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Abstract: Rabies is a viral disease caused by the neurotropic virus belonging to the Lyssavirus genus. It is a fatal disease affecting
primarily the central nervous system of both humans and animals, resulting in inflammation of the brain and eventual death. In this
paper, we formulated a deterministic model for rabies to better understand the dynamics of transmission and control strategies in the
Ashanti Region of Ghana. Employing the nonstandard finite difference scheme, we establish key stability properties of the disease-free
equilibrium (E0) with epidemiological interpretations: Local asymptotic stability implies that if a small number of cases arise, the
disease will eventually fade out when the basic reproduction number is kept below 1. Global asymptotic stability demonstrates that
rabies can be eliminated even if it starts at high prevalence levels. The asymptotic nature of stability confirms that disease elimination
requires continuous intervention implementation over extended periods. The rabies model was expanded to incorporate an optimal
control strategy using treatment of exposed dogs, policy and education on good petting, and effective education and campaigns on
rabies. By optimizing our objective function, our optimal control analysis demonstrates that integrating effective public education and
awareness campaigns, with the treatment of exposed dogs offers a highly effective strategy with strong long-term potential to reduce
rabies transmission in the Ashanti Region of Ghana.
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1 Introduction

Rabies is among the earliest documented diseases, with
instances recorded as far back as 4000 years ago.
Throughout the majority of human history, a bite from a
rabid animal was uniformly fatal. Many would commit
suicide after being bitten by a potentially rabid animal in
the past due to the extreme fear of rabies [1]. It is a viral
disease brought on by the neurotropic rabies virus, which
is a member of the Lyssavirus genus. The two
components of the rabies virus belong to the Lyssavirus
genus within the Rhabdoviridae virus family. The most
typical way for the virus to spread is through the bite of
an infected mammal, both domestic and wild. However,
saliva can also transfer the virus through cuts in the skin
or mucous membranes [2].

Rabies symptoms typically appear in stages after an
incubation period, which can last anywhere from a few
days to several months, depending on the location of the
bite, viral load, and other factors. During this time, the
host experiences initial symptoms like fever,
hallucinations, paralysis, and eventually death [3]. It is
known as a fatal disease once the symptoms appear and
affects primarily the central nervous system of both
humans and animals, leading to brain inflammation and
eventual death.

According to research, rabies causes between 30,000
and 70,000 deaths annually, with less developed nations
being more severely affected. There aren’t many
documented human cases in the US, yet it could be
because post-exposure prophylaxis is so often used, and
there are preventative initiatives in place. Only around
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10% of rabies cases in affluent nations have been
transmitted by domesticated animals [4,5]. The primary
focus of treatment is prevention, which includes
education, monitoring, and vaccination programs for
domestic animals [6,7,8].

By comparing many potential techniques,
mathematical modeling aims to provide insight into the
cause of a disease, forecast its progression, and develop
some of the most effective strategies for controlling the
infectious disease [9,10]. Deterministic models increase
the general knowledge of the disease spread by offering a
theoretical frame that underlines elements that account
for the spread and control of diseases [11,12]. Optimal
control of deterministic models have shown to be the best
combating strategies, as they determine the best optimal
control mechanism and the most effective cost
minimization of infections diseases [13,14].

To understand the dynamics of rabies virus
transmission in dogs and predict the best control
measures, [15] proposed two mathematical models for her
study. A susceptible, exposed and infected (SEI) in the
absence of vaccination. And a susceptible, expose,
infected and recovered compartmental model in the
presence of vaccines. Their finding shows the disease can
be controlled by increasing and expanding dog
vaccination to a higher percentage and reducing annual
new birth of puppies simultaneously. The model of [16]
was formulated to deduce the effects of rabies and its
control in three populations, jackal, dog and human
beings. Their proposed strategies for mitigating the
disease was human vaccination, dog vaccination, culling
of dogs, dog sterilization and vaccination of jackals. Their
results shows the simultaneous implementation of dog
culling and dog vaccination is the most effective way of
suppressing the spread of the disease in Nepal.

[17] develop an SIR model to identified public
education on administration of both pre and post exposure
prophylaxis of rabies vaccine and practicing of
responsible dog ownership as the best way of controlling
rabies in Kenya. They argue that proper implementation
of public education can eliminate rabies in Kenya by
2030. [18] performed optimal control analysis by
considering vaccination, controlling of annual birth rate
of dogs and culling of dogs as their control measures.
MATLAB ode45 was used to investigate the numerical
simulations that were carried out. And their results shows
increasing dog vaccination and culling of dogs has the
most significant impact on the spread of the disease. The
study of [19] confirmed the robustness of the Non
Standard Finite Difference Scheme. [20] performed
optimal control analysis on an SERIV model to describe
the transmission dynamics of rabies in raccoons with
birth pulse. The model accounts for loss of vaccines due
to other factors other than raccoons eating the vaccine
baits. It was observed from the simulation that the closer
the detection of the infection is to the birth pulse, the
longer the period of vaccine distribution should take.

Despite the extensive literature on mathematical
modeling of rabies, deterministic models that incorporate
wound treatment of exposed persons’ as a way of
minimizing the risk of contracting rabies remain scarce.
This study aims at formulating a mathematical model
using nonstandard finite difference approach to analyze
the transmission dynamics of rabies and describe possible
ways to reduce the spread of the virus.

2 Model formulation and description

Graph 1 and 2 show the incidence of rabies in the Ashanti
Region of Ghana based on observed data from the
Veterinary office, Kumasi.

Fig. 1: Incidence of rabies among humans in Ashanti
Region from 2018-2023. Eh: exposed humans, Ih:
infectious humans, Vh: vaccinated humans. (Source:
Veterinary Office, Kumasi)

Figure 3 shows the mode of transmissions of rabies
disease among human beings and canines respectively in
the Ashanti Region. This Figure 3, is important as it
enlightens us about the rabies transmission dynamics in
animals and humans. We split our model in half,
considering both the total human population Nh(t) and the
total animal population Nd(t). At any time, Nh(t) is
divided into six compartments and Nd(t) into four
compartments. Hence, the models consist of a total of ten
compartments that represent the populations at any time t.
These are, the compartments forming the human
populations; susceptible Sh(t), Exposed Eh(t), Treated
Th(t), Infected Ih(t), Recovered Rh(t), Vaccinated Vh(t),
and Susceptible Sd , Exposed Ed , Infected Id , and
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Vaccinated Vd , the compartments forming the dog
populations.

Fig. 2: Incidence of rabies among dogs in Ashanti Region
from 2018-2023. Ed : exposed dogs, Id : infectious dogs, Vd :
vaccinated dogs. (Source: Veterinary Office, Kumasi)

.
Susceptible individuals are recruited by Λ and the rate

of human recovery from vaccination is κ . Rate of natural
mortality in human population is µ , with rabies induced
death rate in Ih compartment δ . The exposed individuals
treat their wounds at a rate τ whiles the treated persons
receive vaccination at Σ rate. The exposed individuals
become infected at a rate ν , and get vaccinated at η . The
rate of interaction between susceptible and exposed
humans is β . The treated individuals become infected at
ρ , and recovery of treated individuals from their injuries
is ψ . Susceptible dogs are recruited by A, mass
vaccination at a rate n and the rate of their interaction
with exposed dogs is B. Dogs die at a natural death rate of
m, with rabies induced death rate in infected dogs f .
Exposed dogs become infected at a rate r and receive
post-exposure prophylaxis at q. Hence the total
population N(t) = Nh(t)+Nd(t), where

Nh(t) = Sh(t)+Eh(t)+Th(t)+ Ih(t)+Rh(t)+Vh(t) (1)

and

Nd(t) = Sd(t)+Ed(t)+ Id(t)+Vd(t). (2)

Fig. 3: Schematic diagram of the formulated rabies
transmissions dynamics of rabies disease among human
beings and canines

2.0.1 Model assumptions

–The model assume, dogs and human beings interact
homogeneously because most dogs are free roaming
dogs and most people in the region use the streets and
other open spaces.

–Both dogs and humans are recruited by birth.
–Natural death rate is constant for dogs in all
compartments and humans in all compartments.

–All infected humans and dogs die without recovery, but
vaccinated humans do recover from adverse effects of
the vaccine.

–Age, sex, breed and weather conditions do not affect
the disease spread.

The system of model equations from Figure 3 are given
below: 

S′h(t) = λ +(α)Rh −βShId −µSh
E ′

h(t) = βShId − (ν +η + τ +µ)Eh
T ′

h(t) = (τ)Eh − (Σ +ρ +ψ +µ)Th
I′h(t) = (ρ)Th +(ν)Eh − (µ +δ )Ih
R′

h(t) = (ψ)Th +(κ)Vh − (α +µ)Rh
V ′

h(t) = (η)Eh +(Σ)Th − (κ +µ)Vh
S′d(t) = A− (BId +n+m)Sd
E ′

d(t) = BSdId − (r+q+m)Ed
I′d(t) = (r)Ed − (m+ f )Id
V ′

d(t) = (n)Sd +(q)Ed − (m)Vd

(3)

3 Model analysis

3.1 Existence and uniqueness of solutions

To ensure the validity of our rabies transmission model,
we establish the existence and uniqueness of solutions to
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the system of differential equations. Let the system (3) be
written in the compact form

dX
dt

= F(t,X(t)), X(0) = X0, (4)

where X(t) = (Sh,Eh,Th, Ih,Rh,Vh,Sd ,Ed , Id ,Vd)
T ∈ R10,

and F : [0,T ]×R10 → R10 is the vector field determined
by the right-hand side of the model equations (3).

We consider the Banach space C([0,T ],R10) of
continuous functions from [0,T ] to R10 equipped with the
supremum norm:

∥X∥= sup
t∈[0,T ]

∥X(t)∥∞,where ∥X(t)∥∞ = max
1≤i≤10

|Xi(t)|.

(5)
The function F(t,X) is composed of continuously
differentiable (polynomial or bilinear) terms, which
implies that it is locally Lipschitz in X. Therefore, for any
closed and bounded domain D ⊂ R10, there exists a
constant L > 0 such that:

∥F(t,X1)−F(t,X2)∥∞ ≤ L∥X1 −X2∥∞, ∀ X1,X2 ∈ D,
(6)

and F(t,X) is Lipschitz continuous in X. We want to
show that by applying the Banach fixed point theorem,
there exists a unique fixed point X(t) ∈ C([0,T ],R10),
which is the unique solution to system (3). Let define the
operator T on C([0,T ],R10) by:

(T X)(t) = X0 +
∫ t

0
F(s,X(s))ds. (7)

Then for any X,Y ∈C([0,T ],R10), we have:

∥(T X)(t)− (T Y)(t)∥∞

=

∥∥∥∥∫ t

0
[F(s,X(s))−F(s,Y(s))]ds

∥∥∥∥
∞

≤
∫ t

0
∥F(s,X(s))−F(s,Y(s))∥∞ ds

≤ L
∫ t

0
∥X(s)−Y(s)∥∞ ds

≤ LT∥X−Y∥.

Thus, ∥T X − T Y∥ ≤ LT∥X − Y∥. Choosing T > 0
sufficiently small such that LT < 1, the operator T
becomes a contraction on the closed ball in C([0,T ],R10).
Hence, by the Banach Fixed Point Theorem, T admits a
unique fixed point in C([0,T ],R10), which corresponds to
the unique solution of the system on [0,T ].

Lemma 1. Existence of solution
Let F(t,X) be Lipschitz continuous in X as defined in (6)
such that X(t) ∈ C([0,T ],R10) is a unique solution. Then
a solution exists to the system (3) bounded in the domain
D.

Proof. Given F(t,X) the right hand side of the model
equation (3). We show that ∂Fi(t,X)

∂X j
∀ i, j = 1,2, · · ·10 is

continuous and bounded. From system (3),

∂F1(t,X)
∂Sh

=−(β Id +µ) and
∣∣∣ ∂F1(t,X)

∂Sh

∣∣∣= |β Id +µ|< ∞,

∂F1(t,X)
∂ Id

=−(βSh) and
∣∣∣ ∂F1(t,X)

∂ Id

∣∣∣= |βSh|< ∞,

∂F1(t,X)
∂Rh

= α and
∣∣∣ ∂F1(t,X)

∂Rh

∣∣∣= |α|< ∞,
∂F1(t,X)

∂Eh
= ∂F1(t,X)

∂Th
= ∂F1(t,X)

∂Vh
= ∂F1(t,X)

∂Sd
= ∂F1(t,X)

∂Ed
=

∂F1(t,X)
∂ Id

= ∂F1(t,X)
∂Vd

= 0, and∣∣∣ ∂F1(t,X)
∂Eh

∣∣∣= ∣∣∣ ∂F1(t,X)
∂Th

∣∣∣= ∣∣∣ ∂F1(t,X)
∂Vh

∣∣∣= ∣∣∣ ∂F1(t,X)
∂Sd

∣∣∣=∣∣∣ ∂F1(t,X)
∂Ed

∣∣∣= ∣∣∣ ∂F1(t,X)
∂ Id

∣∣∣= ∣∣∣ ∂F1(t,X)
∂Vd

∣∣∣< ∞.

Similar approach shows ∀ i, j = 1,2, · · ·10,∣∣∣ ∂Fi(t,X)
∂X j

∣∣∣ < ∞. Thus following [21], we have verified that

∀ i, j = 1,2, · · ·10, ∂Fi(t,X)
∂X j

is bounded and continuous.
Hence, according to the Banach fixed point theorem, there
exists a unique solution of system (3) in the domain D.

Lemma 2. Boundedness of solutions
If Lemma (1) holds, where(

Sh(0),Eh(0),Th(0), Ih(0),Rh(0),Vh(0),Sd(0),Ed(0),

Id(0),Vd(0)
)T

is the initial conditions to system (3), then it’s solution
remains bounded ∀ t > 0.

Proof. Following [22], dNh
dt = λ −µNh −δ Ih. And

dNh
dt ≤ λ −µNh in the absence of disease-induced death.

Applying the method of integrating factors,
d
dt

(
Nheµt

)
≤ λeµt∫

d
(

Nheµt
)
≤
∫

λeµtdt

Nh ≤
λ

µ
(1− e−µt)

Nh ≤
λ

µ
, as t → ∞.

Thus,

Xh =
{
(Sh,Eh,Th, Ih,Rh,Vh) ∈ R6

+ : Sh +Eh +Th+

Ih +Rh +Vh ≤
λ

µ

}
(8)

A similar approach on the animal compartment shows
Nd ≤ A

m , as t → ∞ for

Xd =
{
(Sd ,Ed , Id ,Vd)∈R4

+ : Sd +Ed +Id +Vd ≤
A
m

}
(9)

Hence the solution set of the system (3) with initial
conditions remains in X, where
X =

{
(Xh,Xd) ∈ R6

+×R4
+

}
, ∀ t > 0.
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Lemma 3. Non-negativity of solutions
The solution of the model equation (3) is in X, if its initial
conditions are in X ∈ R10

+ .

Proof. The solution of equation (3) is an expression of the
form;

X(t) =
{

Sh(t),Eh(t),Th(t), Ih(t),Rh(t),
Vh(t),Sd(t),Ed(t), Id(t),Vd(t)

}
⊂ R10

+ (10)

Let H : X ∈ R10
+ →H(X) ∈ R10

+ , where

H(X) =



S′h(t) = λ +(α)Rh −βShId −µSh
E ′

h(t) = βShId − (ν +η + τ +µ)Eh
T ′

h(t) = (τ)Eh − (Σ +ρ +ψ +µ)Th
I′h(t) = (ρ)Th +(ν)Eh − (µ +δ )Ih
R′

h(t) = (ψ)Th +(κ)Vh − (α +µ)Rh
V ′

h(t) = (η)Eh +(Σ)Th − (κ +µ)Vh
S′d(t) = A− (BId +n+m)Sd
E ′

d(t) = BSdId − (r+q+m)Ed
I′d(t) = (r)Ed − (m+ f )Id
V ′

d(t) = (n)Sd +(q)Ed − (m)Vd


.

From the model equation (3),

S′h(t) = λ +(α)Rh −βShId −µSh

S′h(t)≥−(β Id +µ)Sh

Integrating both sides of the inequality gives;
lnSh ≥−(β Id +µ)t +κ

Sh ≥Ke−(β Id+µ)t

At t = 0, K= Sh(0) and Sh ≥ Sh(0)Ke−(β Id+µ)t .

Thus Sh(t) ≥ 0. Applying a similar approach to the
remaining compartments can be used to establish their
positivity. Therefore, for H(X) ∈ R10

+ , dX
dt =H(X), where

X(0) ≥ 0. Hence, there exists a non-negative solution of
the system (3) whenever its initial conditions are
non-negative following the existence and uniqueness
theorem established above.

3.2 Construction of nonstandard finite
difference scheme (NSFDS)

In this section we formulate a non-standard finite
difference scheme that preserves the discussed dynamics
of our continuous rabies model in equation (3) as
numerical approximation. As a numerical approximation,
we change the continuous time t ∈ [0,∞) to tn = n∆ t
where n = 1,2,3, .... and ∆ t is the time step-size. The
non-standard finite difference scheme used in this study
follows [23,24,25,26]. We shall enforce, two Mickens
rules in the construction of our NSFDS. These are, the
nonlinear terms are approximated in a non-local way.

Next, the complex denominator function φ(∆ t) is used in
place of the standard denominator ∆ t of the continuous
derivative. The justification and detailed application of
these rules are thoroughly discussed in [24], which
provides the theoretical foundation for their use in
constructing structure-preserving nonstandard finite
difference schemes. Hence, the NSFD scheme for the
rabies model (3) is given by



Sn+1
h −Sn

h
φ1(∆ t) = λ +(α)Rn+1

h −βSn+1
h In

d −µSn+1
h

En+1
h −En

h
φ2(∆ t) = βSn+1

h In
d − (ν +η +(τ)+µ)En+1

h
T n+1

h −T n
h

φ3(∆ t) = (τ)En+1
h − (Σ +ρ +ψ +µ)T n+1

h
In+1
h −In

h
φ4(∆ t) = (ρ)T n+1

h +(ν)En+1
h − (µ +δ )In+1

h
Rn+1

h −Rn
h

φ5(∆ t) = (ψ)T n+1
h +(κ)V n+1

h − (α +µ)Rn+1
h

V n+1
h −V n

h
φ6(∆ t) = (η)En+1

h +(Σ)T n+1
h − (κ +µ)V n+1

h
Sn+1

d −Sn
d

φ7(∆ t) = A− (BIn
d +n+m)Sn+1

d
En+1

d −En
d

φ8(∆ t) = BSn+1
d In

d − (r+q+m)En+1
d

In+1
d −In

d
φ9(∆ t) = (r)En+1

d − (m+ f )In+1
d

V n+1
d −V n

d
φ10(∆ t) = (n)Sn+1

d +(q)En+1
d − (m)V n+1

d

(11)

The functions φ(∆ t) replaces dt, the denominator of the
continuous system. And φ ≡ φ(∆ t) = ∆ t +O(∆ t2). Thus,
the nature of our model following the step-size function as
seen in [25,24] has

φ1(∆ t) = 1−e−µ∆ t

µ
,

φ2(∆ t) = 1−e−(µ+ν+η+τ)∆ t

µ+ν+η+τ
,

φ3(∆ t) = 1−e−(µ+Σ+ρ+ψ)∆ t

(µ+Σ+ρ+ψ) ,

φ4(∆ t) = 1−e
−
∣∣∣∣( βλ

µ −µ−δ

)∣∣∣∣∆ t

|( βλ

µ
)−µ−δ |

,

φ5(∆ t) = 1−e−(µ+α)∆ t

µ+α
,

φ6(∆ t) = 1−e−(µ+κ)∆ t

µ+κ
,

φ7(∆ t) = 1−e−m∆ t

m ,

φ8(∆ t) = 1−e−(m+r+q)∆ t

m+r+q ,

φ9(∆ t) = 1−e
−
∣∣∣∣( BA

m −m− f
)∣∣∣∣∆ t

|( BA
µ
)−m− f | ,

φ10(∆ t) = 1−e−m∆ t

m .
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The system of equations (11) can be written explicitly as

Sn+1
h =

φ1(∆ t)λ+φ1(∆ t)(α)Rn+1
h +Sn

h
1+φ1(∆ t)(β In

d+µ)

En+1
h =

(φ2(∆ t))(βSn+1
h In

d )+Eh
1+φ2(∆ t)((ν+η+(τ)+µ))

T n+1
h =

φ3(∆ t)(τEn+1
h )+T n

h
1+φ3(∆ t)(Σ+ρ+ψ+µ)

In+1
h =

φ4(∆ t)(ρT n+1
h +νEn+1

h )+In
h

1+φ4(∆ t)(δ+µ)

Rn+1
h =

φ5(∆ t)(ψT n+1
h +κV n+1

h )+Rn
h

1+φ5(∆ t)(α+µ)

V n+1
h =

φ6(∆ t)(ΣT n+1
h +ηEn+1

h )+V n
h

1+φ6(∆ t)(κ+µ)

Sn+1
d =

φ7(∆ t)A+Sn
d

1+φ7(∆ t)(β In
d+m+n)

En+1
d =

(φ8(∆ t))(BSn+1
d In

d )+En
d

1+φ8(∆ t)(r+m+q)

In+1
d =

(φ9(∆ t))(rEn+1
d )+In

d
1+φ9(∆ t)(m+ f )

V n+1
d =

(φ10(∆ t))(qEn+1
d +nSn+1

d )+V n
d

1+φ10(∆ t)(m)

(12)

At the steady state,

Sn+1
h = Sn

h,E
n+1
h = En

h ,T
n+1

h = T n
h , I

n+1
h = In

h ,R
n+1
h = Rn

h,

V n+1
h =V n

h ,S
n+1
d = Sn

d ,E
n+1
d = En

d , I
n+1
d = In

d ,V
n+1
d =V n

d .

Sn
h =

φ1(∆ t)λ+φ1(∆ t)(α)Rn
h+Sn

h
1+φ(∆ t)(β In

d+µ)

En
h =

(φ2(∆ t))(βSn
hIn

d )+Eh
1+φ2(∆ t)((ν+η+(τ)+µ))

T n
h =

φ3(∆ t)(τEn
h )+T n

h
1+φ3(∆ t)(Σ+ρ+ψ+µ)

In
h =

φ4(∆ t)(ρT n
h +νEn

h )+In
h

1+φ4(∆ t)(δ+µ)

Rn
h =

φ5(∆ t)(ψT n
h +κV n

h )+Rn
h

1+φ5(∆ t)(α+µ)

V n
h =

φ6(∆ t)(ΣT n
h +ηEn

h )+Rn
h

1+φ6(∆ t)(κ+µ)

Sn
d =

φ7(∆ t)A+Sn
d

1+φ7(∆ t)(β In
d+m+n)

En
d =

(φ8(∆ t))(BSn
d In

d )+Ed
1+φ8(∆ t)(r+m+q)

In
d =

(φ9(∆ t))(rEn
d )+In

d
1+φ9(∆ t)(m+ f )

V n
d =

(φ10(∆ t))(qEn
d+nSn

d)+V n
d

1+φ10(∆ t)(m)

3.3 Disease free equilibrium (E0)

At disease free equilibrium,

Eh = Th = Ih =Vh = Rh = Ed = Id = 0.

Given Sn
h =

φ1(∆ t)λ+φ1(∆ t)(α)Rn
h+Sn

h
1+φ1(∆ t)(β In

d+µ) , then

Sn
h =

φ1(∆ t)λ +φ1(∆ t)(α)Rn
h

φ1(∆ t)(β In
d +µ))

and consequently, Sn
h =

λ

µ
.

Similarly Sd = A
n+m and Vd = An

m(n+m) , hence

E0 =
(

λ

µ
,0,0,0,0,0,

A
n+m

,0,0,
An

m(n+m)

)
is preserved.

3.4 Local stability of the disease free
equilibrium (E0)

The Jacobian at (E0) for human population is given as in
(Fig. 4) and that for the dog population as in (Fig. 5).

Let

e = 1
1+φ1(∆ t)(β Id+µ) , a = 1

1+φ2(∆ t)(ν+η+τ+µ)

b = 1
1+φ3(∆ t)(Σ+ρ+τ+ψ+µ) , f = 1

1+φ4(∆ t)(δ+µ)

g = 1
1+φ5(∆ t)(α+µ) , h = 1

1+φ6(∆ t)(κ+µ)

z = 1
1+φ7(∆ t)(BId+n+m) , c = 1

1+φ8(∆ t)(r+q+m)

d = 1
1+φ9(∆ t)( f+m) , x = 1

1+φ10(∆ t)(m)

and

p1 =− φ1(∆ t)β (φ1(∆ t)(λ+αRh)+Sh)
(1+φ1(∆ t)(β Id+µ))2

p2 =
φ2(∆ t)β Id

1+φ2(∆ t)(ν+η+τ+µ) , p3 =
φ2(∆ t)βSh

1+φ2(∆ t)(ν+η+τ+µ)

p4 =
φ3(∆ t)τ

1+φ3(∆ t)(Σ+ρ+ψ+µ) , p5 =
φ4(∆ t)ν

1+φ4(∆ t)(δ+µ)

p6 =
φ4(∆ t)ρ

1+φ4(∆ t)(δ+µ) , p7 =
φ5(∆ t)ψ

1+φ5(∆ t)(α+µ)

p8 =
φ5(∆ t)κ

1+φ5(∆ t)(α+µ) , p9 =
φ6(∆ t)η

1+φ6(∆ t)(κ+µ)

p10 =
φ6(∆ t)Σ

1+φ6(∆ t)(κ+µ) , p11 =− φ7(∆ t)B(φ7(∆ t)A+Sd)
(1+(φ7(∆ t)(BId+m+n)))2

p12
φ8(∆ t)BId

1+φ8(∆ t)(r+m+q) , p13 =
φ8(∆ t)BSd

1+φ8(∆ t)(r+m+q)

p14 =
φ9(∆ t)r

1+φ9(∆ t)(m+ f ) , p15 =
φ10(∆ t)n

1+φ10(∆ t)m

p16 =
φ10(∆ t)q

1+φ10(∆ t)m , α = φ1(∆ t)α
1+φ1(∆ t)(β Id+µ)

Evaluating the Jacobian at E0,

JE0 =



e1 0 0 0 α∗ 0 0 0 p∗1 0
0 a 0 0 0 0 0 0 p3 0
0 p4 b 0 0 0 0 0 0 0
0 p5 p6 f 0 0 0 0 0 0
0 0 p7 0 g p8 0 0 0 0
0 p9 p10 0 0 h 0 0 0 0
0 0 0 0 0 0 z1 0 p∗11 0
0 0 0 0 0 0 0 c p13 0
0 0 0 0 0 0 0 p14 d 0
0 0 0 0 0 0 p15 p16 0 x


where p∗1 =

φ1(∆ t)β λ
µ

1+φ1(∆ t)µ , p∗11 =
φ7(∆ t)B A

m+n
1+φ7(∆ t)(m+n) ,α

∗ = φ1(∆ t)α
1+φ1µ

For the eigenvalues of our discretize system,

|JE0 −λ I|=


e1 −λ 0 0 0 α∗ 0 0 0 p∗1 0

0 a−λ 0 0 0 0 0 0 p3 0
0 p4 b−λ 0 0 0 0 0 0 0
0 p5 p6 f −λ 0 0 0 0 0 0
0 0 p7 0 g−λ p8 0 0 0 0
0 p9 p10 0 0 h−λ 0 0 0 0
0 0 0 0 0 0 z1 −λ 0 p∗11 0
0 0 0 0 0 0 0 c−λ p13 0
0 0 0 0 0 0 0 p14 d −λ 0
0 0 0 0 0 0 p15 p16 0 x−λ


[
(c−λ )(d −λ )− p13.p14

]
(e1 −λ )(a−λ )[

(b−λ )( f −λ )(z1 −λ )(g−λ )(h−λ )(x−λ )
]
< 1,

(13)
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

1
1+φ1(∆ t)(β Id+µ)

0 0 0 0 φ1(∆ t)α
1+φ1(∆ t)(β Id+µ)

0 0 p1 0
p2

1
1+φ2(∆ t)(ν+η+τ+µ)

0 0 0 0 0 0 p3 0
0 p4

1
1+φ3(∆ t)(Σ+ρ+τ+ψ+µ)

0 0 0 0 0 0 0
0 p5 p6

1
1+φ4(∆ t)(δ+µ)

0 0 0 0 0 0
0 0 p7 0 1

1+φ5(∆ t)(α+µ)
p8 0 0 0 0

0 p4 p10 0 0 1
1+φ6(∆ t)(κ+µ)

0 0 0 0


Fig. 4: Jacobian for human population


0 0 0 0 0 0 1

1+φ7(∆ t)(BId+n+m)
0 p11 0

0 0 0 0 0 0 p12
1

1+φ8(∆ t)(r+q+m)
p13 0

0 0 0 0 0 0 0 p−14 1
1+φ9(∆ t)( f+m)

0
0 0 0 0 0 0 p p16 0 1

1+φ10(∆ t)(m)


Fig. 5: Jacobian for dog population

where

e1 =
1

1+φ1(∆ t)µ ,a = 1
1+φ2(∆ t)(ν+η+τ+µ)

b = 1
1+φ3(∆ t)(Σ+ρ+τ+ψ+µ) , f = 1

1+φ4(∆ t)(δ+µ)

g = 1
1+φ5(∆ t)(α+µ) ,h = 1

1+φ6(∆ t)(κ+µ) ,z1 =
1

1+φ7(∆ t)(n+m)

c = 1
1+φ8(∆ t)(r+q+m) ,d = 1

1+φ9(∆ t)( f+m) ,x =
1

1+φ10(∆ t)(m)

p13 =
φ8(∆ t)BSd

1+φ8(∆ t)(r+m+q) , p14 =
φ9(∆ t)r

1+φ9(∆ t)(m+ f )

Clearly all the λ s in the first factor of our
characteristic polynomial of equation (13) are less than
one. The remaining eigenvalues can be obtain from

λ
2 +(d + c)λ + cd − p13 p14 < 1,

where

λ =
−(d + c)±

√
(d + c)2 −4(cd − p13 p14)

2
< 1.

λ9,10 =

−( 1
K1

+ 1
K2

)

2 ±

√√√√( 1
K1

+ 1
K2

)2

−4

((
1

K1
x 1

K2

)
−
(

φ8(∆ t)BSd
K1

x φ9(∆ t)r
K2

))
2

where K1 = 1 + φ8(∆ t)(r + m + q), and
K2 = 1+ φ9(∆ t)(m+ f ). Basic algebraic manipulations
shows that λ9 and λ10 are less than one.

Hence E0 is asymptotically stable for every value of
∆ t.

3.5 Global stability of the disease free fixed
points

[25] stated that, E0 is globally asymptotically stable if
conditions of local stability are satisfied and the sequence
at all times converges to E0.

Theorem 1.
The sequence

(
Sn

h,E
n
h ,T

n
h , I

n
h ,R

n
h,V

n
h ,S

n
d ,E

n
d , I

n
d ,V

n
d

)
converges to E0 for any positive initial condition
whenever conditions of [24,25] are satisfied for every
value of ∆ t.

Proof. Suppose for n > 0,(
Sn

h,E
n
h ,T

n
h , I

n
h ,R

n
h,V

n
h ,S

n
d ,E

n
d , I

n
d ,V

n
d

)
converges to E0,

then(
Sn+1

h ,En+1
h ,T n+1

h , In+1
h ,Rn+1

h ,V n+1
h ,Sn+1

d ,En+1
d , In+1

d ,V n+1
d

)
converges to E0.

Considering the discretized system of equations in
(12), it can be proven that E0 satisfies the global
asymptotic conditions in [26].

Sn+1
h =

φ1(∆ t)λ +φ1(∆ t)(α)Rn+1
h +Sn

h
1+φ1(∆ t)(β In

d +µ)

as n → ∞, n = n+1 ≡ ∞

(Sn
h +Sn

hφ1(∆ t)(β In
d +µ)) = φ1(∆ t)λ+

φ1(∆ t)(α)Rn+1
h +Sn

h

Sn
hφ1(∆ t)(β In

d +µ)) = φ1(∆ t)λ +φ1(∆ t)(α)Rn+1
h

Sn
h(β In

d +µ) = λ +(α)Rn+1
h

But Rh = Id = 0 at E0. Hence Sn+1
h → λ

µ
, as n → ∞.

Sn+1
d =

φ7(∆ t)A+Sn
d

1+φ7(∆ t)(β In
d +m+n)

Then Sn+1
d → A

n+m , as n → ∞.

V n+1
d =

(φ10(∆ t))(qEn
d +nSn

d)+V n
d

1+φ10(∆ t)(m)
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Then V n+1
d → An

m(m+n) , as n → ∞.
Hence, the discrete solution generated by the NSFD

scheme converges to the disease-free equilibrium E0 as
n → ∞ for all values of ∆ t. Since the NSFD scheme is
constructed to preserve the qualitative dynamics of the
continuous system, and the conditions in [24,25] ensure
the global asymptotic stability of E0, we conclude that E0
remains globally asymptotically stable.

4 Optimal control
In this section, we shall have a look at some possible
ways of controlling rabies in both populations by
formulating an optimal control for our rabies model. This
will be done by adding time-dependent controls of : u1,
representing effective education and campaign on rabies,
u2, representing policy and education on good petting and
u3, representing the treatment of exposed dogs to kill the
the virus before infections. The optimal control model
studies the importance of the selected control measures to
reduce the additions carried out by various individuals in
the compartments. Thus, taking into account the controls
implemented, the non-linear model becomes;

S′h(t) = λ +(α)Rh − (1−u1)(β Id +µ)Sh

E ′
h(t) = (1−u1)βShId − (ν +η +(τ)+µ)Eh

T ′
h(t) = (τ)Eh − (Σ +ρ +ψ +µ)Th

I′h(t) = (ρ)Th +(ν)Eh − (µ +δ )Ih

R′
h(t) = (ψ)Th +(κ)Vh − (α +µ)Rh

V ′
h(t) = (η)Eh +(Σ)Th − (κ +µ)Vh

S′d(t) = A− (1−u2)(BId +n+m)Sd

E ′
d(t) = (1−u2)BSdId − (r+q+m)(1−u3)Ed

I′d(t) = (1−u3)(r)Ed − (m+ f )Id

V ′
d(t) = (n)Sd +(q)Ed − (m)Vd

(14)

The purpose of the control strategies is to reduce the
number of exposed individuals and animals, infected ones
while reducing the cost of treatment at the same time.
With this the cost incurred in the three control measures
are denoted by C1, C2 and C3 and we set our objective
functional as;

ζ (u1,u2,u3) =
∫ T

0
(L1Sh +L2Sd +L3Ed +

1
2

3

∑
1

Ciu2
i )dt

(15)
where L1 ,L2 ,L3 , and C1 ,C2 ,L3 , are all positive weight
constants.

The terms; C1u2
1 represents the cost of education that

protects susceptible individuals from coming into contact
with infected dogs, c2u2

2 the cost of education and policy
implementation on proper petting, and c3u2

3 the cost for
the proper treatment of wounds from exposed dogs before
they become infected.

We are interested in an optimal functions {u∗1,u
∗
2,u

∗
3},

∋

ζ{(u∗1,u∗2,u∗3)}= min{ζ (u∗1,u
∗
2,u

∗
3) : u∗1,u

∗
2,u

∗
3 ∈ N}

where

N = {ui = 0 ≤ ui(t)≤ 1,∈ [0,T ] lebesgue measurable}
(16)

∀ i = 1,2,3 called the controls [27,28,29].

Theorem 2.There exist U∗ = (u∗1,u
∗
2,u

∗
3) ∈ U an optimal

control ∋

ζ (u∗1,u
∗
2,u

∗
3) = min

U
ζ (u1,u2,u3), (17)

s.t to equations (14) with the initial conditions.

Proof.Following [12], we demonstrate the existence of an
optimal control for our extended rabies model. It can easily
be seen that, all variables including control variables are
non-negatives. Additionally, it is clear that the objective
function’s required and convex properties in u1,u2, and u3
are met when the control system is minimized. The space
U = {u|u1,u2,u3 are measurable, 0 ≤ u1,u2,u3 ≤ umax <
∞, t ∈ [0,T ]} according to [11] is closed and convex. The
control system is bounded and that suffice the compactness
required for the presence of an optimal control.

Equation (15) has an integrand that is convex on the
control u. Thus, we observe a constant q > 1 and positive
numbers u1,u2 and u3 exist, ∋ ζ (u1,u2,u3) ≥ u1(
|u1|2 + |u2|2 + |u3|2

)q
2 −u2. Hence, there is an existence

of the optimal control.

4.1 Pontryagin’s maximum principle
application

Here we shall use the Pontryagin’s Maximum Principle,
[30] to identify the prerequisites for the optimality. The
hamiltonian (H) with respect to (u1,u2,u3) is given by;



H = [(L1Sh +L2Sd +L3Ed +
1
2 (c1u2

1 + c2u2
2 + c13u2

3)

+λ1[λ +(α)Rh − (1−u1)β IdSh +µSh]

+λ2[(1−u1)βShId − (ν +η +(τ)+µ)Eh]

+λ3[(τ)Eh − (Σ +ρ +ψ +µ)Th]

+λ4[(ρ)Th +(ν)Eh − (µ +δ )Ih]

+λ5[(ψ)Th +(κ)Vh − (α +µ)Rh]

+λ6[(η)Eh +(Σ)Th − (κ +µ)Vh]

+λ7[A− (1−u2)BIdSd +(n+m)Sd ]

+λ8[(1−u2)BSdId − (1−u3)rEd +(q+m)Ed ]

+λ9[(1−u3)(r)Ed − (m+ f )Id ]

+λ10[(n)Sd +(q)Ed − (m)Vd ]
(18)
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The adjoint solutions are also given by,



∂λ1
∂ t =− ∂H

∂Sh
=−L1 +λ1(1−u1)β Id +µ −λ2(1−u1)(β Id)

∂λ2
∂ t =− ∂H

∂Eh
= λ2(ν +η + τ +µ)−λ3τ −λ4ν −λ6η

∂λ3
∂ t =− ∂H

∂Th
= λ3(Σ +ρ +ψ +µ)−λ4ρ −λ5ψ −λ6Σ

∂λ4
∂ t =− ∂H

∂ Ih
= λ4(µ +δ )

∂λ5
∂ t =− ∂H

∂Rh
=−λ1α +λ5(α +µ)

∂λ6
∂ t =− ∂H

∂Vh
=−λ5κ +λ6(κ +µ)

∂λ7
∂ t =− ∂H

∂Sd
=−L2 +λ7(1−u2)BId +(n+m)−λ8(1−u2)BId −λ10n

∂λ8
∂ t =− ∂H

∂Ed
=−L3 +λ8(1−u3)r+(q+m)−λ9(1−u3)r−λ10q

∂λ9
∂ t =− ∂H

∂ Id
= λ1(1−u1)(βSh)−λ2(1−u1)(βSh)+λ7(1−u2)BSd

−λ8(1−u2)BSd +λ9(m+ f )
∂λ10

∂ t =− ∂H
∂Vd

= λ10m

,

(19)

and satisfies the boundary conditions

λi(t) = 0, i = 1,2, . . . ,10 (20)

4.2 Characterization of optimal control

We obtained the optimal set characterization by solving
the system of partial differential equations ∂H

∂u1
= 0, ∂H

∂u2
=

0, ∂H
∂u3

= 0, for u1,u2,u3.



∂H
∂u1

= c1u1 +λ1β IdSh −λ2βShId

u1 =
(λ2−λ1)β IdSh

c1
∂H
∂u2

= c2u2 +λ7BIdsd −λ8BSdId

u2 =
(λ8−λ7)BIdsd

c2
∂H
∂u3

= c3u3 −λ8rEd +λ9rEd

u3 =
(λ8−λ9)rEd

c1

If the controls are bounded, then we have ∀= 1,2,3,

u∗i =


0 if ûi ≤ 0
ûi if 0 ≤ ûi ≤ 1
1 if ûi ≥ 1

The optimal control vector u∗1,u
∗
2 and u∗3 that minimizes

ζ is given by

u∗1 = min

{
1,max

{
0,

(
(λ2−λ1)β IdSh

c1

)}}

u∗2 = min

{
1,max

{
0,

(
(λ8−λ7)BIdsd

c2

)}}

u∗3 = min

{
1,max

{
0,

(
( (λ8−λ9)rEd

c1

)}} (21)

The λi are found by solving simultaneously equations (19)
and (20). Putting in the controls u∗1 u∗2 and u∗3 in the control

system gives

S′h(t) = λ +(α)Rh − (1−min

{
1,max

{
0,

(
(λ2−λ1)β Id Sh

c1

)}}
)β Id Sh +µSh

E ′
h(t) = (1−min

{
1,max

{
0,

(
(λ2−λ1)β Id Sh

c1

)}}
)βShId − (ν +η +(τ)+µ)Eh

T ′
h(t) = (τ)Eh − (Σ +ρ +ψ +µ)Th

I′h(t) = (ρ)Th +(ν)Eh − (µ +δ )Ih

R′
h(t) = (ψ)Th +(κ)Vh − (α +µ)Rh +u3Ih

V ′
h(t) = (η)Eh +(Σ)Th − (κ +µ)Vh

S′d(t) = A− (1−min

{
1,max

{
0,

(
(λ8−λ7)BId sd

c2

)}}
)BId Sd +(n+m)Sd

E ′
d(t) = (1−min

{
1,max

{
0,

(
(λ8−λ7)BId sd

c2

)}}
)BSd Id

−(1−min

{
1,max

{
0,

(
(
(λ8−λ9)rEd

c1

)}}
)rEd +(q+m)Ed

I′d(t) = (1−min

{
1,max

{
0,

(
(
(λ8−λ9)rEd

c1

)}}
)(r)Ed − (m+ f )Id

V ′
d(t) = (n)Sd +(q)Ed − (m)Vd

(22)

5 Numerical analysis and discussion

Table 1: Rabies model parameters and description based
on source data. The choice of parameter values was
informed by fitting a model to observed data from the
Veterinary service, Kumasi.

Parameter values Reference
Λ 2000 fitted
β 0.000301 fitted
µ 0.02 fitted
τ 0.80253 fitted
Σ 0.448464 fitted
ψ 0.498419 fitted
δ 0.9999 fitted
ρ 0.00727 fitted
ν 0.008766 fitted
η 0.140391 fitted
α 0.01 fitted
κ 0.603571 fitted
A 300 fitted
B 0.219972 fitted
r 0.200024 fitted
n 0.555589 fitted
q 0.150029 fitted
m 0.0312 fitted
f 0.999 fitted

We perform numerical analysis on the control strategies
to curb the rabies model using the parameters in table (1).
This was conducted by solving the state equations, adjoint
solutions, and the boundary conditions using the
?desolve” library in Rsoftware for the solutions of the
optimal control problem and ggplot2 for the graphs,
guessing the controls over a simulated time. Several
combination of controls were considered, and we
assessed carefully the simulations for each considered
strategy. Our parameter values table (1), are fitted data we
obtained from the Veterinary service, Kumasi. We iterate
till a stopping criterion is reached, and it terminates when
the values of unknown variables from the previous
iteration approach those in the current iteration. [25,30].
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5.0.1 Strategy 1: u1 only

The first control measure we implemented in our attempt
to curb the spread of rabies virus is education and
awareness creation on rabies. Figure (6) shows the
effectiveness in minimizing the spread in human
population as the control has reduced infected humans
from 5 in the fifth year to 1. The reason is that, awareness
only prevents human exposure to the disease and thus the
control will have no effect on the dog population.

Fig. 6: Dynamics of infected and exposed humans
population with and without controls.

5.0.2 Strategy 2: u2 only

This control measure considers the implementation of a
government policy that ensures all canines are vaccinated
with serious consequences for defaulters. Our analysis,
Figure (7) shows this control is not effective and cost
worthy. This is because the changes brought in by the
control in both populations is very negligible.

5.0.3 Strategy 3: u3 only

The application of treatment of infected dogs before the
virus finds its way into the blood stream of an exposed
dog is the third control. Figure (8) shows the efficacy of
the control in human population by reducing the infected
humans from 5 to just above 2 in the fifth year. This
intervention is effective for the dog population since the
number of infected dogs dropped below 75 in the fifth
year as seen in Figure (8).

Fig. 7: Dynamics of exposed and infected dogs population
with and without controls.

Fig. 8: Dynamics of infected dogs and humans population
with and without controls.

5.0.4 Strategy 4: u1 and u2
Strategy 4 is the implementation of u1 and u2 to examine
their impact on the model’s dynamics. Figure (9), shows
the infected human population increased from 1 to 5
within the five year period after an initial decline within
the first one and half year period when no control is
applied. The implementation of the strategy reduced the
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number of infected and exposed persons drastically
within the five year period. The outcome shows the
strategy is efficient for both population.

Fig. 9: Dynamics of exposed and infected humans
population with and without controls.

Fig. 10: Dynamics of exposed and infected humans
population with and without controls.

5.0.5 Strategy 5:u1 and u3

We combined u1 and u3, in our quest to lower the number
of infections. Without controls both populations rise
swiftly in the five years though the infected human

population has an initial decline. Figure (10) shows with
the controls, the infected humans fell sharply blow 1 in
the five year intervention period. The exposed humans on
the other hand decreased smoothly to about 75 in the
entire period. The strategy is therefore very effective for
both humans.

5.0.6 Strategy 6:u2 and u3

We considered u2 and u3 to assess their impact on the
infection rate in Figure (11). The controls reduced the
number of infected dogs and humans in the five year
period. The graphs of uncontrolled populations were far
higher than the graphs with control strategies at all times.
An indication that the strategy is effective in minimizing
infections in both dogs and humans.

Fig. 11: Dynamics of infected dogs and humans
population with and without controls.

Thus, effectively utilizing the best combination of
interventions will help mitigate the spread of rabies
within these populations and significantly impact human
health.

6 Conclusion
A deterministic model that demonstrates the dynamic
transmission of rabies disease among human beings and
canines was investigated. Using the non-standard finite
difference scheme for boundedness and non-negativity of
solutions, E0, and its local and global stability, an
in-depth investigation of the rabies model was carried out.
The rabies model was expanded to incorporate treatment
of exposed dogs, policy and education on good petting,
and effective education and campaigns on rabies for
optimal control. By optimizing our objective function, we
found that integrating effective public education and
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awareness campaigns with the treatment of exposed dogs
offers a highly effective strategy with strong long-term
potential to reduce rabies transmission in the Ashanti
Region of Ghana.
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