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Abstract: We investigate the propagation of a soliton-pair in 3-level atomic system out of resonance. We present an explicit analytical
expression of the soliton-pair shape. We show that the speed of the soliton-pair can be controlled. Furthermore, we derive a condition
for completely stopping the light.
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1. Introduction

Considerable attention was paid in the three last decades
to the non linear optical media [1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17,18,19], mainly the Solitons formation
in electromagnetically induced transparency medium
(EIT)[20,21,22,23], as they have important physical
features[24,25]. In particular, spatiotemporal solitons
known as STSs [26]. They are pulses, which maintain
their shape by propagating in the medium due to the
balance between the group-velocity dispersion,
diffraction, and nonlinear self-phase modulation.
Moreover, EIT is an important tool for realization of
controllable atom-light coupling, such as the
manipulation of optical pulse propagation through atomic
and atom-like media via slow [27,28,29] and stored light
[30,31,32,22]. Among the interesting potential
applications of EIT and slow light is the practical
realization of a quantum memory. Electromagnetically
induced transparency (EIT) has mainly been studied for
three-level systems. In particular, a considerable interest
has been dedicated to the Lambda-configuration where a
pair of optical pulses propagates without absorption. This
medium can be made experimentally [33] if, a weak
signal pulse propagates through the medium pumped by a
strong control field. The group velocity of the weak signal
depends on the control field intensity, and can be reduced
to zero. In this case the photonic information of the pulse
is completely transferred to the atoms. This coherent
transfer is reversible, which means that the pulse may be

retrieved[34]. In another context, Park and Shin [35]
showed a systematic method for constructing families of
multi-component pulses in EIT media. H. Eleuch and his
co-workers [36,37], derived analytical solutions of
solitons and pair of solitons in dissipative resonant media.

In this paper we investigate the soliton-pair
propagation in the three level dissipative media out of
resonance, we elaborate an explicit analytical expression
of the pair soliton shape and we derive a condition for
completely stopping the light.

2. Model

The medium considered here is a three level atom in the
Λ−configuration interacting with two non-resonant
electromagnetic fields. The two atomic transitions are
excited by two variable laser fields.

The three-level atom is described by quantum system
with three energy levels|0〉 , |1〉 and|2〉 . The restriction to
two lower energy level is valid if the frequency of the
interacting waves are distant enough to all other
frequencies. In this model we take into account the rates
γ1,2 of radiative decay from the higher level|0〉 to the
levels |1〉 and|2〉 and neglecting the other dissipation
effects.

This three-level system is irradiated by a light beam
containing two monochromatic fieldsE1 and E2 which
propagate with polarization adequate to couple the optical
transitions (|0〉 ↔ |1〉 and|0〉 ↔ |2〉). We suppose that the
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levels|1〉 and |2〉 are decoupled (transition|1〉 ↔ |2〉
negligible). In fact a free atom has at least two states at
same parity between which an electrical dipole transition
is not allowed. Furthermore, we assume that the two
optical fields have slowly varying envelopes [34,35,36]:
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In the rotating wave approximation the Hamiltonian of the
system is

H = H0+Hi

H0 = ∑
i=1,2

εia
+
i ai

H = ∑
i=1,2

gi
(

a+0 aiEi +a+i a0E∗
i

)

(2)

Where H0 is the field free Hamiltonian andHi is the
interaction of the atom with the electromagnetic fields.ai,
a+i are respectively the annihilation and creation fermions
operators of the atomic leveli, verifying the

anti-commutation relation
[

ai,a
+
j

]

+
= δi j. The two

dipole transition matrix elements which are assumed to be
real are denoted byg1 andg2. The dynamical evolution of
system is governed by the master equation

d
dt

ρ =
1
ih̄

[H,ρ ]+£ρ (3)

The irreversible decay part in the system is denoted by£ρ
and corresponds to the incoherent processes. It is given by:

£ρ =
γ1

2

[

a+0 a1ρ ,a+1 a0
]

+
γ1

2

[

a+0 a1ρ ,a+1 a0
]

+

γ2

2

[

a+0 a2ρ ,a+2 a0
]

+
γ2

2

[

a+0 a2ρ ,a+2 a0
]

(4)

The time-varying density matrix elements verify the
following evolution equations

d
dt

ρ10 = iω10ρ10− id1E∗
1 (ρ00−ρ11)

+ id2ρ∗
21E∗

2 −

(

γ1+ γ2

2

)

ρ10

d
dt

ρ20 = iω20ρ20− id2E∗
2 (ρ00−ρ22)

+ id1ρ21E∗
1 −

(

γ1+ γ2

2

)

ρ20

d
dt

ρ21 = id1E1ρ20+ id2ρ∗
10E∗

2 + i(ω20−ω10)ρ00

d
dt

ρ j j = id j
(

E jρ j0−E∗
j ρ∗

j0

)

+ γ jρ00 f or j = 1,2

d
dt

ρi j =
d
dt

(ρ ji)
∗ f or i, j = 0,1,2

d
dt

ρ00 = −
d
dt

(ρ11+ρ22) (5)

The last equation is derived fromtr (ρ) = 1. di are the
coupling constants.ω10 andω20 represent the two atomic

transition frequencies and we have:ω10=
ε0−ε1

h̄ andω20=
ε0−ε2

h̄ .
ρ10 and ρ20 terms oscillate at the respective driving

field frequency and theρ21 oscillate with frequency
differences of the two light fields. So, we can define the
slowly varying amplitudes of the off-diagonal density
matrix elementsρ10, ρ20 andρ21 through the relations:

ρ j0 = ρ j0exp(iω j0t) f or j = 1,2

ρ21 = ρ21exp(i(ω20−ω10) t) (6)

The off-diagonal elements, which describe the atomic
coherences, can be decomposed into imaginary part and
real parts :

ρ j0 = χ j0+ iψ j0

ρ21 = χ21+ iψ21 (7)

The Hermitian propriety of the density matrix ensures
that the diagonal elementsρ11,ρ22 andρ00 must be real.
These terms are the level populations and determine the
internal energy of the atom.δ1 = ω10 − ω1and
δ2 = ω20 − ω2 are the detunings between the laser
frequencies and the atomic transitions frequencies. We
have developed in this section, the evolution of the atomic
parameters. In the next section, we explore the
propagation of the fieldsE1 andE2 through the medium
and its spatial and temporal dynamical behavior.

3. Analysis of the fields propagation

This section deals with the analysis of soliton propagation
in the medium described above. The signal fieldE j for
j = 1,2 are described by the Maxwell equations for a
slowly varying approximation (SVA) [38,

39]:
∂E j
∂ t + c

∂E j
∂x = ig

′ −
ρ j0. Moreover, the condition for

soliton-pair propagation is expressed as
E j (x, t) = E j (x− vgt)

The propagation constants of the fieldsg′i, which are
considered to be real, are given byg′i =

2π
ε0

Ngi(ω2+ δ2).
ε0 is the vacuum electric constant,N is the atomic dipole
density andc is the velocity of light.vg represents the
group velocity of the soliton-pair. We introduce a moving
coordinatez = x− vgt which propagates with the pulses’s
velocities. In this new moving coordinate we have
∂
∂ t =−vg

∂
∂ z and ∂

∂x =
∂
∂ z . We assume in this work that the

two spontaneous emission rates are approximately equal:

γ1 = γ2 = γ.We suppose also, that
−
E2 is real which gives

χ20 = 0. The complete set of the evolution equations for
medium-fields interaction (Maxwell-Bloch equations) are
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obtained from Maxwell equations and the master equation

d
dz

χ10 =
δ1

vg
ψ10−α2ψ21+Γ χ10

d
dz

ψ10 =
δ1

vg
χ10−2α1χ11−α2χ21+Γ ψ10

0 =
δ2

vg
ψ20+α1ψ21

d
dz

ψ20 = α2(−1−ρ11)−α1χ21+Γ ψ20

d
dz

χ21 = α1ψ20+α2ψ10

d
dz

ψ21 = α2χ10

d
dz

ρ11 = 2α1ψ10−Γ (1−ρ11−ρ22)

d
dz

ρ22 = 2α2ψ20−Γ (1−ρ11−ρ22) (8)

d
dz

α2 = −
d2g2

vg(c− vg)
ψ20

= −k2ψ20

d
dz

α1 = −
d1g1

vg(c− vg)
ψ10

= −k1ψ10

Whereα1andα2 are both variables and related to the
field amplitudes by the following expressions:

α1 =
d1E1

vg
; α2 =

d2E2

vg
(9)

We deal here with the case whereα2 = Aα1 = Aα
which means that the two pulses constituting the
amplitudes of the pair have the same shape but with
different amplitudes. The new constantΓ is defined by
Γ = γ

vg
.

The optical fields 1 and 2 have slowly varying
amplitudes, in this case, we can neglect the variation of
the curvature and we can assume that the third and the
forth order of the differentiations are negligible. After
algebraic manipulations and differentiation of the
Maxwell-Bloch equations, we obtain a non-linear
differential equation:

0= Bp2+Cp+Dp(
d p
dα

)+E(
d p
dα

)+F (10)

where we introduce a new variablep describing the
field evolution of the fieldα by

p(α) =
dα
dz

(11)

The expressions of the constants are:

B = −3

C = −Γ α
D = 4α
E = 4α2 (12)

F = (−A2−
δ1k2

δ2k1
)α4

4. Shapes of Solitons and stopping light
condition

In this section we derive an analytical explicit shape of
the soliton, so we must find an explicit relation betweenα
andz. From the definition of thep function we obtain the
following relation between the field amplitudeα and the
local coordinatez, for small field amplitudeα,we get :

z =
∫

dα
p

=
∫

dα
S1α +S2α2

=
−2
S1

tanh−1
[

2S2α −S1

S1

]

(13)

where

S1 = 4−Γ
S2 = ±X

= ±

√

1
5
(

δ1k2

δ2k1
+A2) (14)

Herewith we obtain two possible expressions of the
soliton pulse shapes (The plots in Fig.1 represent the two
possible shapes of the solitons, the used parameters are
from realistic values [40,41,42,43,44,45]) :

α(1) (z) =
−S1

2X
(1− tanh(

S1z
2

))

α(2) (z) =
S1

2X
(1− tanh(

S1z
2

)) (15)

In order to calculate the velocity of the soliton, we
determine, first the maximum amplitude of the soliton. It
is given by the following relation:

αmax=
S1

X
=

4−Γ
S2

=
4− γ

vg

S2
(16)

The expression of the group velocity for the solition pair is
then:vg =

γ
4−Xαmax

. From the fact thatvg ≤ c, we deduce
a condition for the soliton propagation

αmax≤
4− γ

c

X
, (17)
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Figure 1: Soliton shapesα(1)(a) andα(2) (b) as function of z for

the following parameters (in the SI units):ω2 = 1.5∗108;ω1 = 5∗
108;d2= 3∗10−32;d1= 1.5∗10−32;γ = 5∗108;A = 1.5;g2 =
0.15∗108;g1 = 0.17∗108;δ1 = 0.03∗108;δ2 = 3δ1.

wherec is the velocity of light in vacuum.
Furthermore, for δ1δ2 < 0 another propagation

condition for the soliton-pair should be verified:

|A|>

√

−
δ1d2g2ω20

δ2d1g1ω10
(18)

The two cases whereA = ±
√

− δ1d2g2ω20
δ2d1g1ω10

are very
interesting as the soliton’s velocity vanishes which means
that the soliton-pair can be stopped. This can be used to
greatly reduce noise, allowing information to be
transmitted more efficiently in the media[46]. Moreover,
storing the energy information at a desired time, is an
important challenge for the quantum information
processing. In fact, storing and retrieving back a quantum
state of light may destroy the information that it carries.
In this Context, developing quantum memories is a way
to avoid shape deformation and energy loss[46].

5. Conclusion

In this paper we have studied the propagation of a
soliton-pair in an absorbing and a non-resonant three level
atomic media inΛ configuration. We derive an explicit
analytical solution for the soliton-pair shapes. We show
that the group velocity of the soliton-pair can be
controlled by changing the values of the maximum
amplitude and the detunings. These results are important
in several physical applications such as in
telecommunications. In fact, typical slow light systems
exhibit loss of information through dispersion.
Controlling slowing light propagation through solitons
propagation is an efficient way to reduce loss of
information and un-distortion.
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