
Appl. Math. Inf. Sci. 19, No. 5, 1027-1038 (2025) 1027

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/190505

Analysis of Authentication Methods and Secure
Web Application Realization With an Integrated
Authentication System
Abed Saif Ahmed Alghawli

Department of Computer Science, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Aflaj, Saudi Arabia

Received: 12 Jan. 2025, Revised: 6 May 2025, Accepted: 11 May 2025
Published online: 1 Sep. 2025

Abstract: The number of cyberattacks is growing every year, and their main goal is to steal personal and confidential data. In most
cases, this happens through hacking or theft of web application user credentials due to vulnerabilities in authentication and authorization
methods, which in most cases occur due to incorrectly implemented authentication methods. The use of modern authentication methods
and their correct use and configuration in web applications are critical features of secure and resilient web applications. This article
analyzes the authentication methods for web applications, their vulnerabilities, and a variety of attacks on them, which lead to high
risks in their implementation and further use. A standard web application has been created that is similar to the one created based
on the Shopify web application builder with authentication based on the Hypertext Transfer Protocol cookie session. The risks of
vulnerabilities and attacks on the created web application were analyzed, and considering its results, advantages and disadvantages of
authentication methods; the web application was improved: authentication methods, application settings, and security features. The two
most secure authentication methods were selected for the web application: JWT Access/Refresh token with browser fingerprints and
OAuth 2.0 standard, based on which the improved web application was implemented. A risk analysis of vulnerabilities and attacks on the
improved web application has been carried out, which showed that the risks of vulnerabilities and attacks on it are very low. The correct
implementation and configuration of the JWT Access/Refresh token authentication method in combination with browser fingerprints is
presented, and an analysis of its use is carried out, which shows that this combination provides reliable prevention of token theft and
use from another computer. The author also implements authentication using OAuth 2.0 in combination with browser fingerprints and
describes its correct implementation and configuration. When analyzing its use, it turned out that delegating authentication to Facebook
or Google services can provide a low level of risk of attacks and vulnerabilities on a web application.

Keywords: authentication, integrated authentication system, OAuth, JWT, token, web application, vulnerabilities.

1 Introduction

These days, the Internet has become one of the main
standards of the modern person, permeating almost every
aspect of our lives, from social media accounts to bank
accounts. At the same time, the number of attacks on
users’ confidential information, information systems of
corporations, organizations, critical infrastructure, etc. is
increasing [1–4]. Web applications account for almost
90% of Internet resources, but despite their popularity and
the fact that they bring significant benefits to all types of
businesses, there are increasing security issues. The
reasons for this are an increase in the number of
cyberattacks and a decline in the quality of web
application development. For example, the company

Symantec, in its report Global Internet Security Threat
Report (ISTR), indicates that cybercriminals usually use
vulnerabilities of web applications running on the server
or exploit some vulnerabilities of the operating system
running these applications [5]. The analysis of web
applications by Symantec for the presence of
vulnerabilities showed that from 1000 randomly selected
web applications it found 80% of problems in the
application code itself. On average, the number of
vulnerabilities per web application reaches 22, of which
10 are weakly vulnerable, 7 are moderately vulnerable, 3
are highly vulnerable, and 2 are critical. Thus, a clear
pattern of errors in code writing and implementation can
be observed. This tendency compromises not only
confidential user data but also the reputation of the

∗ Corresponding author e-mail: a.alghauly@psau.edu.sa
© 2025 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/190505


1028 A. Alghawli. : Analysis of Authentication Methods ...

company itself. In some cases, security measures may be
too complex, which can make it impossible to obtain the
necessary information even for authorized users [6, 7].
However, information security tools help to ensure the
confidentiality, integrity and availability of information in
the conditions of various types of threats and reduce the
risks of loss or theft of confidential data. The main
vulnerabilities to the confidentiality, integrity and
availability of web application information are structured
query language (SQL) injection attacks, disclosure of
confidential data, authentication breaches, access control
violations, cross-site scripting (XSS), cross-site request
forgery (CSRF); insufficient logging and monitoring.
Web application authentication and authorization
breaches have been among the top 10 OWASP
vulnerabilities for several years in a row [8].
Authentication is one of the key aspects of web
application security and involves verifying the identity of
users accessing web applications. Authentication is
necessary to verify the identity of a user or system that
wants to access services and data. Many researchers have
analyzed the security of authentication and authorization
methods and their implementation in web applications,
but only a few research papers and many security vendor
analytical reports indicate that most vulnerabilities exist
in web applications due to incorrect implementation of
authentication and security methods in web applications.

2 Publications Analysis and Problem
Statement

At the moment, it is common to use a Single Sign-On
(SSO) solution, i.e. one account for authentication on
multiple websites, as noted in [9, 10]. This solution is
based on using OAuth, OpenID authentication methods,
tokens, etc. which, accordingly, should be protected. SSO
systems, in their turn, must also comply with high
security and confidentiality requirements. However, a
researcher, Schmitz Guido [11], detected serious
vulnerabilities in SSO systems, leading to critical attacks
on their security and confidentiality.

In the study [12], the authors investigated an SSO
solution based on the OpenID Connect protocol. They
analyzed its stages of operation, advantages,
disadvantages, and vulnerabilities. Based on the analysis
of the vulnerabilities found, the authors describe the
consequences for privacy, availability, and confidentiality
associated with user access to SSO systems. In [13], the
authors continued to analyze the vulnerabilities of the
OpenID Connect protocol and highlighted the
possibilities of attacking it. They demonstrated a MIXup
attack on accounts of popular platforms, which led to the
theft of user tokens and unauthorized access to their data.
However, these studies do not indicate how to improve
and customize the security of this protocol. In turn, the
authors of [14] analyzed the security of using tokens and

OAuth, and they conducted SSO testing between systems,
token validation analysis, JSON Web Token (JWT)
structure verification, and Network Sniffing Attack.
However, SSO systems are not only vulnerable to this
attack.

The authors of [15] became interested in the security
of the OAuth 2.0 protocol used in SSO, and they
identified protocol vulnerabilities in case of improper site
configuration by testing 75 websites. The authors also
developed a browser extension that successfully identifies
and warns the user about improper OAuth 2.0 settings.
However, the paper does not provide ways to solve
security problems on the server side. To provide higher
security, the authors of the paper [16] simulated the
OAuth 2.0 protocol and suggested additional features
based on token use that can improve the architectural
design and improve the overall security effectiveness of
the protocol but did not propose any specific solutions.
The authors of the paper [17] propose their unique
approach based on OAuth and token technologies to
extend the period of access to secure resources for
authenticated users. But it can only solve a narrowly
focused issue.

In their research [18] the authors developed a
simplified service for user authentication, authorization
and management in web and mobile applications based
on OAuth and OpenID. However, the developed service is
insecure, especially for applications that store vulnerable
data. This issue was analyzed by the authors of [19]. The
authors propose a method for revoking a token by sending
a revocation request to the authorization server when the
resource server performs abnormal behaviour using the
token, such as logging out or changing the identity of the
resource owner. However, the authors do not provide
solutions to other security issues.
The research [10] analyses software that supports the
SSO technology based on Security Assertion Markup
Language (SAML) or OpenID, provides
recommendations for a specific choice but again does not
provide any solutions to security issues. However, in [20],
the authors found problems with the implementation of
OpenID components and implemented two new attacks
and compromised 12 of the 17 most popular existing
OpenID implementations. The authors of [21] showed
vulnerabilities in the implementation of 11 SAML
frameworks (out of 14 main ones). And the authors
of [22] analyzed the OAuth 2.0 protocol and concluded
that for most developers who do not have deep knowledge
of web security, the implementation of this protocol can
be dangerous. The authors of [23] analyzed the OpenID
Connect protocol and its specification, found a variety of
attacks to which it is vulnerable, and provided
countermeasures. However, the authors note that web
application developers often do not follow the
specification’s recommendation for a secure protocol
implementation, which leads to user authentication
breaches. The authors assume that flaws in protocol
implementation will always exist, so they propose a

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1027-1038 (2025) / www.naturalspublishing.com/Journals.asp 1029

system that automatically performs and evaluates attacks
on web applications against authentication
implementation.

Thus, the problem of ensuring secure authentication
of web application users and correct implementation is
relevant. From the literature review, it is clear that it is
necessary to analyze authentication methods and
standards for web applications, based on the results of the
analysis, to develop a web application with a correctly
implemented secure authentication system and to check
its quality of implementation.
The purpose of this paper is to analyze authentication
methods and secure implementation of authentication
methods with the integration of JWT tokens and the
OAuth v2.0 standard based on the developed web
applications.

3 Review of Authentication Methods

The process of user authentication is preceded by the
process of user identification [24]. During the
identification process, information about the user is
provided in the form of an identifier for the security
system. The security system will search for all abstract
objects in the set of identifiers and will find a particular
object used by the real user. Once it is done, the user is
identified. For example, the object can be a user account
id. The fact that the user has been identified does not
necessarily mean that they are genuine. The user must
provide proof of his or her identity in the system, such as
a password, which is called a credential in the system.
The process of verifying credentials is the process of
authentication. If the authentication process is successful,
then the user is authorized to the system and granted the
access rights assigned to him or her. Authentication is
required for a secure web application. Currently, the
following authentication methods are the most commonly
used [25]:

-cookie-based authentication;
-token-based authentication;
-third-party access (OAuth, Application Programming
Interface (API) token);

-OpenID;
-SAML.

3.1 Authentication Based on Hypertext Transfer
Protocol Cookie Session

Hypertext Transfer Protocol (HTTP) cookie session is a
step towards more reliable and complicated authentication
methods. All HTTP requests are stateless [25], i.e. it is
impossible to store data about interaction between a
server and a user. To solve this issue, a feature of HTTP
session was created, allowing web servers to store data
(requests/answers) about interaction between a server and

Table 1: Advantages and disadvantages of authentication
based on HTTP cookie sessions.

Advantages Disadvantages
Cookies take up little space. Cookies are vulnerable to

XSS and CSRF attacks.
Cookies are easy to use and
apply.

Scaling becomes an issue
when many users log in.

Cookies are stored on a
server and it is much harder
to steal them or replace.

Contain confidential
information about the user,
which makes them a target
for attackers.

Information stored in
cookies is encrypted before
it is sent, and cookies
themselves are transmitted
via the HTTPS protocol.

Settings for using and
sending cookies depend on
the website developer who
can make incorrect settings.

a user. They store data based on a specific session (session
ID, time of creation, last access, etc.), as well as user data
(login status and other data that the application may need
from the user). Sessions can be realized by means of
cookies, i.e. a small piece of data that the server sends to
the user’s web browser. The browser can store it and send
it back with requests to the same server. Cookies are used
for user authentication, contain private information and
are small in size, but with a large number of sessions and
users, the amount of data to store becomes an issue. Table
(1) shows the advantages and disadvantages of
authentication based on HTTP cookie sessions.

3.2 Major Token-Based Authentication
Principles

As with the previous cookie session authentication
method, there is no specific pattern for this strategy. As a
result, all implementations are specific for certain
systems. Token-based authentication is most used when
developing distributed SSO systems, where one
application (a service provider or a relying party)
delegates user authentication to another application (an
identity provider or authentication service) [25]. A typical
example of this method is logging in to the application
through a social media account. In this case, social media
is an authentication service, and the application entrusts
the user authentication function to the selected social
network.

This method is as follows - an identification data
provider gives reliable information about the user in the
form of a token and the service provider application uses
this token for user identification, authentication and
authorization. The identification data provider is most
often used in standards of the OAuth 2.0 type that uses
authentication delegating. The identification data provider
can be bypassed in some cases of token-based
authentication. For example, some implementations with

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1030 A. Alghawli. : Analysis of Authentication Methods ...

Table 2: Advantages and disadvantages of using a JWT
token.

Advantages Disadvantages
Server scalability does not
change with an increase in
the number of users.

JWT is much bigger than a
cookie session identifier.

JWT is stateless - a
web application is not
required to store session
data on a server, which
reduces the server load,
improves performance and
scalability.

JWT cannot revoke access
to the user.

JWT contains more
information about the user.

A token is stored on the
user’s side, which makes it
vulnerable for attackers.

Portability - enables
cross-domain and cross-
platform authentication and
authorization.

Vulnerability to theft, i.e. if
someone steals a JWT from
the user or system, they
can use it to misappropriate
their identity and get access
to their resources.

Adaptability - includes any
information relating to a
web application that allows
access to be controlled in
a precise and personalized
manner.

a JWT token do not require an additional identification
data provider to generate the token. The server itself
creates the token and sends and receives it from the client.

3.3 JSON Web Token-Based (JWT)
Authentication

JWT is a mechanism used for checking the owner of
some JSON data. It is an encoded line which can contain
an unlimited amount of data (unlike a cookie) and has a
cryptographic signature [26]. When a server gets a JWT,
it can guarantee that data in this line is reliable as it is
signed with a cryptographic signature. No intermediary
can change a JWT once it has been sent. It should be
noted that a JWT guarantees data ownership but not
encryption, i.e. JSON data stored in a JWT is not
encrypted and it can be seen when a token is intercepted.
In this connection it is highly recommended to use
HTTPS with a JWT. One of the most complicated issues
about a JWT is where to store a token. Thus, JWT-based
authentication security will depend on the settings of the
website developer. A token must be stored in a secure
place in the user’s browser: a local storage/session
storage, a cookie, or application memory.

In the first case, if a token is stored inside a Local
Storage or Session Storage, it is available to every script
on the web page. A Cross-site scripting (XSS) attack can

allow an attacker to gain access to tokens. It is not
recommended to store tokens in a local storage or session
storage. In the second case, tokens stored in cookies are
vulnerable to CSRF (Cross-site request forgery) attacks.
Therefore, it is also not recommended to store them in
cookies.
If any of the scripts included in the web page are
discredited, the attacker will be able to access all the
tokens stored in browsers. That is why the best solution is
to store the token in the application memory itself, which
cannot be accessed by conventional methods. Table (2)
shows the advantages and disadvantages of using a JWT
token.

3.4 Access/Refresh Token-Based Authentication

To make JWT-based authentication more secure tokens
are divided into Access and Refresh types [27, 28]. An
access token is used to authorise requests and store
additional information about the user. A refresh token is
given by a server upon successful authentication and is
used to obtain a new pair of Access/Refresh tokens. It is
most commonly stored in a server database. Each token
has its own lifespan, for example, Access - 30 minutes,
while Refresh expires after 60 days. The Refresh token is
stored on the server to keep track of access and disable
stolen tokens. This way, the server determines exactly
who is allowed to log in.

To make authentication possible on more than one
device, you need to store all Refresh tokens for each user.
At the moment of Refresh, i.e. when the Access token is
updated, both Access and Refresh tokens are updated. At
the moment of Refresh, the Refresh token compares itself
with the Refresh token in the database, and if they match
and the refresh token has not expired yet, the system
updates the tokens. The Refresh token has a lifespan in
case the user is offline for more than 60 days, in which
case they will have to re-enter their login/password.

A browser fingerprint is a tool for identifying a user’s
browser. It is hash generated on the basis of some unique
browser parameters. The advantage of a fingerprint is that
when it is generated, this value is unique for a particular
user’s browser and will not change in the future. Therefore,
it is very difficult to compromise a browser fingerprint.

3.5 SAML Authentication

SAML is a standard of authentication and authorization, a
variant of an extensible markup language XML for
information exchange about security on the Internet.
SAML exchange is done between system entities referred
to as a SAML asserting party (also called SAML
authority) and a relying party that processes assertions it
has received [25, 27]. Security assertion is a standardized
assertion in a markup language that takes solutions
regarding access control.

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1027-1038 (2025) / www.naturalspublishing.com/Journals.asp 1031

Table 3: Advantages and disadvantages of the most common authentication methods.

Method Advantages Disadvantages
Cookies Easy to implement and widely supported, it stores data

about a session, settings or other data necessary for user
identification or customizing user experience.

Vulnerable to CSRF attacks, add overheads to each
request, limit the size and number.

JWT Stateless, can carry more data, can support several
domains or services, and can be checked by anyone who
has access to the key.

Vulnerable to XSS attacks, has a fixed lifespan, and
cannot be easily withdrawn or updated.

OAuth Allows the user to provide access to their resources
or data from one website to another website without
exchanging credentials and can use different types of
tokens, such as JWT, API tokens or SAML assertions.

Complicated and requires the participation of many
parties and interactions, it creates definite security risks,
such as phishing attacks, token leakage or repeated
playback.

SAML Allows the user to log in to one website and access
another website without re-entering credentials, uses
assertions that contain user identity data, attributes or
authorization decisions, can be signed and encrypted
by the identity provider and verified by the service
provider.

It is complicated and requires XML processing and
parsing, and has some performance issues due to the
size and number of messages involved.

OpenID Allows the user to log in to one website and use their
identifier to access another website without creating
an account or re-entering credentials, can use different
types of tokens to represent identification information.

Complicated, requires the participation of many parties
and interaction, and creates definite security risks,
such as phishing attacks, token leakage or forgery of
identifiers.

SAML-based single sign-on (SSO) can be categorized
into two primary approaches: identity provider
(IdP)-initiated and service provider (SP)-initiated. In both
cases, the IdP handles user authentication, but they differ
in their initiation processes. In IdP-initiated SSO, the user
begins by logging into the IdP, which then directly
authenticates the user and issues a SAML response.
Conversely, SP-initiated SSO starts when the user
attempts to access the SP. Here, the SP generates a SAML
request, redirects the user to the IdP for authentication,
and, upon successful verification, returns the user to the
SP to finalize the login process.

3.6 OpenID Connect Authentication

OpenID Connect is an authentication protocol built on
OAuth 2.0, enabling standardized user authentication and
secure identity data sharing with third-party
applications [25, 27]. The key distinction between OAuth
2.0 and OpenID Connect lies in their token systems.
OAuth 2.0 primarily issues short-lived access tokens,
which grant applications permission to access specific
resources. In contrast, OpenID Connect generates identity
tokens, which verify user identity and transmit
authenticated user data to applications. While both
protocols employ similar operational workflows, their
token purposes differ fundamentally: access tokens
facilitate authorization (resource access), whereas identity
tokens handle authentication (identity verification).

3.7 Advantages and Disadvantages of Different
Authentication Methods

Several methods are used to authenticate web
applications, namely cookies, JWT, OAuth, API Token,
SAML and OpenID described above. Depending on the
usage scenario and security requirements, they have
different advantages and disadvantages, as shown in table
(3).

Since it is difficult to draw conclusions from the
general comparison, we will make a more detailed
comparison of Cookie and JWT token, OAuth and SAML
authentication methods.

4 Comparison of Authentication Methods

4.1 Comparison of Cookie and JWT Token
Application

At the moment the most widely used authentication
methods are Cookie sessions and a JWT token [27]. Table
(4) shows the results of the comparison of these 2
methods by such parameters as scalability, security,
RESTful API services, and performance. It should be
noted that a standard implementation of a JWT token
algorithm without any specific changes is considered. An
example is a Refresh token.

Taking into account the results of the analysis it can
be concluded that a cookie session authentication method
fades into the background compared to a JWT token. In the
context of using a JWT token with small-size applications,
a usual JWT authentication without a refresh token can

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1032 A. Alghawli. : Analysis of Authentication Methods ...

Table 4: Parameters of using Cookie and JWT token authentication methods.

Parameters Cookie sessions JWT token
Scalability Session data is stored in memory on a server or

in a database. In the horizontal scaling scenario, a
separate central session storage system is created
that can be accessed by all application servers.

Easy to scale, as tokens can be used to access
resources from different servers, which saves costs,
as no separate server is required to store user
sessions.

Security In the case of cookie sessions, all data is stored on
a server, so it is considered relatively secure.

Due to signing with a secret key on the server, a
token cannot be changed undetected without access
to the secret key. Storing the token anywhere other
than in the application memory is very risky.

API RESTful
Services

The state of the application is saved. The API
interface is often served from one server, but in
reality, the application uses it from another.

RESTful API is stateless, thus it is not important
where API or an application is serviced.

Performance Overheads are not high because when encoding the
size of JWT will be several times the size of the
SESSION identifier.

A significant load for each HTTP request. However,
JWTs trade size for the ability to store data on the
client side. For example, privileges in the token
itself or user id.

be used, which will completely replace cookie sessions. If
it is necessary to use a JWT with middle and large-size
applications, a combination of access/refresh tokens and
browser fingerprints can be used.

4.2 Comparison of OAuth and SAML
Authentication and Authorization Methods

To achieve the objectives of the paper and perform
authentication in a web application, it is necessary to use
a single sign-on (SSO) account. The advantage of the
SSO account is that users log in once using a single set of
credentials, and they can get access to multiple services
and applications during a single session [27]. SSO is used
to control authentication and secure access to corporate
networks, web applications, etc. The most commonly
used standards for SSO implementation are SAML
(Security Assertion Markup Language), OAuth and, less
commonly, OpenID Connect. The results of the analysis
of the use of SAML and OAuth methods for the
implementation of single sign-on are shown in table (5).
Taking into account these comparisons, we have chosen 2
authentication methods to be implemented in a web
application: JWT tokens and OAuth 2.0. So let us
consider web application protection technologies used for
implementing a secure web application by means of these
authentication approaches.

5 Description of Technologies Used for Web
Application Implementation

We will analyze the authentication security of a web
application represented by a standard online store selling
electrical goods, which was developed and is standard
when ordering its development and is analogous to those
developed using the Shopify web application builder [29].

A web application is a division of a server module and a
client module. This division and technologies used in the
development allow us to call the client side of the
application a Single page application. A Single page
application (SPA) is a web application that interacts with
a web browser dynamically rewriting a current web page
with new data that was obtained by sending a request to
the web server endpoint, instead of the browser loading
entire new pages by default [27, 30]. The web application
implements the basic standard functionality of a modern
web application: Hypertext Transfer Protocol cookie
session-based authentication, access control with a
division into client and administrator user types, a
mechanism for working with the SQL database, and a
mechanism for working with the PayPal service. The
libraries used to develop the client side of the application
are shown in table (6).

A server side of the application was created in the
nodejs development environment with the express
auxiliary library and libraries shown in table (7), since the
server side does not include complex functionality in
working with data coming to the server.

Let’s conduct a qualitative analysis of attacks and
vulnerability risks for the standard proposed web
application based on the OWASP methodology and the
method of expert assessments [31], the results of which
are presented in table (8).

For a quantitative risk assessment the resulting risk is
assigned values from 1 to 5, where 1 is a very low risk, 2
is low, 3 is average, 4 is high and 5 is very high.
Correspondingly, values of the resulting risk for a
standard web application of an online shop is 49 with a
maximum risk value of 55 and a minimum risk value of
11. It is clear that standard implementation of the web
application has a big number of serious vulnerabilities the
risks of which are very high. That is why this web
application will be improved and a security system using
advanced vulnerability prevention methods and the best

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1027-1038 (2025) / www.naturalspublishing.com/Journals.asp 1033

Table 5: Parameters for using Security Assertion Markup Language and Open Authorization authentication methods.

Parameters SAML OAuth
Workflow Relies on XML-based security assertions

exchanged between a confirming party (SAML
authority) and a relying party.

Based on the interaction between the resource
owner, resource server, client (application) and
authorization server.

SSO (Single Sign-
On)

Enables Single Sign-On (SSO) by securely
transferring authentication and authorization data
between web servers.

Facilitates SSO by allowing authenticated users to
grant third-party applications access to their data
without sharing credentials.

Security It is considered to be more secure due to the
ability to encrypt assertions, which is suitable for
processing confidential data.

Uses delegated access tokens (not encrypted
assertions), prioritizing streamlined authorization
over assertion security.

Interoperability Preferred by organizations with existing XML
infrastructure or those requiring federated identity
management.

Supports various types of clients, including web,
mobile and desktop applications, making it valuable
for developers of mobile applications and services
on the open web.

Major Factors Evolution of SSO, expansion of federated identity
management, changing industry standards.

Simplicity for developers, need for limited
exchange of user information with other
applications, and joint advertising activities
between large Internet companies.

Encoding and
Security

Supports assertion encryption, ensuring secure data
exchange in high-stakes environments.

Focuses on token-based access control without
built-in token encryption standards.

Compatibility This can work alongside OAuth in systems that
need both authentication and authorization to
manage access control.

May use SAML for initial identity verification
before issuing OAuth tokens for resource access.

Usage Options Multi-domain SSO is ideal for large organizations
and enterprise applications such as Salesforce and
Marketo

User privacy provides access to private resources
on different websites or in different applications
without transferring user identification data.

Recommendations
for Implementation

Optimal for organizations investing in XML-based
security and federated authentication.

Recommended for modern mobile applications, as
well as in cases where API access is a priority,
especially on the open Internet.

Table 6: List of technologies used on the client side.

Name Description of the technology
React Library used as a basis for creating SPA applications
MobX A library that allows the client side to store data in a centralized storage. This storage

simplifies the application development.
MobX-router A library that connects to the MobX centralized storage and provides an easy way to

navigate the application
MobX-react A library that makes it possible to use react and MobX in combination
antd A library that provides a large number of ready-made solutions for implementing the visual

part of the application
axios A library to make it easier to work with network requests
webpack A library to facilitate general development and efficiently collect the code of the client side

to send it to the hosting

Table 7: List of technologies used on the server side.

Name Description of the technology
express Library used as a basis for building the server side
body-parser The library is needed to process and understand the data coming to the server
axios Library to facilitate work with network requests
http-error Library for standardized generation of http errors
moment Library for standardized work with dates
lodash A library that provides a large number of useful functions for working with different types

of data
dotenv Auxiliary library for processing files with the .env extension
PayPal-node A library that interacts with the PayPal money transaction service

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1034 A. Alghawli. : Analysis of Authentication Methods ...

Table 8: Qualitative risk assessment for a standard web application of an online shop.

Name of a Risk Vulnerability Type Losses Probability of
Occurrence

Resulting Risk

Sending malicious code to a
server from a client through
unsecured input fields

SQL injection Very high High High

Receiving and processing
malicious code by a server

SQL injection Very high Very high Very high

Password cracking Authentication violation High Very high Very high
Session token theft Authentication violation High Very high Very high
Disclosure of passwords in case
of unauthorised access to the
database

Disclosure of confidential
information

Very high Very high Very high

Confidential data theft during
traffic interception

Disclosure of confidential
information

Very high Very high Very high

Gaining unauthorised access to
an administrator account

Violation of access control High High High

Gaining unauthorised access to
administrator functions

Violation of access control High High High

Entering malicious code into
the client side of an application

XSS High Low Average

Vulnerability of sending
confidential data via an
attacker’s website

CSRF High Average High

Late detection of vulnerabilities
in the system

Insufficient logging and
monitoring

Very high Very high Very high

authentication methods will be built. Such a system will
minimise the risk of attacks and reduce the probability of
vulnerabilities being exploited.

5.1 Technologies of the Server Side of the
Improved Web Application

While improving the web application and implementing
secure authentication methods it is necessary to develop a
web application server having chosen secure, fast and
effective technologies. The server side is based on the
Nodejs technology, which is used with the Express
framework, as in the standard implementation of the web
application. For regular authentication, we used the
jsonwebtoken library, which allows us to generate and
verify a JWT. Passportjs authentication library together
with passport-facebook-token, a complimentary
authentication strategy, were used as OAuth 2.0
authentication. Hosting and certification of the server is
provided by the Heroku cloud service. PostgreSQL, also
hosted by Heroku, is chosen as a database. A more
detailed list of the libraries used in the development of the
server side of the application is given in table (9).

Now it is necessary to choose technologies to be used
on the client side.

Table 9: A detailed list of the libraries used on the server.

Name Library description
bcryptjs Library for encoding data on the basis

of a secret
body-parser This library is needed for the server to

read data coming from the client side of
the web application

cookie-parser This library is needed for the server
to read cookies coming from the client
side of the web application

cors This library is needed for the server to
perceive requests from the client side of
the web application

pg This library is needed for interaction
with PostgreSQL database

express-
promise-router

Library that helps the server to define
endpoints which the client will access

express-
dynamic-
middleware

Complimentary library for
authentication

5.2 Technologies of the Client Side of the
Improved Web Application

JavaScript used with the React framework was taken as a
base of the client part. To initiate OAuth 2.0
authentication, we used the react-facebook-login library,
which provides an opportunity to start the authentication
process using the Facebook service. Hosting and

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1027-1038 (2025) / www.naturalspublishing.com/Journals.asp 1035

Table 10: A detailed list of the libraries used on the server

Name Library description
React-router The library that helps to navigate

between pages on the client side and
ensures safe routing.

Axios The library that helps the client side
to make requests to the server and add
all the necessary information to these
requests.

Redux Library that provides the client side
with a centralized data repository.
A number of other supporting
technologies follow from this
technology.

Redux-thunk The library that helps the client-side
work with server requests.

Redux-form The library that helps the client side to
work with forms and check the validity
of data submitted to this form.

material-ui The library for facilitating work with
the visual part of the client side.

Js-cookie The library for working with cookies on
the client side.

certification of the client is provided by the Heroku cloud
service. A more detailed list of the libraries used in the
development of the client side of the web application is
shown in table (10).

Authentication of the application will be made in 2
ways:

−JWT token authentication for users who don’t use
Facebook;

−OAuth 2.0 authentication and Facebook authentication.

JWT Token Authentication

To complete JWT Token Authentication in the application
we used a strategy with the use of an Access / Refresh
token. To identify a user, browser fingerprints are applied,
which allows you to track the second browser from which
the request to the server was made.

After sending user data (email, login, password,
browser fingerprint) to the server, it registers the user and
adds this data to a PostgreSQL database. All passwords in
a PostgreSQL database are stored in a salted hashed
format for this application implementation. It is done to
prevent user password theft if a database is compromised
by an attacker. After registering the user can reenter their
data and authenticate for further authorization on the
website.

Website authentication is done in such a way that the
server compares user data. If the user is found in a
database, then they are given Access/Refresh tokns that
will be used for access to secure API endpoints. To
prevent new Access tokens from being tampered with, a

Refresh token additionally compares browser fingerprints
and, if the data matches, issues a new Access token.
Otherwise, the Refresh token is destroyed. This
destruction initiates re-authentication.

OAuth 2.0 Authentication.

In addition to conventional authentication, the application
also implements OAuth 2.0 authentication. Figure 1
shows a schematic view of OAuth 2.0 authentication in
this application.

In this implementation an authentication strategy
allows the user to log in to the website from Facebook.
The client who authenticates through Facebook entrusts
access to some of their data. The server, in its turn, gains
access to Facebook with the user’s data and gives the user
who has been authenticated through Facebook the full
right to access and use protected information from secure
API endpoints.

The authentication process begins on the client side
when the client provides his or her Facebook account
details via OAuth. It is done with the help of a pop-up
window presented by the Facebook service. Data is
transmitted in this window using the HTTPS protocol, so
the possibility of data theft during sending is minimal.
After granting permission, the client receives a token that
will be sent to the server. Once sent, the server processes
the token and transmits it back to Facebook in exchange
for the data of the client who sent the token.

The list of data that comes from Facebook can be
customized by the user. After the user confirms the list of
data, the server saves the new user’s data (browser
fingerprints, Facebook refresh token, Facebook ID) to a
separate collection in the database, which is designed
specifically for those who have authenticated via
Facebook. After saving the user into the database, the
server sends the user Refresh and Access tokens
generated by Facebook and the user’s profile data from
Facebook. The next time the user logs in, the server will
be able to request this data from the database and verify
the user’s authenticity.

6 Efficiency Analysis of the Proposed
Authentication Methods

To define the quality of the implemented web application
authentication methods, a qualitative assessment was
carried out during authentication with the help of the JWT
Access/Refresh token and OAuth 2.0 using browser
fingerprints. The web application and security features
were configured as described above. Attacks and
vulnerabilities risks for the developed web application
were assessed on the basis of the OWASP methodology
and the expert assessments method [31] applying JWT
Refresh and Access tokens and OAuth 2.0 authentication

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1036 A. Alghawli. : Analysis of Authentication Methods ...

Fig. 1: OAuth 2.0 scheme in the application implementation

Table 11: Qualitative risk assessment of a web application with the implementation of security functions

Name of a Risk Vulnerability Type Losses Probability of Occurrence Resulting Risk
JWT OAuth JWT OAuth

1 2 3 4 5 6 7
Sending malicious code to a
server from a client through
unsecured input fields

SQL injection Low Very low Very low Very low Very low

Receiving and processing
malicious code by a server

SQL injection Low Very low Very low Very low Very low

Password cracking Authentication
violation

Low Very low Very low Very low Very low

Session token theft Authentication
violation

Average Average Low Average Low

Disclosure of passwords in
case of unauthorised access
to the database

Disclosure of
confidential
information

Low Very low Very low Very low Very low

Confidential data theft during
traffic interception

Disclosure of
confidential
information

Very low Very low Very low Very low Very low

Gaining unauthorised access
to an administrator account

Violation of access
control

Average Very low Low Low Low

Entering malicious code
into the client side of an
application

XSS Very low Very low Very low Very low Very low

Vulnerability of sending
confidential data via an
attacker’s website

CSRF Low Very low Very low Very low Very low

Late detection of
vulnerabilities in the system

Insufficient logging
and monitoring

Low Average Average Average Average

approaches. The results of the assessment are shown in
table (11).

For a quantitative risk assessment, the resulting risk is
assigned values from 1 to 5, where 1 is a very low risk, 2
is low, 3 is average, 4 is high, and 5 is very high. The
maximum risk value is 55, and the minimum risk value is
11. Correspondingly, the value of the resulting risk for
JWT Refresh and Access token authentication is 15, and
for OAuth 2.0 is 14, which is a rather low value. As can
be seen from Table 11 two points have an average risk
level, namely “Late detection of vulnerabilities in the

system” and “Session token theft”. As for late detection
of vulnerabilities, it depends on the human factor. No
matter how reliable a logging system is, a person may still
not notice a threat that has already been logged.
Regarding the session token theft vulnerability: since the
role of session tokens is played by JWT cookies, they can
still be stolen through the Stealer malware. In this case,
theft can be carried out directly from the victim’s file
system when Stealer malware enters the victim’s
computer, which depends on its security. Thus, using
OAuth 2.0 with browser fingerprints is more secure than

© 2025 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 5, 1027-1038 (2025) / www.naturalspublishing.com/Journals.asp 1037

JWT Refresh and Access token authentication, but the
difference in risk is minimal, so any of the implemented
protocols can be used.

7 Conclusion

In this paper, the tasks of analyzing authentication
methods and securely implementing authentication
methods with the integration of JWT tokens and the
OAuth v2.0 standard based on developed web
applications were solved. For this purpose, the most
known authentication methods have been analyzed:
Hypertext Transfer Protocol cookie sessions, JWT tokens,
OAuth 2.0, OpenID, and SAML. It has been established
that each of these authentication methods has
disadvantages, which means that there are risks when
using them and the need to configure these methods in
their software implementation. A standard web
application has been created for an online shop with the
help of the Shopify website builder with authentication
based on the Hypertext Transfer Protocol cookie session.
The vulnerabilities and attack risks of this web
application have been analyzed. The analysis shows that
vulnerabilities and attack risks on the application are very
high, which implies the need to improve the
authentication, settings and security features of the web
application. Taking into account the analysis of
vulnerabilities and attack risks of the developed standard
web application and the advantages and disadvantages of
authentication methods, the web application has been
improved: authentication methods, application settings
and security features. For authentication, we chose to use
a combination of a JWT Access/Refresh token with
browser fingerprints and OAuth 2.0 delegating
authentication to the Facebook service. An analysis of
vulnerabilities and attack risks for this web application
has been carried out, which showed that these risks for
the improved application are very low. It is shown that
one of the most secure methods of ensuring user data
security in a web application is the use of a combination
of a JWT Access/Refresh token and browser fingerprints.
Another secure authentication method implemented in the
web application is the OAuth 2.0 authentication method
with delegation of authentication to the Facebook service.
Configuration of this method has shown that
vulnerabilities and attack risks for the web application are
very low when using it. It is noted that such
authentication methods can be compromised only when
the client sends initial information with browser
fingerprints for the first time, but the probability of this is
very low since all information is always transmitted via
HTTPS secure connection. The results of this research
should be used to implement authentication in web
applications from small to medium sizes. In the future, it
is necessary to improve the level of protection of the web
application and the authentication process, as well as

approaches to assessing the quality of the developed web
application.

Acknowledgments

This study is supported via funding from Prince Sattam
bin Abdulaziz University [project number:
PSAU/2025/R/1446].

Conflicts of Interest

The author declares no conflict of interest.

References

[1] B. W. Loo, P. L. Tan and W. Y. Tey, S. K.and Chin,
Authentication methods selection in information security
through hybrid ahp and egt, Journal of Advanced Research
in Applied Sciences and Engineering Technology 50(2)
(2025) 171–185.

[2] T. Radivilova, I. Dobrynin, O. Lemeshko, D. Ageyev
and A. Ilkov, Analysis of approaches of monitoring,
intrusion detection and identification of network attacks,
IEEE 8th International Conference on Problems of
Infocommunications, Science and Technology (PIC S & T),
Kharkiv, Ukraine (2021) 631–634.

[3] T. Radivilova, L. Kirichenko, A. S. Alghawli, A. Ilkov,
M. Tawalbeh and P. Zinchenko, The complex method
of intrusion detection based on anomaly detection and
misuse detection, IEEE 11th International Conference
on Dependable Systems, Services and Technologies
(DESSERT), Kyiv, Ukraine (2020) 133–137.

[4] M. TajDini, V. Sokolov, I. Kuzminykh and B. Ghita,
Brainwave-based authentication using features fusion,
Computers & Security 129 (2023) p. 103198.

[5] Symantec’s annual threat report reveals more
ambitious and destructive attacks. 19 Feb, 2019
https://symantec-enterprise-blogs.security.com/
threat-intelligence/istr-24-cyber-security-threat-landscape.

[6] D. Holubnychyi, V. Martovytskyi, I. Ruban, O. Sievierinov,
V. Lebediev and V. Tretiak, Functional model of
computer networks security information, in 2021
IEEE 8th International Conference on Problems of
Infocommunications, Science and Technology (PIC S&T),
IEEE2021, pp. 559–563.

[7] Z. Hu, S. Petoukhov, I. Dychka and M. He, Advances
in computer science for engineering and education
ii, in International Conference on Computer Science,
Engineering and Education Applications (ICCSEEA),
Springer Cham2020.

[8] Owasp top 10 api security risks – 2023 https://owasp.org/
API-Security/editions/2023/en/0x11-t10/.

[9] A. C. and C. M., The prevalence of single sign-on on
the web: Towards the next generation of web content
measurement, in Proceedings of the 2023 ACM on Internet
Measurement Conference, DOI:10.1145/3618257.3624841.

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
https://symantec-enterprise-blogs.security.com/threat-intelligence/istr-24-cyber-security-threat-landscape
https://symantec-enterprise-blogs.security.com/threat-intelligence/istr-24-cyber-security-threat-landscape
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
DOI: 10.1145/3618257.3624841.


1038 A. Alghawli. : Analysis of Authentication Methods ...

[10] N. Shaikh, K. Kasat and S. Jadhav, Secured authentication
by single sign on (sso): A big picture, in 2022 International
Conference on Computing, Communication, and Intelligent
Systems (ICCCIS), IEEE2022, pp. 951–955.

[11] G. Schmitz, Privacy-preserving web single sign-on: Formal
security analysis and design, It-Information Technology
64(1-2) (2022) 43–48.

[12] M. Al-Shabi, A. Bennour, M. Al-Sarem, O. I. Khalaf,
R. Sikder and S. Algburi, Enhancing security in openid
connect single sign-on (sso) systems: a comprehensive
vulnerability analysis and mitigation approach, in 4th
International Conference on Distributed Sensing and
Intelligent Systems (ICDSIS 2023), 2023, IET2023, pp. 50–
60.

[13] M. Al Shabi and R. R. Marie, Analyzing privacy
implications and security vulnerabilities in single sign-on
systems: A case study on openid connect., International
Journal of Advanced Computer Science & Applications
15(4) (2024).

[14] E. S. Mansur, A. Rahmatulloh, R. N. Shofa and
I. Darmawan, Aman: Token-based authentication to
improved single sign-on security between systems, in 2023
International Conference on Advancement in Data Science,
E-learning and Information System (ICADEIS), IEEE2023,
pp. 1–6.

[15] S. Sharma and K. Jevitha, Security analysis of oauth
2.0 implementation, in 2023 Innovations in Power and
Advanced Computing Technologies (i-PACT), IEEE2023,
pp. 1–8.

[16] J. Singh and N. K. Chaudhary, Oauth 2.0: Architectural
design augmentation for mitigation of common security
vulnerabilities, Journal of Information Security and
Applications 65 (2022) p. 103091.

[17] F. Al-Husari, Designating a leader browser tab to
perform refreshing of access token in oauth 2.0, in 2023
International Scientific Conference on Computer Science
(COMSCI), IEEE2023, pp. 1–4.

[18] D. Shevchuk, O. Harasymchuk, A. Partyka and
N. Korshun, Designing secured services for authentication,
authorization, and accounting of users, Cybersecurity
Providing in Information and Telecommunication Systems
3550 (2023) 207–225.

[19] J. Park, J. Kim, M. Park and S. Jung, A study of oauth 2.0
risk notification and token revocation from resource server,
in Information Security Applications: 16th International
Workshop, WISA 2015, Jeju Island, Korea, August 20–22,
2015, Revised Selected Papers 16, Springer2016, pp. 281–
287.

[20] C. Mainka, V. Mladenov and J. Schwenk, Do not trust me:
Using malicious idps for analyzing and attacking single
sign-on, in 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), IEEE2016, pp. 321–336.

[21] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann and
M. Jensen, On breaking {SAML}: Be whoever you want to
be, in 21st USENIX Security Symposium (USENIX Security
12), 2012, pp. 397–412.

[22] S.-T. Sun and K. Beznosov, The devil is in the
(implementation) details: an empirical analysis of oauth sso
systems, in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 378–390.

[23] C. Mainka, V. Mladenov, J. Schwenk and T. Wich, Sok:
single sign-on security—an evaluation of openid connect, in
2017 IEEE European Symposium on Security and Privacy
(EuroS&P), IEEE2017, pp. 251–266.

[24] P. A. Grassi, E. M. Newton, R. A. Perlner, A. R.
Regenscheid, W. E. Burr, J. P. Richer, N. B. Lefkovitz, J. M.
Danker, Y.-Y. Choong, K. Greene et al., Digital identity
guidelines: authentication and lifecycle management
(2017).

[25] S. K. Dash and S. Dash, Ultimate Web Authentication
Handbook

[26] M. Jones, J. Bradley and N. Sakimura, Json web token (jwt),
tech. rep. (2015).

[27] I. Alsmadi, R. Burdwell, A. Aleroud, A. Wahbeh, M. A.
Al-Qudah and A. Al-Omari, Practical information security,
Cham: Springer 78(3) (2018).

[28] Rfc 6749. oauth 2.0 refresh token. 2020 https://oauth.net/2/
grant-types/refresh-token.

[29] 10 best e-commerce website builders compared in
2024. 2024. https://www.websiteplanet.com/blog/
best-website-builders-ecommerce-websites/.

[30] Single page apps in depth. 2013 http://singlepageappbook.
com/goal.html.

[31] A. S. A. Alghawli and T. Radivilova, Resilient cloud
cluster with devsecops security model, automates a
data analysis, vulnerability search and risk calculation,
Alexandria Engineering Journal 107 (2024) 136–149.

© 2025 NSP
Natural Sciences Publishing Cor.

https://oauth.net/2/grant-types/refresh-token
https://oauth.net/2/grant-types/refresh-token
https://www.websiteplanet.com/blog/best-website-builders-ecommerce-websites/
https://www.websiteplanet.com/blog/best-website-builders-ecommerce-websites/
http://singlepageappbook.com/goal.html
http://singlepageappbook.com/goal.html

	Introduction
	Publications Analysis and Problem Statement 
	Review of Authentication Methods 
	Comparison of Authentication Methods
	Description of Technologies Used for Web Application Implementation
	Efficiency Analysis of the Proposed Authentication Methods 
	Conclusion

