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Abstract: This paper explores the use of the Bethe ansatz method of the Lieb-Liniger model with collision coefficients to create
cryptographic protocols. The Bethe ansatz method, traditionally used to describe quantum systems with strong correlations, is used to
construct wave functions in systems consisting of particles with interactions. An important element is the role of collision coefficients,
which affect the structure of wave functions and the spectrum of the system. The paper analyzes how these coefficients can be used
to develop new methods in the field of quantum cryptography, proposing approaches for creating secure cryptographic systems. The
proposed approach opens up new opportunities for the use of quantum computations and interactions in the development of secure
protocols, which has significant potential for strengthening cryptographic resistance in modern information technologies.
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1 Introduction

Modern cryptography increasingly turns to the
fundamental structures of theoretical physics in search of
computationally difficult problems that are resistant to
quantum attacks. One such direction is the use of
integrable quantum models with a rigorous mathematical
structure and nontrivial combinatorics of states. Of
particular interest is the Lieb-Liniger model [1], which
describes a one-dimensional boson gas with delta
interaction, whose states can be accurately described by
the Bethe ansatz method [2]. In traditional physics, the
Bethe ansatz is used to construct wave functions and
analyze the spectral properties of a system. However,
recent work [3], [4], [5], [6], [7], [8] has shown that the
entire set of solutions to the Bethe equations can be
viewed as a discrete space with potential for
cryptographic coding. The full set of Bethe roots
determined by the quantization and interaction conditions
defines a highly organized but difficult to invert structure
suitable for constructing keys, hash functions, and
information exchange protocols. The aim of this paper is
to theoretically justify and construct a cryptographic
scheme based on complete information about the
configuration of Bethe roots, considering them as
fundamental cryptographic primitives.
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Fig. 1: Flow chart illustrating a communication process
between two entities, Alice and Bob, represented by two
blue sections.

Each section contains circles connected by arrows,
indicating the flow of information. The chart includes
probability expressions such as P(EB,EA),P(EB), and
P(EA), showing the relationships and dependencies
between different events or states. The diagram
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emphasizes the interaction and data exchange between
Alice and Bob.

2 Bethe Ansatz for Bose gas

Following [1], consider the solution of the time
independent Schrödinger equation for s particles
interacting with the potential in the form of a delta
function

δ (|xi − x j|) = {∞, i f xi=x j ,

0 i f xi ̸=x j
.

in one-dimensional space R:

− ℏ2

2m

s

∑
i=1

△iψ(x1,x2, . . . ,xs)+

2c ∑
1≤i< j≤s

δ (xi − x j)ψ(x1,x2, . . . ,xs) =

Eψ(x1,x2, . . . ,xs), (1)

where the constant c ≥ 0 and 2c is the amplitude of the
delta function, m = 1-massa of boson, ℏ = 1-Plank
constant, △-Laplasian, the domain of the problem is
defined in R: all 0 ≤ xi ≤ L and the wave function ψ

satisfies the periodicity condition in all variables. In [3], it
was proved that defining a solution ψ in R is equivalent to
defining a solution to the equation

−
s

∑
i=1

1
2m

△xi ψ = Eψ,

with the boundary condition

(
∂

∂x j+1
− ∂

∂x j
)ψ|x j+1=x j = cψ|x j+1=x j , (2)

in R1 : 0< x1 < x2 < .. . < xs < L and the initial periodicity
condition is equivalent to the periodicity conditions in

ψ(0,x2, ...,xs) = ψ(x2, ...,xs,L),

∂ψ(x,x2, ...,xs)

∂x
|x=0 =

∂ψ(x2, ...,xs,x)
∂x

|x=L.

Using equation (2) we can determine the solution of
equation (1) in the form of the Bethe ansatz [1], [2], [10],
[3]:

ψ(x1, . . . ,xs) = ∑
P

a(P)Pexp

(
i

s

∑
i=1

kPixi

)
(3)

in the region R1 with eigenvalue Es = ∑
s
i=1 k2

i where the
summation is performed over all permutations P of the
numbers {k} = k1, . . . ,ks and a(P) is a certain coefficient
depending on Perm:

a(Q) =−a(P)exp(iθi, j),

where θi, j = θ(ki − k j), θ(r) = −2arctan(r/c) and when
r is a real value and −π ≤ θ(r)≤ π .

For the case s = 2, one can find [1], [10], [4], [5], [6]:

ψ(x1,x2)= a1,2(k1,k2)ei(k1x1+k2x2)+a2,1(k1,k2)ei(k2x1+k1x2).

and

ik2a1,2 + ik1a2,1 − ik1a1,2 − ik2a2,1 = c(a1,2 +a2,1),

or

a2,1 =−c− (k2 − k1)

c+(k2 − k1)
a1,2

For two bosons with wave numbers k1 and k2, the
amplitudes a(P) take two values:

If the order is P(1,2) then a(P) = 1.
If the order is P(2,1) then a(P) = S(k2,k1), where

ratio of a(k1,k2) and a(k2,k1) can be interpreted as the
scattering matrix of the two bosons with wave numbers
k1,k2

S(k1,k2) =
a(k2,k1)

a(k1,k2)
. (4)

If we consider a permutation of two bosons, where k1
and k2 are their wave numbers, then the wave function
corresponding to the changed order x1 > x2 is related to
the original wave function (where x1 < x2) via the
scattering operator. The general form of the wave
function will be:

ψ(x1,x2) = exp(ik1x1 + ik2x2)+

S(k2,k1)exp(ik2x1 + ik1x2).

If we consider a permutation of two bosons, where k1
and k2 are their wave numbers, then the wave function
corresponding to the changed order x1 > x2 is related to
the original wave function (where x1 < x2) via the
scattering operator. This is written as [9]:

ei(k2x1+k1x2) = S(k1,k2)ei(k1x1+k2x2)

or

ei(k2x1+k1x2) =−c− i(k2 − k1)

c+ i(k2 − k1)
ei(k1x1+k2x2) =

−eiθ(k1,k2)ei(k1x1+k2x2), (5)

where θ(k1,k2) - phase shift depending on the wave
numbers of bosons k1 and k2 and S(k1,k2) is scattering
matrix (4). In integrable systems such as the Lieb-Liniger
Model, the unitarity |eiθ(k1,k2)|= 1 of the S-matrix,

S(k1,k2)S(k2,k1) = 1 (6)

is satisfied automatically, since the interaction of bosons
is described by elastic collisions in which energy,
momentum, and probability are conserved and the S -
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matrix describes only the phase shift without changing
the amplitudes of the interacting bosons.

For the s−particle wave function (3) ψ(x1, ...xs),
where x1 < x2 < ... < xs, the amplitudes a(P) are given in
terms of the scattering matrices as follows [10]:

a(P) = ∏
i< j

S(kP(i),kP( j)), (7)

where S(ki,k j) - scattering amplitude of bosons with wave
numbers ki and k j.

For an arbitrary permutation P, the amplitude is
obtained as the product of all scattering coefficients that
correspond to the sequence of exchanges between pairs of
bosons required to achieve the permutation P from the
base order (e.g. P0 = (1,2, ...,s)).

In previous works, we developed the cryptographic
application for the first term of the Bethe ansatz. We
limited ourselves to considering only the first term of the
Bethe ansatz. In this work we will develop this method
for the entire Bethe ansatz, that is, we will take into
account all the terms of the Bethe ansatz.

To this end, we will show for a two-particle system of
bosons the relation Let us consider the product of ab and
ba, where

a =−
c− i(k j − ki)

c+(k j − ki)

and

b =−
c− i(kl − k f )

c+(kl − k f )
.

Calculating AB:

(−
c− i(k j − ki)

c+ i(k j − ki)
)(−

c− i(kl − k f )

c+ i(kl − k f )
)

Since the minuses cancel out, we get

(
c− i(k j − ki)

c+ i(k j − ki)
)(

c− i(kl − k f )

c+ i(kl − k f )
).

We calculate ba in a similar way

(
c− i(kl − k f )

c+ i(kl − k f )
)(

c− i(k j − ki)

c+ i(k j − ki)
).

Since multiplication of numbers is commutative:

(c− i(k j − ki))(c− i(kl − k f )) = (c− i(kl − k f ))(c− i(k j − ki))

and

(c+ i(k j − ki))(c− i(kl − k f )) = (c+ i(kl − k f ))(c− i(k j − ki))

then it follows that
ab = ba. (8)

Thus, this equality is indeed satisfied.
To apply the Bethe ansatz to information technology,

we will write the Bethe ansatz in explicit form. For

simplicity, we will consider the case when s is equal to 3.
The sum over permutations P ∈ S3 means that we iterate
over all 3!=6 permutations of the index set 1,2,3 . In the
above decomposition, each of the six terms corresponds
to one of these permutations. For example, we can relate
the permutations and the terms of the sum as follows:
1.Permutation

P = (1,2,3) : ei(k1x1+k2x2+k3x3)

2.Permutation

P = (1,3,2) : a(k2,k3)ei(k1x1+k3x2+k2x3),

where
a(k2,k3) = S(k2,k3)

3.Permutation

P = (2,1,3) : a(k1,k2)ei(k2x1+k1x2+k3x3),

where
a(k1,k2) = S(k1,k2)

4.Permutation

P = (2,3,1) : a(k1,k2;k1k3)ei(k2x1+k3x2+k1x3),

where
a(k1,k2;k1k3) = S(k1,k3)S(k2,k3)

5.Permutation

P = (3,1,2) : a(k1,k3)ei(k3x1+k1x2+k2x3),

where
a(k1,k3) = S(k1,k2)S(k1,k3)

6.Permutation

P = (3,2,1) : a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3),

where

a(k1,k3;k2k3) = S(k1,k2)S(k1,k3)S(k2,k3)

Thus, the explicit expansion of the wave function for
three particles is written as the sum of these six terms:

ψ(x1,x2,x3) = ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+a(k1,k2)ei(k2x1+k1x2+k3x3)+

a(k1,k2;k1k3)ei(k2x1+k3x2+k1x3)+

a(k1,k3)ei(k3x1+k2x2+k1x3)+

a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3). (9)
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3 Application of Bethe ansatz in information
technology

Let’s consider how the last equation can be used for
three-stage information transfer. To do this, we will use
the formulas (5)-(9).

Let Alice encrypt information

M = ψ(x1,x2,x3) = ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+

+...+a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3) (10)

using the encryption key

E1 =−eiθ2,1eiθ3,2eiθ1,3

and send encrypted information to Bob:

(E1M) =−eiθ2,1eiθ3,2eiθ1,3(ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+ ...+

+a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3)) =

= ei(k2x1+k3x2+k1x3)+

a(k2,k3)ei(k3x1+k2x2+k1x3)+ ...+

a(k1,k3;k2k3)ei(k2x1+k1x2+k3x3)

Bob receives this information and encrypts it with his
key:

E2 =−eiθ3,1 eiθ1,2eiθ2,3 (11)

and sends the double-encrypted information back to Alice:

(E2(E1M)) =−eiθ3,1 eiθ1,2eiθ2,3(ei(k2n1+k3n2+k1n3)+

a(k2,k3)ei(k3x1+k2x2+k1x3)+ ...+

a(k1,k3;k2k3)ei(k2x1+k1x2+k3x3))

= ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+ ...+

a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3)

Having received the latest information from Bob, Alice
decrypts it with her key

D1 =−eiθ2,1eiθ3,2eiθ1,3 :

(D1(E2(E1M))) =−eiθ2,1eiθ3,2eiθ1,3(ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+ ...+

a(k1,k3;k2,k3)ei(k3x1+k2x2+k1x3)) =

ei(k3x1+k1x2+k2x3)+

a(k2,k3)ei(k2x1+k1x2+k3x3)+ ...+

a(k1,k3;k2k3)ei(k1x1+k3x2+k2x3)

and send it back to Bob. Now the information is covered
by Bob’s key just one time. Bob, having received this
information, decrypts it with his decoder key

D2 =−eiθ2,1eiθ3,2eiθ1,3 (12)

(D2(D1(E2(E1M))))=−eiθ2,1eiθ3,2eiθ1,3(ei(k3x1+k1x2+k2x3)+

a(k2,k3)ei(k2x1+k1x2+k3x3)+ ...+

a(k1,k3;k2k3)ei(k1x1+k3x2+k2x3)) =

= ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+ ...+

a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3)

The latest information matches the information that
Alice wanted to send to Bob.

Now we will check formula

(D2(D1(E2(E1M)))) = (D2(D1(E1(E2M)))) =

(D2(E2M)) = M, (13)

where E1,E2 the encryption keys of Alice and
Bob,respectively, and D1,D2 the decryption keys of Alice
and Bob, respectively. The encryption keys have the
property

E2E1 = E1E2.

that is, the matrices of keys E1,E2 should be commutative.
We will use also formulas (10), (11),(12):

(E2M) =−eiθ3,1eiθ1,2eiθ2,3(ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+

+...+a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3)) =

ei(k3x1+k1x2+k2x3)+a(k2,k3)ei(k2x1+k3x2+k1x3)+ ...+

a(k1,k3;k2k3)ei(k1x1+k3x2+k2x3).

Then

(D2(E2M)) =−eiθ2,1eiθ3,2eiθ1,3(ei(k3x1+k1x2+k2x3)+

a(k2,k3)ei(k2x1+k1x2+k3x3)+ ...+

a(k1,k3;k2k3)ei(k3x1+k1x2+k2x3)) =

ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+ ...

a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3).

From this it is clear that (13) holds.
If we use the explicit form

a(k2,k3),a(k1,k2),a(k1,k2;k1k3),a(k1,k3),a(k1,k3;k2k3)
we get

(E2M)= ei(k3x1+k1x2+k2x3)−eiθ(k2,k3)ei(k2x1+k3x2+k1x3)+...−
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eiθ(k1,k2)eiθ(k1,k3)eiθ(k2,k3)ei(k3x1+k2x2+k1x3) =

ei(k3x1+k1x2+k2x3)+ ei(k3x1k2x2+k1x3)+ ...+

ei(k1x1+k2x2+k3x3)

and
(D2(E2M)) = ei(k1x1+k2x2+k3x3)+

a(k2,k3)ei(k1x1+k3x2+k2x3)+ ...

a(k1,k3;k2k3)ei(k3x1+k2x2+k1x3) =

ei(k1x1+k2x2+k3x3)−

eiθ(k2,k3)ei(k1x1+k3x2+k2x3)+ ...−

eiθ(k1,k2)eiθ(k2,k3)eiθ(k1,k3)ei(k3x1+k2x2+k1x3) =

ei(k1x1+k2x2+k3x3)+ ei(k1x1+k2x2+k3x3)+ ...+

ei(k1x1+k2x2+k3x3).

To adapt the results obtained in Chapter 3 for modern
computers, which are based on matrix coding, we
introduce a permutation operator P, which we denote as
follows:

ei(k2x1+k1x2) =
∞

∑
n=0

1
n!
(k2x1 + k1x2)

n =

∞

∑
n=0

1
n!
(
[
x1 x2

][k2
k1

]
)n =

∞

∑
n=0

in

n!
(
[
x1 x2

]
P
[

k1
k2

]
)n.

where [
k2
k1

]
= P

[
k1
k2

]
,

and

P =

(
0 1
1 0

)
.

E1 =
0 1 0
0 0 1
1 0 0

E2 =
0 0 1
1 0 0
0 1 0

D1 =
0 0 1
1 0 0
0 1 0

D2 =
0 1 0
0 0 1
1 0 0

.

Matrices E1 and E2 are commutative:

E1 ×E2=
0 1 0
0 0 1
1 0 0

×
0 0 1
1 0 0
0 1 0

=

E2 ×E1 =
0 0 1
1 0 0
0 1 0

×
0 1 0
0 0 1
1 0 0

=

1 0 0
0 1 0
0 0 1

.

We can also show that D1 = E−1
1 is inverse to E1 and:

D1 ×E1 =
0 0 1
1 0 0
0 1 0

×
0 1 0
0 0 1
1 0 0

=

1 0 0
0 1 0
0 0 1

.

Similarly, D2 = E−1
2 and

D2 ×E2=
0 1 0
0 0 1
1 0 0

×
0 0 1
1 0 0
0 1 0

=

1 0 0
0 1 0
0 0 1

.

Let the initial information have the form:

M=
k1
k2
k3

+

a(k2,k3)×
k1
k3
k2

+...+ a(k1,k3;k2,k3)×
k3
k2
k1

.

Then

E1M = (
0 1 0
0 0 1
1 0 0

×
k1
k2
k3

=
k2
k3
k1

) +

(a(k2,k3)
0 1 0
0 0 1
1 0 0

×
k1
k3
k2

=

a(k2,k3)
k3
k2
k1

)+...+

((a(k1,k3;k2,k3)
0 1 0
0 0 1
1 0 0

×
k3
k2
k1

=

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


994 M. Yu. Rasulova: Using Bethe Ansatz in...

a(k1,k3;k2,k3)
k2
k1
k3

) .

E2E1M = (
0 0 1
1 0 0
0 1 0

×
k2
k3
k1

=
k1
k2
k3

) +

(a(k2,k3)
0 0 1
1 0 0
0 1 0

×
k3
k2
k1

=

a(k2,k3)
k1
k3
k2

)+...+

(a(k1,k3;k2,k3)
0 0 1
1 0 0
0 1 0

×
k2
k1
k3

=

a(k1,k3;k2,k3)
k3
k2
k1

) .

D1E2E1M = (
0 0 1
1 0 0
0 1 0

×
k1
k2
k3

=
k3
k1
k2

) +

(a(k2,k3)
0 0 1
1 0 0
0 1 0

×
k1
k3
k2

=

a(k2,k3)
k2
k1
k3

)+...+

(a(k1,k3;k2,k3)
0 0 1
1 0 0
0 1 0

×
k3
k2
k1

=

a(k1,k3;k2,k3)
k1
k3
k2

) .

D2D1E2E1M = (
0 1 0
0 0 1
1 0 0

×
k3
k1
k2

=
k1
k2
k3

)+

((a(k2,k3)
0 1 0
0 0 1
1 0 0

×
k2
k1
k3

=

a(k2,k3)
k1
k3
k2

)+...+

(a(k1,k3;k2,k3)
0 1 0
0 0 1
1 0 0

×
k1
k3
k2

=

a(k1,k3;k2,k3)
k3
k2
k1

)=M .

Here a(k2,k3) =
1 0 0
0 0 1
0 1 0

and

a(k1,k3;k2,k3) =
0 1 0
1 0 0
0 0 1

×
1 0 0
0 0 1
0 1 0

×

0 1 0
1 0 0
0 0 1

=
0 0 1
0 1 0
1 0 0

.

4 Shannon’s perfect secrecy cryptosystem

The proposed permutations in Chapter 2 (4) provide the
perfect secrecy of information.

As is known, the necessary and sufficient conditions
for the system to be perfectly secret can be formulated in
the form of Bayes’ theorem:

Theorem A necessary and sufficient condition for
perfect secrecy is that

pM(C) = p(C)

for all M and C, i.e. pM(C) should not depend on M.
Indeed, according to the Shannon formula:

pC(M) =
p(M)× pM(C)

p(C)
, (14)

where p(M) - prior probability of message M;
pM(C) - the conditional probability of the cryptogram

C, provided that the message M is selected, i.e., the sum of
the probabilities of all those keys that translate the message
M into a cryptogram C;

p(C) - probability of receiving a cryptogram C;
pC(M) - posterior probability of the message M,

provided that the cryptogram C is intercepted.
For the system to be perfect secrecy [13], [14] the

values pC(M) and p(M) must be equal for all C and M.
Therefore, one of the equalities must be satisfied:

either p(M) = 0 this solution must be discarded, since it
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is required that the equality be carried out for any value of
p(M)), or

pM(C) = p(C)

for any M and C.
Conversely, if pM(C) = p(C), then pC(M) = p(M),

and the system is perfect secrecy.
Indeed, let us have plaintext M with s = 3 letters

ki ∈ M with equal probabilities p(ki) =
1
3 . Suppose we

have plaintext cell ki, (1 ≤ i ≤ 3) and suppose these
plaintext cells appear in the text with frequencies
p(ki) =

1
3 and consequently, p(M) = ∑1≤i≤3 pi = 1.

In our system for each plaintext cell, ki and ciphertext
cell k j ∈C there is exactly one key, such as K(ki, j)ki = k j.

The probabilities of these keys are equal and pK(ki, j)=
1
3 consequently pM(C) = ∑1≤i≤3 K(ki, j) = 1.

If we have the probabilities p(ki) and of keys
pK(ki, j) = 1

3 we provide to find the probability of
ciphertext p(k j) using the formula

p(k j) = ∑
1≤i≤3

p(ki)pK(ki, j).

When all keys are independent, each key has an equal
probability of 1/3, so we can replace pK(ki, j) = 1

3 .
Accordingly, we can obtain

p(k j) =
1
3 ∑

1≤i≤3
p(ki). (15)

In our system for each plaintext cell, ki and ciphertext
cell, k j there is exactly one key like that, K(ki, j).
Therefore, each occurs exactly once in the last sum (15),
so we have 1

3 ∑1≤i≤3 p(ki) for probability of cell of
ciperhtext.

But the sum of the probabilities of all possible
plaintext cells ki is 1, so we obtain p(k j) = 1

3 and
p(C) = ∑1≤ j≤3 p(k j) = 1. Hence, every ciphertext occurs
with an equal probability and

pM(C) = p(C).

Therefore, from Shannon equality (14) when
p(M) = p(C) = 1, we get

pM(C) = p(C).

This proves that our system has perfect secrecy.

5 Conclusion

In this paper, the concept of using the full set of Bethe
states of the Lieb-Liniger ansatz model as a source of
cryptographic constructions was presented. The approach
is based on the method of M.Yu.Rasulova allowed
interpreting the spectral data of a quantum system as a
discrete space suitable for encoding information and
generating keys. The analysis showed that the inverse

problem of restoring the system parameters from the
Bethe roots is nontrivial and potentially computationally
difficult, especially with an increase in the number of
particles and the complexity of the boundary conditions.
This opens up prospects for constructing
quantum-resistant protocols in which fundamental
symmetry and integrability are used as a means of
creating structural cryptographic protection. Further
research will be aimed at numerical modeling of the
resistance of such schemes and formal justification of
their cryptographic properties from the point of view of
the theory of computational complexity.
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