional Helmholtz-type
equation:

∂ 2U
∂x2 +

∂ 2U
∂y2 +U = x, 0 < x < 1, 0 < y < 1. (10)

The boundary conditions are given by:

U(x,0) = sin(x)+ x, U(x,1) = sin(x)+ sin(1)+ x,
U(0,y) = sin(y), U(1,y) = sin(1)+ sin(y)+1. (11)

The exact solution for this problem is:

U(x,y) = sin(x)sin(y)+ x. (12)

© 2025 NSP
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Table 2: Computational results for Example 2.

N Methods Iter. No CPU (s) LLL∞∞∞ LLL222

32 BiCGSTAB 65 0.082 5.722×10−6 1.017×10−4

MG-GMRES 4 0.011 5.193×10−6 9.097×10−5

64 BiCGSTAB 134 0.106 1.329×10−7 3.839×10−5

MG-GMRES 3 0.034 8.592×10−7 2.626×10−5

128 BiCGSTAB 245 0.303 2.379×10−6 1.152×10−4

MG-GMRES 4 0.289 3.402×10−7 2.316×10−5

256 BiCGSTAB 470 1.041 8.910×10−6 9.111×10−4

MG-GMRES 4 0.871 6.942×10−8 9.141×10−6

512 BiCGSTAB 918 9.328 1.148×10−5 4.230×10−4

MG-GMRES 5 8.644 2.080×10−8 5.614×10−6

(a)

(b)

Fig. 6: (a) Numerical solution using MG-GMRES for N =
512. (b) Corresponding exact solution.

Example 3

Consider the 3D partial differential equation:

∂ 2U
∂x2 +

∂ 2U
∂y2 +

∂ 2U
∂ z2 +5U = 0,

0 < x < 1, 0 < y < 1, 0 < z < 1.
(13)

Subject to the boundary conditions:

U(x,0,z) = zcos(
√

5x), (14)

U(x,1,z) = (1+ z)cos(
√

5x), (15)
U(0,y,z) = y+ z, (16)

U(1,y,z) = (y+ z)cos(
√

5x), (17)

U(x,y,0) = ycos(
√

5x), (18)

U(x,y,1) = (1+ y)cos(
√

5x). (19)

The exact solution is:

U(x,y,z) = y+ z+ cos(
√

5x). (20)

Table 3: Computational results for Example 3.

N Methods Iter. No CPU (s) LLL∞∞∞ LLL222

8 BiCGSTAB 25 0.020 9.440×10−4 2.901×10−4

MG-GMRES 4 0.011 7.225×10−4 2.103×10−4

16 BiCGSTAB 49 0.031 2.719×10−4 8.870×10−5

MG-GMRES 2 0.029 1.951×10−4 5.359×10−5

32 BiCGSTAB 96 0.290 7.256×10−5 2.462×10−5

MG-GMRES 5 0.248 5.108×10−5 1.597×10−5

64 BiCGSTAB 182 3.420 1.872×10−5 6.486×10−5

MG-GMRES 15 2.920 1.519×10−5 4.990×10−6

∂ 2U
∂x2 +

∂ 2U
∂y2 +

∂ 2U
∂ z2 + k2U = 0,

0 < x < 1, 0 < y < 1, 0 < z < 1.
(21)

The boundary conditions are given by:

U(x,0,z) = cos(2x) · sinh(
√

5z)
sinh(

√
5π)

, (22)

U(x,1,z) = cos(2x)cos
(√

1+ k2
)
· sinh(

√
5z)

sinh(
√

5π)
, (23)

U(0,y,z) = cos
(√

1+ k2 · y
)
· sinh(

√
5z)

sinh(
√

5π)
, (24)

U(1,y,z) = cos(2)cos
(√

1+ k2 · y
)
· sinh(

√
5z)

sinh(
√

5π)
, (25)

U(x,y,0) = 0, (26)

U(x,y,1) = cos(2x)cos
(√

1+ k2 · y
)
· sinh(

√
5)

sinh(
√

5π)
.

(27)

The exact solution for this problem is:

U(x,y,z) = cos(2x)cos
(√

1+ k2 · y
)

× sinh(
√

5z)
sinh(

√
5π)

. (28)
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(a)

(b)

Fig. 7: (a) Numerical solution using MG-GMRES for N =
64 and h = 0.5. (b) Corresponding exact solution.

Table 4: Computational results for Example 4. Here, “div.”
denotes divergence and “Cond. No.” stands for condition
number.

N Methods kkk222 Iter. No CPU LLL∞∞∞ LLL222 Cond. No.

32 BiCGSTAB 4 90 0.7 3.657×10−7 9.612×10−8 865.60
MG-GMRES 4 10 0.4 3.293×10−7 7.668×10−8 –

32 BiCGSTAB 9 100 0.168 6.036×10−7 1.711×10−7 1108.83
MG-GMRES 9 7 0.2 5.953×10−7 1.639×10−7 –

32 BiCGSTAB 16 104 0.172 2.722×10−6 7.313×10−7 1761.31
MG-GMRES 16 18 0.61 2.621×10−6 6.860×10−7 –

32 BiCGSTAB 25 110 1.35 1.487×10−5 4.830×10−6 5599.49
MG-GMRES 25 30 1.5 1.052×10−5 3.229×10−6 –

32 BiCGSTAB 36 132 1.9 1.795×10−5 6.024×10−6 4465.36
MG-GMRES 36 div. div. div. div. –

Conclusion

In this paper FDM is applied to derive the discrete
scheme of Helmholtz equation, then MG-GMRES and
BiCGSTAB methods are used to solve the resultant
system of equations. In general, we can conclude that
MG-GMRES uses a multilevel approach, where coarse
grids are used to handle low-frequency errors and fine
grids focus on smoothing high-frequency errors. This
combination helps MG-GMRES solve the problem faster

(a)

(b)

Fig. 8: (a) Numerical solution using BiCGSTAB, N = 32,
k2 = 36, and z = 0.5. (b) Corresponding exact solution.

and with fewer iterations. On the other hand, BiCGSTAB
directly solves the system without using a multilevel
strategy. While it is a reliable method, it often requires
more iterations and takes longer to achieve the same
degree of precision accuracy as MG-GMRES. It is noted
that when the wave number is a big number, it is
preferable to use BiCGSTAB method because the
MG-GMRES method will be diverge. All results,
including plots and figures, were generated using
MATLAB.
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